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Abstract:
There is now a large published literature on the strengths and weaknesses of downscaling methods for different climatic
variables, in different regions and seasons. However, little attention is given to the choice of downscaling method when
examining the impacts of climate change on hydrological systems. This review paper assesses the current downscaling
literature, examining new developments in the downscaling field specifically for hydrological impacts. Sections focus on the
downscaling concept; new methods; comparative methodological studies; the modelling of extremes; and the application
to hydrological impacts.

Consideration is then given to new developments in climate scenario construction which may offer the most potential
for advancement within the ‘downscaling for hydrological impacts’ community, such as probabilistic modelling, pattern
scaling and downscaling of multiple variables and suggests ways that they can be merged with downscaling techniques
in a probabilistic climate change scenario framework to assess the uncertainties associated with future projections. Within
hydrological impact studies there is still little consideration given to applied research; how the results can be best used to
enable stakeholders and managers to make informed, robust decisions on adaptation and mitigation strategies in the face of
many uncertainties about the future. It is suggested that there is a need for a move away from comparison studies into the
provision of decision-making tools for planning and management that are robust to future uncertainties; with examination
and understanding of uncertainties within the modelling system. Copyright  2007 Royal Meteorological Society
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INTRODUCTION

General circulation models (GCMs) are an important tool
in the assessment of climate change. These numerical
coupled models represent various earth systems including
the atmosphere, oceans, land surface and sea-ice and offer
considerable potential for the study of climate change and
variability. However, they remain relatively coarse in res-
olution and are unable to resolve significant subgrid scale
features (Grotch and MacCracken, 1991) such as topog-
raphy, clouds and land use. For example, the Hadley
Centre’s HadCM3 model is resolved at a spatial resolu-
tion of 2.5° latitude by 3.75° longitude whereas a spatial
resolution of 0.125° latitude and longitude is required by
hydrologic simulations of monthly flow in mountainous
catchments (Salathé, 2003). Bridging the gap between
the resolution of climate models and regional and local
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scale processes represents a considerable problem for
the impact assessment of climate change, including the
application of climate change scenarios to hydrological
models. Thus, considerable effort in the climate commu-
nity has focussed on the development of techniques to
bridge the gap, known as ‘downscaling’.

A number of papers have previously reviewed down-
scaling concepts, including Hewitson and Crane (1996);
Wilby and Wigley (1997); Zorita and von Storch (1997);
Xu (1999); Wilby et al. (2004); and regionally for Scan-
dinavia in Hanssen-Bauer et al. (2005). This paper differs
from previous reviews as it focuses on recent develop-
ments in downscaling methods for hydrological impact
studies, updating and extending the methodological study
of Xu (1999). In the next two sections the concept of
downscaling, the development of new methods, com-
parative methodological studies and the modelling of
extremes are discussed. The application of downscaling
to the field of climate change impacts on hydrological
modelling is reviewed in “Downscaling for hydrologi-
cal impact studies”. “Incorporating new developments”
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reviews new developments in climate scenario construc-
tion, such as probabilistic modelling, pattern scaling and
downscaling of multiple variables and suggests ways
that they can be merged with downscaling techniques
in a probabilistic climate change scenario framework to
assess the uncertainties associated with future projec-
tions. The last section “Summary and next steps” draws
these themes together to make some recommendations
on future work in the field, providing an example of
how probabilistic climate scenarios can be linked with
downscaling methods for hydrological, and other, impact
studies.

In particular, this review will try to answer five
questions that we believe must be addressed for the
successful use of downscaling methods in hydrological
impact assessment, in both the downscaling research
community and for practitioners:

1. What more (if anything) can be learnt from downscal-
ing method comparison studies?

2. Can dynamical downscaling contribute advantages
that can not be conferred by statistical downscaling?

3. Can realistic climate change scenarios be produced
from dynamically downscaled output for periods out-
side the time period of simulation using methods such
as pattern scaling?

4. What new methods can be used together with
downscaling to assess uncertainties in hydrological
response?

5. How can downscaling methods be better utilized
within the hydrological impacts community?

Whilst this review aims to discuss recent developments
in the application of climate change scenarios, through
downscaling methods, to assess hydrological impacts, it
will not provide a comprehensive review of all published
studies. Instead it aims to concentrate on those studies

that address new concepts and real advances in downscal-
ing for hydrological impact assessment, particularly those
that address the quantification of uncertainty in the esti-
mation of climate change impacts. Therefore, the review
will concentrate on studies that compare different down-
scaling approaches, the outputs from multiple climate
models or ensembles, and multiple emissions scenarios.

OVERVIEW OF DOWNSCALING METHODS

Two fundamental approaches exist for the downscaling
of large-scale GCM output to a finer spatial resolution.
The first of these is a dynamical approach where a higher-
resolution climate model is embedded within a GCM. The
second approach is to use statistical methods to establish
empirical relationships between GCM-resolution climate
variables and local climate. These two approaches are
described below and the main advantages and limitations
of each are summarized in Table I.

Dynamical downscaling

Dynamical downscaling refers to the use of regional cli-
mate models (RCMs), or limited-area models (LAMs).
These use large-scale and lateral boundary conditions
from GCMs to produce higher resolution outputs. These
are typically resolved at the ∼0.5° latitude and longitude
scale and parameterize physical atmospheric processes.
Thus, they are able to realistically simulate regional
climate features such as orographic precipitation (e.g.
Frei et al., 2003), extreme climate events (e.g. Fowler
et al., 2005a; Frei et al., 2006) and regional scale climate
anomalies, or non-linear effects, such as those associ-
ated with the El Niño Southern Oscillation (e.g. Leung
et al., 2003a). However, model skill depends strongly on
biases inherited from the driving GCM and the presence
and strength of regional scale forcings such as orog-
raphy, land-sea contrast and vegetation cover. Studies

Table I. Comparative summary of the relative merits of statistical and dynamical downscaling techniques (adapted from Wilby
and Wigley, 1997).

Statistical downscaling Dynamical downscaling

Advantages • Comparatively cheap and computationally efficient
• Can provide point-scale climatic variables from
GCM-scale output
• Can be used to derive variables not available from
RCMs
• Easily transferable to other regions
• Based on standard and accepted statistical procedures
• Able to directly incorporate observations into method

• Produces responses based on physically
consistent processes
• Produces finer resolution information from
GCM-scale output that can resolve atmospheric
processes on a smaller scale

Disadvantages • Require long and reliable observed historical data
series for calibration
• Dependent upon choice of predictors
• Non-stationarity in the predictor-predictand
relationship
• Climate system feedbacks not included

• Computationally intensive
• Limited number of scenario ensembles
available
• Strongly dependent on GCM boundary
forcing

• Dependent on GCM boundary forcing; affected by biases in underlying GCM
• Domain size, climatic region and season affects downscaling skill
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within the western U.S., Europe, and New Zealand, where
topographic effects on temperature and precipitation are
prominent, often report more skilful dynamical down-
scaling than in regions such as the U.S., Great Plains and
China where regional forcings are weaker (Wang et al.,
2004).

Variability in internal parameterizations also provides
considerable uncertainty. Therefore, use of model ensem-
bles is to be recommended for a realistic assessment of
climate change. Hagemann et al. (2004) examined the
relative performance of four RCMs (HIRHAM, CHRM,
REMO and HadRM3H) and a variable resolution GCM
(ARPEGE) over the Danube and Baltic Sea catchments.
Boundary conditions from gridded reanalysis data were
used to remove the effect of errors in GCM boundary con-
ditions, and therefore identify simulation errors resulting
from internal RCM parameterizations. Over the Baltic, all
models overestimated precipitation, except in summer;
probably due to inaccurate parameterizations of large-
scale condensation and convection schemes. For the more
continental Danube, all models except ARPEGE simu-
lated a dry summer bias. In CHRM this was related to
poor soil parameterization but in the other models it was
due to lack of moisture advection into the region. Addi-
tional errors were noted to result from poor simulation of
snow-albedo feedback.

As dynamical downscaling is computationally expen-
sive, model integrations have, until recently, been
restricted to ‘time slices’; normally ∼30 years for a con-
trol or ‘baseline’ climate from 1961–1990 and for a
changed climate from 2070–2100. This makes climate
change impacts for other periods difficult to assess. Pro-
ducing scenarios for other periods has been addressed
using ‘pattern scaling’ (further discussed in the section
“Pattern scaling”) – where changes are scaled according
to the temperature signal modelled for the intervening
period, assuming a linear pattern of change (e.g. Prud-
homme et al., 2002). However, some transient RCM sim-
ulations, from 1950 to 2100, are now becoming available
(Erik Kjellström, personal communication) and so this
scaling issue may soon be overcome.

Using a RCM provides additional uncertainty to that
inherent to GCM output. Uncertainty in RCM formula-
tion has a small, but non-negligible, impact on future
projections of UK and Ireland mean-climate (Rowell,
2006; Fowler and Blenkinsop, in press). For tempera-
ture projections, the uncertainty introduced by the RCM
is less than that from the emissions scenario, but for pre-
cipitation projections the opposite is true. However, the
largest source of uncertainty derives from the structure
and physics of the formulation of the driving GCM. The
uncertainty introduced by ten RCMs for eight European
regions was evaluated by Déqué et al. (2005) using RCM
ensemble runs and applying the same emissions scenario.
The contribution of different sources of uncertainty was
found to vary according to spatial domain, region and
season, but the largest uncertainty was introduced by the
boundary forcing i.e. choice of driving GCM, particularly
for temperature. Exceptionally, for summer precipitation

the uncertainty attributable to the choice of RCM was of
the same magnitude.

There has now been much assessment of the ability
of RCMs to simulate climate variables, particularly those
relevant to hydrological impact studies. Several studies
(e.g. Leung et al., 2004) have illustrated how dynami-
cal downscaling provides ‘added value’ for the study of
climate change and its potential impacts, as regional cli-
mate change signals can be significantly different from
those projected by GCMs because of orographic forcing
and rain-shadowing effects. Dynamical downscaling can
also provide improved simulation of meso-scale precipi-
tation processes and thus higher moment climate statistics
(Schmidli et al., 2006); producing more plausible climate
change scenarios for extreme events and climate vari-
ability at the regional scale. To this end, longer duration,
higher spatial resolution (e.g. Christensen et al., 1998),
and ensemble RCM simulations (e.g. Leung et al., 2004),
particularly the European FP5 Prediction of Regional sce-
narios and Uncertainties for defining European Climate
change risks and Effects (PRUDENCE) project (Chris-
tensen et al., 2007) and the North American Regional Cli-
mate Change Assessment Program (NARCCAP) project
(Mearns et al., 2006), are becoming more common.
These improve the realism of control simulations; more
accurate variability and extreme event statistics are sim-
ulated by higher spatial and temporal resolution mod-
els (e.g. Frei et al., 2006). Applications to geographi-
cally diverse regions and model inter-comparison studies
have allowed the strengths and weaknesses of dynamical
downscaling to be better understood (Wang et al., 2004).
This has recently proliferated their use in impact stud-
ies (e.g. Bergstrom et al., 2001; Wood et al., 2004; Zhu
et al., 2004; Graham et al., 2007 a,b); and is further dis-
cussed in “Downscaling for hydrological impact studies”.

Statistical downscaling

Many statistical downscaling techniques have been devel-
oped to translate large-scale GCM output onto a finer
resolution.

The simplest method is to apply GCM-scale projec-
tions in the form of change factors (CFs) – the ‘perturba-
tion method’ (Prudhomme et al., 2002) or ‘delta-change’
approach. Differences between the control and future
GCM simulations are applied to baseline observations by
simply adding or scaling the mean climatic CF to each
day. Therefore, it can be rapidly applied to several GCMs
to produce a range of climate scenarios but has a number
of caveats. Firstly, the method assumes that GCMs more
accurately simulate relative change than absolute values,
i.e. assuming a constant bias through time. Secondly, CFs
only scale the mean, maxima and minima of climatic
variables, ignoring change in variability and assuming
the spatial pattern of climate will remain constant (Diaz-
Nieto and Wilby, 2005). Furthermore, for precipitation
the temporal sequence of wet days is unchanged, when
change in wet and dry spells may be an important compo-
nent of climate change. Several modifications have been

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 27: 1547–1578 (2007)
DOI: 10.1002/joc



1550 H. J. FOWLER ET AL.

proposed. Prudhomme et al. (2002) suggest any increase
in precipitation is distributed evenly among existing rain
days, added to make each third dry day wet, or distributed
on only the three wettest days to simulate an increase in
extremes. The effectiveness of these arbitrary parameters
is however, not assessed. Harrold and Jones (2003) rank
GCM daily rainfall for current and future climates and
use these to scale ranked historical precipitation series, a
variation which is sensitive to change in extreme rainfall
and wet day frequencies.

More sophisticated statistical downscaling methods are
generally classified into three groups:

• Regression models
• Weather typing schemes
• Weather generators (WGs)

Each group covers a range of methods, all relying
on the fundamental concept that regional climates are
largely a function of the large-scale atmospheric state.
This relationship may be expressed as a stochastic and/or
deterministic function between large-scale atmospheric
variables (predictors) and local or regional climate vari-
ables (predictands). Predictor variables useful for down-
scaling typically represent the large-scale circulation, e.g.
sea-level pressure and geopotential heights, but can also
include measures of humidity and simulated surface cli-
mate variables such as GCM precipitation and tempera-
ture (e.g. Widmann and Bretherton, 2000; Salathé, 2005).
Essentially, in these methods, the regional climate is con-
sidered to be conditioned by the large-scale climate state
in the form R = F(X), where R represents the local cli-
mate variable that is being downscaled, X is the set of
large-scale climate variables and F is a function which
relates the two and is typically established by training
and validating the models using point observations or
gridded reanalysis data. Performance of these methods
in reproducing observed or reanalysis statistics is nor-
mally measured using correlation coefficients, distance
measures such as root mean squared error (RMSE), or
explained variance, although Busuioc et al. (2001) sug-
gest that for climate change applications the optimum
downscaling model may well be that which best repro-
duces low frequency variability (e.g. Wilby et al., 2002a).

Several key assumptions are inherent within these sta-
tistical downscaling techniques. Firstly, predictor vari-
ables should be physically meaningful, reproduced well
by the GCM and able to reflect the processes respon-
sible for climatic variability on a range of timescales.
For example, downscaling which uses only circulation-
based predictors may fail to reflect change in atmospheric
humidity in a warmer climate. Secondly, the predic-
tor–predictand relationship is assumed to be stationary
in time, remaining the same in a changed future cli-
mate. This assumption has shown to be questionable in
the observed record (e.g. Huth, 1997; Slonosky et al.,
2001; Fowler and Kilsby, 2002) and is best tested using

long records or model validation on a period with differ-
ent climate characteristics (Charles et al., 2004). Non-
stationarity may be attributed to an incomplete set of
predictor variables that exclude low-frequency climate
behaviour, inadequate sampling or calibration period, or
temporal change in climate system structures (Wilby,
1998). The degree of non-stationarity in projected climate
change has recently been assessed by Hewitson and Crane
(2006) who found that this is relatively small and that
circulation dynamics in particular may be more robust to
non-stationarities.

Choice of predictor variables should also be given high
consideration. A predictor may not appear significant
when developing a downscaling model under present cli-
mate, but future changes in that predictor may be critical
in determining climate change (Wilby, 1998). For exam-
ple, local temperature change under a 2 × CO2 scenario is
dominated by change in atmospheric radiative properties
rather than circulation changes (Schubert, 1998) but for
local precipitation change the inclusion of low-frequency
atmospheric predictors can produce enhanced simulations
(Wilby, 1998). There is little consensus on the most
appropriate choice of predictor variables. Circulation-
related predictors, such as sea-level pressure, are attrac-
tive as relatively long observations are available and
GCMs simulate these with some skill (Cavazos and
Hewitson, 2005). However, it is increasingly acknowl-
edged that circulation predictors alone are unlikely to be
sufficient, as they fail to capture key precipitation mech-
anisms based on thermodynamics and vapour content.
Thus humidity has increasingly been used to downscale
precipitation (e.g. Karl et al., 1990; Wilby and Wigley,
1997; Murphy, 2000; Beckmann and Buishand, 2002);
particularly as it may be an important predictor under a
changed climate. Indeed, the inclusion of moisture vari-
ables as predictors can lead to convergence in the results
of statistical and dynamical approaches (Charles et al.,
1999), with the inclusion of GCM precipitation as a pre-
dictor also improving downscaling skill (Salathé, 2003;
Widmann et al., 2003). Cavazos and Hewitson (2005)
have performed the most comprehensive assessment of
predictor variables to date, assessing 29 NCEP reanalysis
variables using an artificial neural network (ANN) down-
scaling method in 15 locations. Predictors representing
mid-tropospheric circulation (geopotential heights) and
specific humidity were found to be useful in all locations
and seasons. Tropospheric thickness and surface merid-
ional and mid-tropospheric wind components were also
important predictors but more regionally and seasonally
dependent.

The results of statistical downscaling are also depen-
dent upon the choice of predictor domain (Wilby
and Wigley, 2000). However, this is generally ignored
(Benestad, 2001). A study by Brinkmann (2002) sug-
gests that, for studies where only one grid point is used,
the optimum grid point location for downscaling may be
a function of the timescale under consideration and is
not necessarily related solely to location. Additionally,
large-scale circulation patterns over the predictor domain
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may not capture small-scale processes; these may result
from variability in neighbouring locations. Similar results
were obtained by Wilby and Wigley (2000) who found
that in many cases, maximum correlations between pre-
cipitation and mean sea level pressure (MSLP) occurred
away from the grid box, suggesting that the choice of
predictor domain, in terms of location and spatial extent,
is a critical factor affecting the realism and stability of
downscaled precipitation scenarios.

Statistical methods are more straightforward than
dynamical downscaling but tend to underestimate vari-
ance and poorly represent extreme events. Regression
methods and some weather-typing approaches under-
predict climate variability to varying degrees, since only
part of the regional and local climate variability is related
to large-scale climate variations. Three approaches to
add variability to downscaled climate variables are fre-
quently employed: variable inflation, expanded down-
scaling and randomization. Variable inflation (Karl et al.,
1990) increases variability by multiplying by a suitable
factor. However, von Storch (1999) suggests that variable
inflation is not meaningful as it assumes that all climate
variability is related to the large-scale predictor fields,
recommending the alternative approach of ‘randomiza-
tion’ where additional variability is added in the form
of white noise (e.g. Kilsby et al., 1998). This was found
to give good results in the reproduction of 20–50 year
return values of central European surface temperature
(Kyselý, 2002). The more sophisticated ‘expanded down-
scaling’ approach, a variant of canonical correlation anal-
ysis (CCA), was developed by Bürger (1996) and has
been used by Huth (1999); Dehn et al. (2000) and Müller-
Wohlfeil et al. (2000). A comparison of the three methods
notes that each presents different problems (Bürger and
Chen, 2005). Variable inflation poorly represents spa-
tial correlations, whilst randomization performs well for
control climate simulations but is unable to reproduce
changes in variability which may represent a significant
disadvantage given the expectations of future change. In
contrast, expanded downscaling is sensitive to the choice
of statistical process used during its application.

Regression models. The term ‘transfer function’ (Giorgi
and Hewitson, 2001) is used to describe methods that
directly quantify a relationship between the predictand
and a set of predictor variables. In the simplest form,
multiple regression models are built using grid cell val-
ues of atmospheric variables as predictors for surface
temperature and precipitation (e.g. Hanssen-Bauer and
Førland, 1998; Hellström et al., 2001). Other more com-
plex techniques include using the principal components
of pressure fields or geopotential heights (e.g. Cubasch
et al., 1996; Kidson and Thompson, 1998; Hanssen-
Bauer et al., 2003) and more sophisticated methods such
as ANNs (e.g. Zorita and von Storch, 1999), CCA (Karl
et al., 1990; Wigley et al., 1990; von Storch et al., 1993;
Busuioc et al., 2001) and singular value decomposition
(SVD) (Huth, 1999; von Storch and Zwiers, 1999).

There have been a number of recent innovations in
this type of downscaling. For example, Abaurrea and
Ası́n (2005) applied a logistic regression model to daily
precipitation probability and a generalized linear model
for wet day amounts for the Ebro Valley, Spain. The
approach simulated seasonal characteristics and some
aspects of daily behaviour such as wet and dry runs well,
but had low skill in reproducing extreme events. Bergant
and Kajfez-Bogataj (2005) used multi-way partial least
squares regression to downscale temperature and pre-
cipitation in Slovenia, more appropriate with predictor
variables that are strongly correlated. The method per-
formed better than a more conventional method based on
regression of principal components but was tested only
on the cold season.

Weather typing schemes. Weather typing or classifica-
tion schemes relate the occurrence of particular ‘weather
classes’ to local climate. Weather classes may be defined
synoptically, typically using emprical orthogonal func-
tions EOFs from pressure data (Goodess and Palutikof,
1998), by indices from SLP data (e.g. Conway et al.,
1996), or by applying cluster analysis (Fowler et al.,
2000, 2005b) or fuzzy rules (Bárdossy et al., 2002, 2005)
to atmospheric pressure fields. Local surface variables,
typically precipitation, are conditioned on daily weather
patterns by deriving conditional probability distributions
for observed statistics, e.g. p(wet–wet) or mean wet
day amount, associated with a given atmospheric circu-
lation pattern (e.g. Bellone et al., 2000). Climate change
is estimated by evaluating the change in the frequency of
the weather classes simulated by the GCM. The method
assumes that the characteristics of the weather classes will
not change and many classification procedures also have
the inherent problem of within-class variability of cli-
mate parameters (Brinkmann, 2000). Enke et al. (2005a)
recently described a scheme to partially address this,
limiting within-type variability by deriving a classifica-
tion scheme for circulation patterns that optimally dis-
tinguishes between different values of regional weather
elements. The scheme is based on a stepwise multiple
regression where predictor fields are sequentially selected
to minimize the RMSE between forecasts and observa-
tions. This is applied in Enke et al. (2005b) with the aim
of modelling daily extremes of not yet observed magni-
tudes. This uses a two-stage process; first applying the
circulation pattern frequencies from the model and then
using regression analysis to make alterations resulting
from changes in the intensity of atmospheric processes,
for example increasing geopotential thicknesses.

Weather generators. At their simplest these are stochas-
tic models, based on daily precipitation with a two-
state first-order Markov chain dependent on transi-
tion probabilities for simulating precipitation occurrence,
and a gamma distribution for precipitation amounts
(e.g. WGEN, Wilks, 1992), although second-order (e.g.
Mason, 2004) and third-order (e.g. MetandRoll;
Dubrovsky et al., 2004) Markov chain models have now
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been developed that are better able to reproduce precipi-
tation occurrence or persistence. Rather than being con-
ditioned by weather patterns, variables are conditioned
on specific climatic events, e.g. precipitation occurrence,
with daily climate governed by the outcome on pre-
vious days. An example is the climate research unit
(CRU) daily WG developed by Jones and Salmon (1995)
and modified by Watts et al. (2004). It generates pre-
cipitation using a first-order Markov chain model from
which other variables – minimum and maximum tem-
peratures, vapour pressure, wind speed and sunshine
duration – are generated. A recent development of this
approach has been the linkage of a stochastic precipitation
generator – the Neyman Scott rectangular pulses (NSRP)
model – to the weather component developed by Watts
et al. (2004). This is described in Kilsby et al. (2007b)
and has been shown to improve upon the Markov chain
model approach; better describing both variability and
extremes within climatic time series.

WGs may also be driven by a weather typing scheme.
Corte-Real et al. (1999) used daily weather patterns iden-
tified from principal components of MSLP to condition
a WG. Improvements in the modelling of the autocorre-
lation structure of wet and dry days were observed when
the probability of rain is conditioned on the current cir-
culation pattern and the weather regime of the previous
day. The generator simulated fundamental characteristics
of precipitation such as the distribution of wet and dry
spell lengths and even extreme precipitation. Other stud-
ies have also found that conditioning on circulation and
low frequency variability, including sea-surface temper-
atures (SSTs), improves simulation results (e.g. Wilby
et al., 2002a).

The relative performance of different WGs was
assessed by Semenov et al. (1998) who indicated that
LARS-WG (Racsko et al., 1991) is better than WGEN at
reproducing monthly temperature and precipitation means
across the USA, Europe and Asia due to a greater number
of parameters and the use of more complex distributions.
However, both were poor at modelling inter-annual vari-
ability in monthly means and reproducing frost and hot
spells due to simplistic treatment of persistence. Qian
et al. (2005) evaluated the LARS-WG and AAFC-WG
(Hayhoe, 2000) WGs and highlighted differences in per-
formance; most notably that the AAFC-WG model was
better at reproducing distributions of wet and dry spells
than the LARS-WG.

The major disadvantage of WGs is that they are con-
ditioned using local climate relationships and so may not
be automatically applicable in other climates, though the
extent to which this limits their usefulness has not been
fully tested. They also tend to underestimate inter-annual
variability. Approaches have been developed to improve
the simulation of variability. For example, the incorpora-
tion of a stochastic rainfall model into a WG (e.g. Kilsby
et al., 2007b) improves the simulation of both variabil-
ity and extremes when compared to the use of a sim-
ple Markov method. Additionally, Wilby et al. (2002b)
developed the Statistical DownScaling Model (SDSM),

a hybrid of stochastic WG and regression methods. It
uses circulation patterns and moisture variables to condi-
tion local weather parameters, and stochastic methods to
inflate the variance of the downscaled climate series.

COMPARISON OF DOWNSCALING METHODS

The section entitled “Overview of downscaling methods”
has indicated that there are a wide range of downscal-
ing methods that may be employed. However, the use of
different spatial domains, predictor variables and predic-
tands, and assessment criteria makes direct comparison
of the relative performance of different methods difficult
to achieve. This represents a problem for their application
in climate change impact assessments as the differential
performance of each method creates a further level of
uncertainty that is difficult to quantify.

Many recent studies have compared the performance
of different downscaling methods. In this section stud-
ies that have compared different statistical downscal-
ing techniques and those that have examined the rel-
ative performance of statistical and dynamical or sta-
tistical–dynamical methods are reviewed. The Statisti-
cal and Regional dynamical Downscaling of Extremes
for European regions (STARDEX) project is the first
attempt to rigorously and systematically compare statis-
tical, dynamical and statistical–dynamical downscaling
methods, focussing on the downscaling of extremes, and
this is discussed further in “Downscaling of extremes”.

Inter-comparison of statistical downscaling methods

Studies comparing different statistical downscaling meth-
ods are now relatively common. Most, however, investi-
gate the downscaling of either precipitation or tempera-
ture, with few investigating the simultaneous downscal-
ing of multiple variables.

The earliest study of precipitation downscaling meth-
ods (Wilby and Wigley, 1997), for six North American
study regions compared the performance of two ANN
models, two WGs – the WGEN WG based on a two-
state Markov process of rainfall occurrence, and another
based on spell length – and two semi-stochastic classifi-
cation schemes based on daily vorticity values. Fourteen
diagnostic statistics were compared, including mean pre-
cipitation, wet day probabilities, extreme precipitation
amounts and wet and dry spell lengths. Model perfor-
mance varied considerably for the statistics being tested.
The WGs captured wet-day occurrence and amount but
were less skilful for inter-annual variability; with the
opposite found for ANNs. Overall, WGs proved more
skilful, with ANNs the worst because of the overesti-
mation of wet days; use of the direct output from the
HadCM2 GCM was superior to one ANN model on 12
out of 14 occasions.

Indeed, ANNs have been shown repeatedly to per-
form poorly in the simulation of daily precipitation,
particularly for wet-day occurrence (Wilby and Wigley,
1997; Wilby et al., 1998; Zorita and von Storch, 1999;
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Khan et al., 2006) due to a simplistic treatment of days
with zero amounts, although they perform adequately for
monthly precipitation (Schoof and Pryor, 2001). Harpham
and Wilby (2005) addressed this by using variants of
ANNs which, analogous to weather generation methods,
treat the occurrence and amount of precipitation sepa-
rately. These ANNs were more skilful than the SDSM
for individual sites but over-estimated inter-site correla-
tions of daily amounts due to the deterministic forcing of
amounts, whereas the stochastic nature of the SDSM led
to increased heterogeneity and lower inter-site relations.

A more modest comparative study by Zorita and von
Storch (1999) concluded that simple analogue methods
perform as well as more complex methods. Analogues
reproduced the mean monthly and daily statistics of
winter Iberian rainfall well, producing results comparable
to a CCA method, and outperformed CCA and ANNs in
simulating variability. Similarly, Widmann et al. (2003)
found that using GCM precipitation as a predictor in
downscaling improved results considerably, without the
use of complex statistical methods. This approach was
extended by Schmidli et al. (2006) to the daily temporal
resolution.

Comparative studies of methods for downscaling mean
temperature have also been undertaken. Huth (1999)
compared several linear methods for the downscaling of
daily mean winter temperature in central Europe: CCA,
SVD and three multiple regression models – stepwise
regression of principal components (PCs), and regression
of PCs with and without stepwise screening of gridded
values. PCs without screening, including all PCs within
the analysis, provided the greatest skill, with the other
two regression methods and CCA performing with com-
parable skill providing a large number of predictor PCs
were used. This suggests that the stepwise screening of
predictor variables may be an unnecessary step. However
as GCMs simulate predictors with differing accuracy, the
rating of methods may have been different had down-
scaling been applied to a GCM control run rather than
NCEP reanalyses. Note also that as winter temperatures
are relatively straightforward to downscale then it is ques-
tionable as to how much variation in skill is linked to the
downscaling methodology.

Benestad (2001) compared methods for downscaling
monthly mean temperature: EOFs and a conventional
CCA method. Using EOFs was found to be more robust
with respect to predictor domain as it reduced the number
of subjective choices for model set up; therefore more
appropriate for downscaling global climate scenarios.
To downscale maximum temperature series, Schoof and
Pryor (2001) compared ANNs with regression methods
for a station in Indianapolis, U.S. The ANNs proved more
skilful if lagged predictors were not included.

Downscaling method comparisons for more than one
variable are rare. Dibike and Coulibaly (2005) compared
SDSM, and a stochastic WG (LARS-WG) for a catch-
ment in northern Quebec. Mean daily precipitation was

simulated well by both methods; the WG better repro-
duced wet and dry-spell lengths, with SDSM underes-
timating wet-spell lengths. For maximum and minimum
temperatures both models performed well, with SDSM
showing a consistent cold bias and LARS-WG show-
ing positive and negative biases in different months. For
future scenarios however, the models displayed differ-
ent results. SDSM simulated a generally increasing trend
in mean daily precipitation amount and variability not
reproduced by the WG. Similar results were obtained by
Khan et al. (2006) in a comparison of SDSM, LARS-WG
and an ANN method. SDSM was found to perform
the best, with the ANN method producing the poorest
results. SDSM has also been compared with the pertur-
bation method in the Thames Valley, UK (Diaz-Nieto
and Wilby, 2005). SDSM modelled monthly totals and
wet day occurrence reasonably well but underestimated
dry spell length. Despite the inclusion of a lagged predic-
tor, the persistence of the precipitation process was not
captured well.

Relative performance of dynamical and statistical
methods

There have been few studies of the relative performance
of dynamical and statistical methods in climate change
impact assessment. Kidson and Thompson (1998) com-
pared the performance of the regional atmospheric mod-
elling system (RAMS), RCM and a regression-based
method for New Zealand. Their technique used five
EOFs of geopotential height and other derived vari-
ables as predictors for daily temperature and precipita-
tion. They noted little difference in skill for daily or
monthly timescales. The dynamical RAMS model has
greater skill in simulating convective precipitation but
overall the relative computational efficiency favoured the
statistical model. Murphy (1999) drew similar conclu-
sions for Europe using the UK meteorological office
unified model RCM and a regression method. However,
applying the same methods to a future scenario (Murphy,
2000) produced divergent results for the dynamical and
statistical methods. Calibrating the regression equations
using GCM-simulated variables rather than observations
highlighted differences in the strength of the predictor-
predictand relationship in the model. Mearns et al. (1999)
also observed large differences in projections for climate
change scenarios for east Nebraska despite similar skill
for current climate conditions when using the RegCM2
RCM and a statistical technique based on stochastic gen-
eration conditioned upon weather types. Climate change
beyond the range of the data used to condition the model
was hypothesized as a possible reason for this difference.

Hellström et al. (2001) compared dynamical outputs
from the Rossby Centre RCM (RCA1) driven by two
different GCMs (HadCM2 and ECHAM4/OPYC3) with
regression models based on large-scale circulation indices
and including a humidity measure. All downscaling meth-
ods improved the simulation of the seasonal cycle and
statistical and dynamical methods driven by ECHAM4
showed higher simulation skill. When applied to a future
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scenario, differences between the two statistical meth-
ods were larger than differences between dynamical and
statistical methods.

Wilby et al. (2000) examined the performance of statis-
tical and dynamical methods in a mountainous catchment
using the Animas basin, Colorado. Temperature, precip-
itation occurrence and amount were downscaled using a
multiple regression method. Overall, statistical downscal-
ing had greater skill in simulating maximum and mini-
mum temperatures than precipitation. Uncorrected RCM
monthly temperatures showed a cold bias in maximum
temperature. RCM results could however be improved
by providing an elevational bias correction on the raw
RCM output. Similar conclusions were derived by com-
paring dynamically and statistically downscaled precipi-
tation and temperature time series for three mountainous
basins in Washington, Colorado and Nevada, USA (Hay
and Clark, 2003).

Haylock et al. (2006) compared six statistical and two
dynamical downscaling methods with regard to their abil-
ity to downscale seven indices of heavy precipitation for
two station networks in northwest and southeast Eng-
land. Generally, winter showed the highest downscaling
skill and summer the lowest; skill increases as the spa-
tial coherence of rainfall increases. Indices indicative of
rainfall occurrence processes were also found to be bet-
ter modelled than those indicative of intensity. Methods
based on non-linear ANNs were found to be the best
at modelling the inter-annual variability but these had a
strong negative bias in the estimation of extremes; cir-
cumvented by the development of a novel re-sampling
method. Similar results to Murphy (2000) and Hellström
et al. (2001) were obtained when applying six of the
methods to the HadAM3P model forced by two different
emissions scenarios. The inter-method differences in the
future change estimates for precipitation indices were at
least as large as the differences between the emissions
scenarios for a single method.

There have also been comparisons of statistical and
dynamical downscaling methods within the seasonal fore-
casting field. Dı́ez et al. (2005) compared their perfor-
mance in downscaling seasonal precipitation forecasts
over Spain from two DEMETER models: ECMWF and
UKMO. As with similar studies in the climate change
literature, they conclude that different methods produce
better results dependent upon season and on the study
region.

The performance of the direct statistical downscaling
of GCM output has been compared with the use of an
intermediate dynamical downscaling step before statis-
tical downscaling. Hellström and Chen (2003) used a
three-step method to downscale Swedish precipitation.
RCM predictors (using RCA1) were up-scaled to GCM
level (HadCM2 and ECHAM4) using a linear interpola-
tion scheme based on the assumption that the inclusion
of small-scale information in the large-scale field should
have positive effects. These were then downscaled using
a multiple regression model. The intermediate dynami-
cal downscaling step improved the seasonal cycle of the

predictors but only provided a slight improvement in the
seasonal cycle of precipitation; not a reasonable return
on the cost of running the regional models. Wood et al.
(2004) came to similar conclusions in a comparison of
six downscaling approaches to produce precipitation and
other variables for hydrological simulation. Three rel-
atively simple statistical downscaling methods – linear
interpolation, spatial disaggregation, and bias-correction
and spatial disaggregation – were each applied to GCM
output directly and after dynamical downscaling with a
RCM. The most important aspect of use of GCM or
RCM outputs was found to be the bias-correction step (as
noted by Wilby et al. (2000) and Hay and Clark (2003)).
The dynamical downscaling step did not lead to large
improvements in simulation relative to using GCM output
alone. This is in contrast to comparisons in the seasonal
forecasting field (Dı́ez et al., 2005) where using dynam-
ical and statistical downscaling methods in combination
was found to offer an improvement over their use alone.

Downscaling performance for different climates

It is also difficult to assess the relative performance of dif-
ferent downscaling methods in different climatic regimes,
although it would be expected that different methods
would have greater skill in different climates since sea-
sonal differences in simulation are noted in the com-
parison studies reviewed in the earlier sections. Indeed,
in some studies statistical downscaling is conducted for
each season separately because of the strong seasonal
links between large-scale circulation and local climate
in the mid-latitudes (e.g. Matulla, 2005). Table II lists
recent statistical downscaling publications and their study
regions. Commonly, choice of downscaling method is not
based on any objective criteria related to either the vari-
able to be downscaled or climatic region, with global
applicability assumed (Wetterhall et al., 2006), although
many researchers have commented that the accuracy of
downscaling methods has a geographical and seasonal
component (e.g. Huth, 1999). However, an important
component of any impact study should be an assess-
ment of the conditions under which different downscaling
methods can be successfully applied.

Few studies have examined whether choice of down-
scaling method should be based on climatic region, down-
scaled climatic variable or season. Indeed, the use of
homogeneous climatic regions in downscaling studies
is a relatively new concept, with the prospect that sta-
tistical connections between large-scale circulation and
local climate should be more stable. This was recently
shown to be of benefit in a region of the Tropics by
Penlap et al. (2004). This spatial differentiation was also
used in an Austrian study by Matulla (2005) where
region- and season-specific combinations of predictor
variables were used in downscaling. Here, the use of
homogenous regions also enhanced the performance of
the downscaling models, although the improvement was
only slight. Regional or seasonal dependence in down-
scaling has been observed by other researchers. For
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Table II. Examples of recent statistical downscaling studies. This list is not intended to be exhaustive but illustrative
of the geographical distribution of downscaling studies and the methods employed. Abbreviations used in this table are:
REG – linear regression methods, ANN – artificial neural networks, CCA – canonical correlation analysis, OTH – other,
SCA – scaling methods, SVD – singular value decomposition, WG – weather generators, WT – weather typing. For predictands,

T – temperature, P – precipitaion, PE – potential evapotranspiration, H – humidity variables.

Authors Statistical
Downscaling

Technique

Location Predictand Authors Statistical
Downscaling

Technique

Location Predictand

Europe Kyselý (2002) REG Central Europe T
Abaurrea and
Ası́n (2005)

REG Ebro valley,
Spain

P Matulla (2005) CCA Austria T, P

Bárdossy et al.
(2002)

WT Germany,
Greece

T, P Murphy (2000) REG Europe T, P

Beckmann and
Buishand
(2002)

REG Netherlands
and
Germany

P Tatli et al.
(2004)

REG Turkey P

Bergant and
Kajfez-Bogataj
(2005)

REG Slovenia T, P Widmann and
Schär (1997)

WT Switzerland P

Cawley et al.
(2003)

ANN North-west
UK

P North America

Diaz-Nieto and
Wilby (2005)

WG Thames
Valley

P Qian et al.
(2005)

WG Canada T, P

Enke et al.
(2005a,b)

WT Germany T, P Schoof and
Pryor (2001)

ANN, REG Indianapolis, USA T, P

Goodess and
Jones (2002)

WT Iberian
Peninsula

P Salathé (2003) SCA, OTH Washington and
Oregon, UK

P

Goodess and
Palutikof
(1998)

Automated
LWT –
Markov
process

Guadalentin
Basin, SE
Spain

P Wood et al.
(2004)

OTH Pacific North West
USA

T, P

Hellström et al.
(2001);
Hellström and
Chen (2003)

REG Sweden P Widmann et al.
(2003)

SCA, SVD NW USA P

Huth (1999,
2002)

CCA, SVD,
REG

Central
Europe

T Australasia

Huth et al.
(2003)

REG, WG Central
Europe

T Kidson and
Thompson
(1998)

REG New Zealand T, P

Huth (2005) REG Czech
Republic

H Africa

Jasper et al.
(2004)

REG Switzerland T, P Penlap et al.
(2004)

CCA Cameroon P

Kettle and
Thompson
(2004)

REG Europe
(high
elevation)

T

example, the downscaling skill for mean daily temper-
ature in central Europe was found to be dependent upon
station elevation, with statistical downscaling methods
showing more skill at higher elevation stations, and
with increased skill at continental compared to mar-
itime sites (Huth, 1999). In contrast, Kleinn et al. (2005)
found that for dynamically downscaled and then bias-
corrected precipitation and temperature outputs there was
less skill at high elevations. Similarly, seasonal and geo-
graphical differences in downscaling skill were noted
by Cavazos and Hewitson (2005) who examined the

performance of NCEP reanalysis variables in the sta-
tistical downscaling of daily precipitation using ANNs
and principal components analysis (PCA). Downscaling
methods had the greatest skill in mid-latitude locations
for the cool/dry season and showed the largest errors in
the wet season. The poorest geographical performance
was in the Tropics. However, this may be due to the
dominance of convective processes which are harder to
predict or due to poor quality of the reanalysis data
in this region rather than deficiencies in downscaling
method.
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Goodess et al. (2007), in a comparison of 22 statisti-
cal downscaling methods, as part of the FP5 STARDEX
project, found that downscaling performance was better
in winter than summer and generally better in wetter than
drier regions, probably due to the difficulty in resolv-
ing small scale processes in the driest regions. However,
locally-developed methods were not found to outperform
methods developed using the whole European domain,
apart from for CCA. A study in China by Wetterhall
et al. (2006) evaluated four statistical precipitation down-
scaling methods on three catchments located in different
climatic zones, reaching similar conclusions to Goodess
et al. (2007). They used the STARDEX extreme indices
and an inter-annual variability measure to evaluate model
performance using probability scores commonly used in
forecasting. The study clearly showed that model perfor-
mance was better in wetter geographical locations and
that winter precipitation is better simulated than sum-
mer, due to its link to large-scale circulation patterns.
Inter-annual variability was improved with the addition
of humidity as a predictor variable.

The difficulties in GCM parameterization in some
regions present additional problems for downscaling.
For example, the different treatment of sea-ice was
considered an important factor in interpreting downscaled
temperature from three GCMs for Svalbard in the Arctic
Ocean (Benestad et al., 2002), leading them to conclude
that statistical downscaling models may be invalidated in
future climates affected by nearly ice-free Arctic Oceans.

Downscaling of extremes

Most climate change research has been framed within
the context of studies of mean global climate (e.g. Jones,
1988). However, following the Intergovernmental Panel
on Climate Change’s (IPCC) second assessment report
(Houghton et al., 1996) which asked the question ‘Has
the climate become more variable or extreme?’, increased
attention has focused on climate variability and possible
changes in short-term extremes of not just temperature
but also precipitation (Nicholls et al., 1996). Modelling
evidence (e.g. Frei et al., 1998) suggests that warming
may lead to an intensification of the hydrological cycle
and increases in mean and heavy precipitation.

Change in variability and extremes may have the
largest impact on hydrological systems but extreme
climate events are not easily defined. Many studies of
extremes have focussed on what Klein Tank and Können
(2003) refer to as ‘soft’ extremes, typically 90th or
95th percentile events, principally because the detection
probability of trends decreases for even moderately
rare events (Frei and Schär, 2001). Other studies have
examined more rare events, for example, events with
return periods of 50 years (e.g. Ekström et al., 2005;
Fowler et al., 2005a). The performance of downscaling
methods in representing extremes is therefore difficult
to quantify as many different extreme thresholds have
been assessed and, indeed, extreme climatic events in one
catchment may not be of the same magnitude as those in
another.

As the reliability of GCM output decreases with
increases in temporal and spatial resolution, the represen-
tation of extremes is poor. Huth et al. (2003) found that
GCMs differ in their ability to reproduce higher order
moments for central European temperatures. ECHAM4
was able to reproduce skewness and kurtosis but CCCM2
failed. GCM skill for very low and high temperatures is
also limited (Kyselý, 2002). Only ECHAM4 could even
partially reproduce extreme summer temperatures across
the European domain. CCCM2 also has problems repro-
ducing winter temperatures due to poor soil moisture
parameterization. As subgrid scale processes are more
important for extreme precipitation than temperature, the
modelling of precipitation extremes is also poor. This has
led to the use of both dynamical and statistical methods
in the downscaling of extremes.

The ability of dynamical downscaling methods to
reproduce extreme climate statistics has been assessed in
a few studies concentrating on precipitation. For example,
the HadRM3H regional climate model was found to
represent extreme precipitation events with return periods
of up to 50 years well for most of the UK (Fowler
et al., 2005a). The main deficiencies in the model’s
representation of extremes are related to the treatment
of orographic rainfall processes; consequently extremes
in north Scotland are over estimated with the converse
in eastern rain-shadowed regions. However, other RCMs
were found to perform poorly in the simulation of
extreme precipitation, particularly at the 1 day level
(Fowler et al., in press). Such assessments of model
performance are crucial if they are to be applied with
confidence to the prediction of future extremes under
enhanced greenhouse conditions (e.g. Ekström et al.,
2005). However, as most uncertainty in future climate is
derived from the choice of climate model and emissions
scenario (Déqué et al., 2007), a better understanding of
the range of possible future change may be derived by
comparing a number of climate models under different
emission scenarios.

Even models sharing similar parameterization schemes
may produce considerably different daily precipitation
statistics (Frei et al., 2003). Consequently, Frei et al.
(2006) evaluated the performance of dynamical down-
scaling of daily precipitation extremes for the European
Alps using six RCMs driven by HadAM3H boundary
conditions to derive a range of estimates for future change
in extremes. The models showed some skill in reproduc-
ing the 5-year return value. Furthermore, model biases for
the tails of the extreme distribution were similar to those
for wet-day intensities, suggesting errors in the extremes
are related to the intensity rather than the occurrence pro-
cess.

The ability of statistical downscaling methods to repro-
duce extreme climate statistics has also been assessed.
The most comprehensive study was performed by
Goodess et al. (2007) who compared 22 statistical down-
scaling methods using ten extremes indices, taking into
account magnitude, frequency and persistence, for six
European regions and Europe as a whole. For many
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indices they used percentile thresholds rather than fixed
values, focussing on moderate extremes. This may be
of limited applicability to hydrological studies where
rare events are of interest. The comparison used com-
mon data sets, calibration and validation periods, and
test statistics, aiming to compare systematic differences
in model performance between different seasons, indices
and regions. Comparisons were also made of differences
between direct methods, in which seasonal indices of
extremes are downscaled, and indirect methods, in which
daily time series are generated and seasonal indices cal-
culated.

The performance of downscaling methods varied
across seasons, stations and indices, making it difficult
to identify a best method. However, traditional meth-
ods, such as stepwise regression, compositing, correla-
tion analysis, PCA and CCA were more useful than
novel methods such as ANNs (e.g. Harpham and Wilby,
2005); although Haylock et al. (2006) developed a novel
approach within one of the ANN methods to output
the rainfall probability and gamma distribution scale
and shape parameters for each day which allowed re-
sampling methods to be used to improve the estimation
of extremes. Station to station differences were found
to dominate index to index, method to method and sea-
son to season differences, although methods generally
performed better in winter than summer, particularly for
precipitation. In general, methods were found to perform
better for mean than extreme indices of temperature and
precipitation. Watts et al. (2004) presented similar con-
clusions for the CRU WG for extremes based on 90th
and 95th percentile values. Downscaling methods were
also shown to capture some processes better than oth-
ers (Haylock et al., 2006; Goodess et al., 2007); indices
representing the frequency of extremes were better repro-
duced than those for the magnitude of events. Occurrence
processes are better captured by the downscaling pro-
cess as predictors based on large-scale circulation capture
the patterns prohibiting precipitation occurrence whereas
event magnitude depends on smaller local-scale pro-
cesses. Haylock et al. (2006) applied six of the methods
to the Hadley Centre global climate model HadAM3P
forced by emissions according to two SRES scenarios.
This revealed that the inter-method differences between
the future changes in the downscaled precipitation indices
were at least as large as the differences between the
emission scenarios for a single model. Goodess et al.
(2007) concluded that there was no consistently supe-
rior downscaling method and recommended using a range
of statistical downscaling methods, alongside a range of
RCMs and GCMs, for scenarios of extremes, but that
statistical downscaling methods may be more appropri-
ate where point values of extremes are needed for impact
studies.

Other researchers have also investigated statistical
downscaling methods. Coulibaly (2004) used a genetic
programming (GP) method to downscale local extreme
(minimum and maximum) temperatures in northern
Canada. The GP method was found to outperform the

SDSM approach in the simulation of temperature min-
ima, but both methods performed similarly for tempera-
ture maxima. Similarly, Schubert and Henderson-Sellers
(1997) used a PCA of MSLP fields to derive relationships
between large-scale atmospheric flow patterns and local
scale temperature extremes. Huth et al. (2003) indicated
that skewness of summer maximum and winter minimum
temperature distributions for the same region were well
reproduced by a stochastic WG (MetandRoll). However,
downscaling with a regression method for winter min-
ima produced the right sign skewness but not magnitude
whereas summer maxima had unrealistic negative skew-
ness.

It is likely that all downscaling methods produce
extremes that are too moderate compared with observed
series; possibly linked to the assumption of linearity in
most downscaling methods (Kyselý, 2002). A comparison
of a stepwise regression method with outputs of two
GCMs (ECHAM4 and CCCM2) for central European 20-
and 50-year return values of annual maxima by Kyselý
(2002) produced different results dependent on GCM.
ECHAM4 GCM output was found to be better than
downscaled results, whereas downscaling from CCCM
improved the representation of extremes. Downscaling
results were also found to be worse for annual minima
compared with annual maxima as cold extremes are more
strongly influenced by radiation balance and local station
setting than large-scale circulation factors.

Discussion of comparative studies

Consideration of these analyses suggests that, at least
for present day climates, dynamical downscaling meth-
ods provide little advantage over statistical techniques.
Murphy (2000) suggests that increased confidence in
RCM estimates of change will only be established by
convergence between dynamical and statistical predic-
tions, or by the emergence of clear evidence supporting
the use of a single preferred method. This, however, pre-
supposes that such a method will emerge. Comprehensive
comparison studies such as STARDEX suggest that no
one method is better and thus it may be more appro-
priate to pursue an approach based on the construction
of probabilistic scenarios as discussed in “Probabilistic
projections of climate change”.

DOWNSCALING FOR HYDROLOGICAL IMPACT
STUDIES

GCMs were not designed for the application of hydro-
logical responses to climate change. GCM-predicted run-
off is over-simplified and lacks a lateral transfer of
water within the land phase between grid cells (Xu,
1999), although results vary considerably between mod-
els (Wilby et al., 1999). Additionally, off-line hydrolog-
ical models driven directly by GCM output have been
found to perform poorly; the quality of GCM outputs
precluding their direct use for hydrological impact stud-
ies (Prudhomme et al., 2002). A clear mismatch exists
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between climate and hydrologic modelling in terms of
the spatial and temporal scales, and between GCM accu-
racy and the hydrological importance of the variables. In
particular, the reproduction of observed spatial patterns
of precipitation (Salathé, 2003) and daily precipitation
variability (Bürger and Chen, 2005) is not sufficient.
However improved results can be obtained by the appli-
cation of even simple downscaling methods (Wilby et al.,
1999)

The downscaling of climate model outputs to study
the hydrological consequences of climate change is now
common. However, the minimum standard for any use-
ful downscaling procedure for hydrological applications
is that ‘the historic (observed) conditions must be repro-
ducible’ (Wood et al., 2004). The simplest methods
examine hypothetical climate change scenarios by mod-
ifying time series of meteorological variables by CFs
in accordance with GCM scenario results, often on a
monthly basis (e.g. Arnell and Reynard, 1996; Boorman
and Sefton, 1997). However, these do not allow for
change in temporal variability (Kilsby et al., 1998; as
discussed in “Relative performance of dynamical and
statistical methods”) and so recent studies have used
more sophisticated methods. Hydrological climate change
impact studies have used dynamically downscaled out-
put directly (Wood et al., 2004; Graham et al., 2007a,b),
bias-corrected dynamically downscaled output (Wood
et al., 2004; Fowler and Kilsby, 2007; Fowler et al.,
2007), simple statistical approaches such as multiple
regression relationships (e.g. Wilby et al., 2000; Jasper
et al., 2004), expanded downscaling (Müller-Wohlfeil
et al., 2000), stochastic WGs (e.g. Evans and Schreider,
2002), statistical links to weather typing and circulation
indices (e.g. Pilling and Jones, 2002), and some studies
have compared more than one approach.

Comparison of downscaling approaches

The relative performance of different downscaling meth-
ods for hydrological impact assessment has been assessed
by a few studies. Wilby et al. (2000) examined the perfor-
mance of statistical and dynamical methods in mountain-
ous areas using data from the Animas basin in Colorado.
Temperature, precipitation occurrence and amount were
downscaled using a multiple regression method. Overall,
statistical downscaling returned better results than RCM
output for daily run-off due to well timed snow pack
melt. This was found to be regulated by temperature
and estimates of gross snow pack accumulation rather
than the sequence of individual precipitation events. The
results could still be improved by using an elevation
bias correction on the raw RCM output however. Similar
conclusions were derived by Hay and Clark (2003) for
three mountainous basins in Washington, Colorado and
Nevada, U.S. However, Kleinn et al. (2005) found that by
using bias-corrected RCM output at 56- and 14-km grid
resolution they were able to reproduce monthly stream-
flow variability in the Rhine basin, although the model
performed more poorly at high elevations. Model resolu-
tion was found to have a limited impact upon streamflow

simulation in large catchments, but may have a significant
impact in small catchments.

However, in catchments where run-off is not snow-
melt driven, other climatic features important for hydro-
logical impacts may be poorly captured by statisti-
cal downscaling methods. For example, Diaz-Nieto and
Wilby (2005) demonstrated in the River Thames, UK,
that the SDSM underestimates mean dry-spell length.
This reflects its inability to capture the true persistence of
the precipitation occurrence process. Comparisons of sta-
tistical downscaling methods have also been made, with
the use of different downscaling methods resulting in
significantly different hydrological impacts for the same
catchment (Coulibaly et al., 2005; Dibike and Coulibaly,
2005). The implication of such studies for future down-
scaling for hydrological impacts assessment is that the
means by which downscaling skill is assessed must be
tuned to the particular catchment and application in ques-
tion rather than simply applying standard assessment cri-
teria.

Simple methods have also been used for downscaling
and found to be effective in simulating hydrological sys-
tems. A comparative assessment of precipitation down-
scaling methods was undertaken by Salathé (2003) for the
Yakima River, Washington. In this area many events are
associated with large-scale storm systems; downscaling
must reflect the physical processes accounting for precip-
itation. They assessed the performance of applying a local
scaling factor compared to a ‘dynamical scaling’ method;
a modification of the local scaling method that takes
account of atmospheric circulation being dependent on
monthly mean 1000 hPa heights. This ‘dynamical scal-
ing’ produced significant improvement in simulation in
the lee of the Cascade Mountains, which are not resolved
in a GCM, but little difference in other areas. Both meth-
ods were able to simulate inter-annual flow variability
and capture wet and dry sequences. In the simulation of
monthly flows, local scaling was even able to differen-
tiate between years with double-peaked flow and years
with a single, melt-driven peak; a feature not reproduced
when the hydrological model was driven with larger scale
NCEP data. Thus, simple downscaling methods can pro-
vide accurate flow simulation. However, should there be
significant change in future circulation, local scaling may
not capture the effects.

A large U.S. modelling study ‘The Effects of Climate
Change on Water Resources in the West’ (Barnett et al.,
2004) further compared different downscaling methods,
including dynamical-statistical methods (Mason, 2004;
Wood et al., 2004), for various basins in the western U.S.
(Christensen et al., 2004; Dettinger et al., 2004; Payne
et al., 2004; van Rheenen et al., 2004). The most impor-
tant findings are from Wood et al. (2004) who inves-
tigated the performance of an intermediate dynamical
downscaling step before undertaking three different sta-
tistical downscaling techniques for the Columbia River
Basin. They found that a dynamical downscaling step
does not lead to large improvements in hydrologic sim-
ulation relative to using GCM output alone and of the
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three statistical methods assessed – linear interpolation,
spatial disaggregation and bias-corrected spatial disag-
gregation – linear interpolation is notably poor. Hydro-
logic simulation was found to be sensitive to biases
in the spatial distribution of temperature and precipi-
tation at the monthly level, especially where seasonal
snow pack transfers run-off from one season to the next.
Bias-corrected data was found to reproduce the observed
hydrology reasonably well, but the monthly scale used
for bias-correction failed to rectify subtle differences
between modelled and observed climate. In particular,
interdependencies between precipitation and temperature,
e.g. the frequency of wet-warm and wet-cold winters, are
not addressed by this method.

Use of multiple model outputs and emissions scenarios

There has been little research on the effect of using
multiple climate model outputs and different emissions
scenarios on the hydrological response to climate change,
due to the lack of available comparable climate model
outputs. However, the Climate Model Intercomparison
Project, (CMIP2) (Meehl et al., 2000) provided an oppor-
tunity to compare the impact of using different GCMs
on statistically downscaled outputs, and the FP5 PRU-
DENCE project (Christensen et al., 2007) has now pro-
vided a set of RCM experiments using ensemble runs,
different RCMs, different driving GCMs and different
emissions scenarios for the European region. Similar
regional modelling studies are now also underway in
the U.S. (NARCCAP; Mearns et al., 2006) and Canada.
The investigation of the use of multiple RCM outputs
in hydrological impact studies has therefore so far been
restricted to Europe, although the use of multiple GCMs
and emissions scenarios has been investigated elsewhere.

The uncertainty introduced by using outputs from
different RCMs on the hydrological response to cli-
mate change was recently investigated by Graham et al.
(2007a) using PRUDENCE ensemble output for the Lule
River in northern Sweden. Using boundary conditions
from the HadAM3H and ECHAM4/OPYC3 GCMs to
drive the RCMs elicited a different hydrological response;
ECHAM4 boundary conditions produced higher river
flow throughout the year. They concluded that the choice
of GCM in providing boundary conditions for RCMs
plays a larger role in hydrological change than the
choice of emissions scenario. Graham et al. (2007b)
used the same models to obtain estimates of hydro-
logical change for river basins in northern and central
Europe. Here, RCMs were able to reproduce the seasonal
cycle of precipitation but most overestimated precipita-
tion amounts. Temperature was better modelled but most
models overestimated cold season evapotranspiration. In
the Baltic Basin, RCMs varied in their ability to repro-
duce the apportioning between run-off and evapotranspi-
ration. Better results were obtained for the Rhine, where
models appeared to show a higher apportionment of pre-
cipitation to evapotranspiration than in Central Europe.
Using different RCMs with the same GCM forcing and

emissions scenario again indicated that GCM forcing is
a significant determinant of results.

The uncertainty introduced by choice of driving GCM
was assessed by Chen et al. (2006) who used 17 GCMs
from CMIP2 and a statistical downscaling method to pro-
duce regional precipitation scenarios over Sweden. The
uncertainty in estimated precipitation change from dif-
ferent GCMs was larger than that for different regions.
However, there was seasonal dependence, with estimates
for winter showing the highest confidence and estimates
for summer the lowest. Similar results were obtained
by Wilby et al. (2006) who used three GCMs and two
emission scenarios to explore uncertainties in an inte-
grated approach to climate impact assessment; linking
established models of regional climate, water resources
and water quality within a single framework. The magni-
tude of estimated change differed depending on choice of
GCM, for precipitation in particular, and differences were
largest in summer months. The uncertainties introduced
by downscaling from different GCMs make policy deci-
sions difficult; the A2 run of HadCM3 produced lower
river flows and greater water scarcity in summer by the
2080s leading to reduced deployable outputs and nutrient
flushing episodes following prolonged droughts, how-
ever CGCM2 and CSIRO yielded wetter summers by the
2080s with increased deployable yield.

Jasper et al. (2004) estimated the uncertainty intro-
duced by choice of driving GCM and emissions scenario,
producing 17 future scenarios from seven GCMs and
four emissions scenarios for two Alpine river basins in
Switzerland. Multivariate regression models were used
to relate inter-annual variations in sea-level pressure
and near-surface temperature to monthly mean temper-
ature and monthly total precipitation. The magnitude of
predicted change varied between scenarios, particularly
for precipitation, indicating that large uncertainties are
introduced by the choice of GCM – although the choice
of emissions scenario also had a discernable impact.
They also demonstrated that the accurate reproduction of
observed patterns of precipitation may not be as impor-
tant in high elevation basins where run-off dynamics are
strongly controlled by change in snow conditions and,
therefore, temperature change.

Uncertainties introduced by choice of GCM have also
been assessed by Salathé (2005) for a catchment in the
north-western U.S. A local scaling method, derived by
the ratio between observed and modelled precipitation
at each local grid point (Widmann et al., 2003), was
applied to data from three GCMs (ECHAM4, HadCM3
and NCAR-PCM) for use in a streamflow model. Vari-
ations in model performance were noted, with down-
scaled output from ECHAM4 able to capture the timing
and distribution of precipitation events. However, down-
scaled output from HadCM3 produced unrealistic win-
ter precipitation variability, less high altitude snow and
more winter streamflow; resulting in an earlier summer
peak.

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 27: 1547–1578 (2007)
DOI: 10.1002/joc



1560 H. J. FOWLER ET AL.

Wilby and Harris (2006) have gone one step further and
assessed the ‘uncertainty cascade’ resulting from differ-
ent sources of uncertainty in climate scenario construc-
tion. They presented a simple probabilistic framework for
combining information from four GCMs, two emissions
scenarios, two statistical downscaling techniques, two
hydrological model structures and two sets of hydrolog-
ical model parameters to assess uncertainties in climate
change impacts on low flows in the River Thames, UK.
Weights were assigned to GCMs according to an index of
reliability for downscaled summer effective rainfall in the
Thames Basin. Hydrological models and parameter sets
were weighted by their performance in simulating annual
low flow series. Emissions scenarios and downscaling
methods were unweighted. A Monte Carlo approach was
then used to explore the uncertainties in climate change
projections for the River Thames, producing cumulative
distribution functions (cdfs) of low flows. The cdfs were
found to be most sensitive to uncertainties resulting from
the choice of GCM; mainly the different behaviour of
atmospheric moisture amongst the chosen GCMs. This
is one of the first examples of the use of simple proba-
bilistic methods in climate change impacts studies, which
will be further discussed in the next section. However,
a move from the ‘norm’ of scenario planning to proba-
bilistic planning may require a step-change in thinking
(Dessai and Hulme, 2004).

INCORPORATING NEW DEVELOPMENTS

Probabilistic projections of climate change

Incorporating uncertainties into climate predictions is
deemed necessary due to the inherent uncertainties within
the climate modelling process, such as grid resolution
and process parameterization, those introduced by the
choice of model and emissions scenario, and the fact
that different models often disagree even on the sign
of changes expected in particular regions (Giorgi and
Francisco, 2000).

The first probabilistic treatments of projected tempera-
ture change at the global average scale were produced by
Wigley and Raper (2001), by utilizing a simple energy
balance model in a Monte Carlo approach, and by Allen
et al. (2000) by evaluating the uncertainties in the pro-
jections of a single global climate model on the basis
of its ability to reproduce current climate, through an
adaptation of the optimal fingerprinting approach to cli-
mate change detection and attribution. Other studies (e.g.
Andronova and Schlesinger, 2001; Forest et al., 2002;
Knutti et al., 2002; Stott and Kettleborough, 2002) con-
sidered results from only one climate model and assessed
uncertainties in emissions scenario (radiative forcing),
‘climate sensitivity’ (the equilibrium global-mean warm-
ing for a doubling of the CO2 level) and the rate of
oceanic mixing or heat uptake.

More recently, thanks to advances in computing power
and the availability of concerted experiments among the
international climate modelling community, results from

multiple global climate models (e.g. Knutti et al., 2003;
Benestad, 2004) or multiple parameterizations of the
same climate model (e.g. Murphy et al., 2004; Stainforth
et al., 2002, 2005) have been used to generate probabil-
ity density function pdfs of global warming – with most
studies concentrating on defining ‘climate sensitivity’
(e.g. Frame et al., 2005) for the prevention of ‘danger-
ous anthropogenic interference with the climate system’
(Mastrandrea and Schneider, 2004; Schneider and Mas-
trandrea, 2005) by providing probabilistic projections
for different CO2 stabilization levels (e.g. Knutti et al.,
2005). These kinds of approaches are aimed at generat-
ing climate change forecasts based on ‘super-ensembles’
of climate model simulations (Dessai et al., 2005); an
example of which is being developed in the ClimatePre-
diction.Net project (e.g. Stainforth et al., 2005).

Most studies have concentrated on the global scale,
producing pdfs of global-mean warming, but recently
there has been some interest in the production of pdfs
for regional-scale change (e.g. Stott, 2003; Tebaldi et al.,
2004b, 2005; Dessai et al., 2005; Greene et al., 2006;
Räisänen and Ruokolainen, 2006; Stott et al., 2006), with
some studies aimed directly at the production of regional
change pdfs for climate change impact assessment of
hydrological systems (e.g. Ekström et al., 2007; Hingray
et al., 2007a). Furrer et al. (2007) have gone one step fur-
ther and produced pdfs at the grid point level, although
this can be adapted to produce pdfs of regionally aggre-
gated values. However, there has still been little proba-
bilistic analysis of variables other than temperature, with
few exceptions. A study by Palmer and Räisänen (2002)
used 19 climate models in a probabilistic analysis to
quantify the increases in probability of extreme precip-
itation for different regions of the world under global
warming, and a study by Tebaldi et al. (2004b) focused
on the production of pdfs for change in precipitation for
land regions of subcontinental size. Additionally, stud-
ies by Räisänen and Ruokolainen (2006); Ekström et al.
(2007) and Hingray et al. (2007a) produced regional pdfs
of change in both temperature and precipitation using
both GCM and RCM information, with Ekström et al.
(2007) comparing the two different approaches taken by
Jones (2000a,b) and Hingray et al. (2007a). Both meth-
ods estimate the probability distribution for change in the
regional variables by combining a pdf for global tempera-
ture change with a pdf of the scaling variables (change in
regional temperature or precipitation per degree of global
temperature change).

The ‘optimal fingerprinting’ approach (Allen et al.,
2000, 2003; Stott and Kettleborough, 2002) derives prob-
abilistic projections on the basis of a single model’s
detection and attribution studies, assuming that robust
climate predictions should be model-independent and
based only on objective information such as the repro-
duction of observed climate and recent climate change.
However, the alternative multi-model methods are pred-
icated on the fundamental belief that no model is the
true model, and there is value in synthesizing projec-
tions from an ensemble, even when the individual models
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seem to disagree with one another. The two published
statistical methods (Tebaldi et al., 2004b, 2005; Greene
et al., 2006) use a Bayesian approach to estimate the
probability distribution of future climate, using informa-
tion from past observed climate and the corresponding
GCM simulated climatologies. The Greene et al. method
combines the ensemble of models by calibrating their
past trends at regional scales to the observed trends,
and using the calibration coefficients (and their estimated
uncertainty ranges) to derive probabilistic projections of
future trends. The Tebaldi et al. method uses the two
criteria of bias – performance with respect to current cli-
mate – and convergence – a measure of each model’s
agreement with the majority – from the reliability ensem-
ble averaging (REA) method (Giorgi and Mearns, 2002,
2003). The basic tenet of REA is that the ability of a
GCM to reproduce current climate (the bias) provides
a measure of its reliability. However, a small bias in
the simulation of current climate does not necessarily
suggest that the model will reproduce future climate accu-
rately – therefore the introduction of the convergence cri-
terion where if the model future climate is near to the
model ensemble mean climate then the model prediction
is considered more reliable.

In this way both approaches differ from earlier
approaches (Räisänen and Palmer, 2001; Palmer and
Räisänen, 2002) where equal weighting is applied to
the results from different models in the production of
pdfs of global-mean warming. Indeed, these more recent
approaches take the principle that non-uniform weighting
may be more appropriate as models may have unequal
skill or simulation capability. Lopez et al. (2006) com-
pared the method of Tebaldi et al. and the optimal finger-
printing approach in the production of global mean tem-
perature change pdfs. The Bayesian approach is shown
to produce a narrower pdf than the optimal fingerprinting
approach and shows bimodality, as two groups of cli-
mate models converge to different points. The narrower
pdf from the Bayesian approach results from the model
weighting criteria. The convergence criteria gives a large
weight to models that cluster around one another, and
increasing the number of models within the Bayesian
procedure also gives rise to a reduction of uncertainty
in the pdf that is not seen in the optimal fingerprinting
approach (Lopez et al., 2006). Furthermore, the Bayesian
approach is very sensitive to the choice of models, espe-
cially in the tails of the produced pdfs, and the prior
that controls the model convergence. Therefore the use of
this method to produce pdfs of regional climate change
is potentially problematic since the predicted pdfs are
highly conditional on the formulation of the statisti-
cal model, the priors for the model variables, and the
GCM sample (Lopez et al., 2006). However, the use of
the optimal fingerprinting method is also dependent on
assumptions used to analyse the data. In particular, the
assumption of linear scaling, although well justified for
global temperature change, may well not be applicable to

regional scale temperature change or change in other cli-
matic variables such as precipitation (Allen and Ingram,
2002).

All recent approaches for the production of pdfs of
change contain a model evaluation stage – although dif-
ferent methods are used for evaluation and the model sim-
ulation of different climatic variables may be evaluated.
Approaches have ranged from very complex; Murphy
et al. (2004) used a climate prediction index with 32
components, to simpler, but have been mainly based on
the assessment of descriptive statistics of climate models,
such as global means, regional averages or geographical
distributions. Indeed, simpler methods examining only
the simulation of surface air temperature and precipita-
tion (e.g. Wilby and Harris, 2006), but defining model
skill rather than using simple means have been found
to be useful in assigning regional climate change prob-
abilities (Dessai et al., 2005). However, the ability of
climate models to simulate present climate is only part of
the issue and the robustness of climate change response
across models must also be given consideration (e.g.
Giorgi and Mearns, 2002, 2003; Tebaldi et al., 2004b,
2005). It remains to be seen whether probabilistic scenar-
ios constructed using assessment criteria based on climate
model ability to reproduce variability and extreme statis-
tics, in addition to the commonly used mean, would
produce better uncertainty constraints for hydrological
impact studies. Indeed it is possible that for hydrological
impact studies, analysis should be made of hydrological
parameter sensitivity to climatological parameters prior
to the selection of climate statistics for model evalua-
tion and weighting. This would allow models that were
best able to simulate those climatic variables that most
affect the hydrological parameters under investigation to
be selected preferentially over other models, thus poten-
tially improving the accuracy of estimated probability
distributions of change.

Therefore, which method is the most appropriate for
climate change impact studies? Probabilistic methods
have not been widely used in impact studies, although
they have been used for short- and long-term climate,
weather and hydrological forecasting for a number of
years (e.g. Räisänen and Palmer, 2001; Palmer and
Räisänen, 2002; Grantz et al., 2005; Palmer et al., 2005).
These studies examine the changing probability of the
occurrence of certain types of weather events under cli-
mate change, but not their impacts. Very few applications
of probabilistic distributions in climate change impact
assessment can be found in the literature, due to the inad-
equate quantification of uncertainties in regional climate
change projections until very recently with the production
of regional change pdfs. However, exceptions are found
in the risk analysis of agricultural production (e.g. Luo
et al., 2005; Trinka et al., 2005), and emerging studies
in the use of probabilistic scenarios in climate change
impact assessment on water related activities. For exam-
ple, Hingray et al. (2007b) applied probabilistic climate
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change scenarios for regional temperature and precipita-
tion (pdfs) developed in Hingray et al. (2007a) to exam-
ine the impacts on the water resources of a regulated lake
system in Switzerland. They concluded that the uncer-
tainty resulting from the climate model (i.e. from the
climate scenario pdf) is larger than uncertainty intro-
duced by the hydrological model and, indeed, contributes
the largest part to the total impact prediction uncer-
tainty. Other examples include Cunderlik and Simonovic
(2005) who examined the potential impacts of climate
change on hydrological extremes in a Canadian river
basin, Wilby and Harris (2006) who examined the impact
of climate change on low flows in the river Thames, UK,
Jones (2000a) and Prudhomme et al. (2003) who used
Monte Carlo simulation to produce probability estimates
of climate change impacts, and Jeong et al. (2005) and
Georgakakos et al. (2005) who used multiple-member
ensembles to provide probabilistic forecasts.

The EU FP6 project ENSEMBLES aims to inter-
compare different methods for representing model uncer-
tainty, some of which have been discussed here, and to
link these to downscaling methods to improve the robust-
ness of climate change impact assessments. Multi-model
ensembles of GCMs and RCMs are now available and can
be used to provide pdfs of change in climatic variables
such as precipitation and temperature for impact assess-
ment. Thus probabilistic methods should be considered
when assessing climate change impacts on hydrological
systems (Hunt, 2005). The limited use of such meth-
ods has so far proved valuable in providing increasingly
robust forecasts of climate change impacts on agriculture
and hydrology, through the inclusion of uncertainty esti-
mates which can be used in the planning of adaptation
measures (Dessai and Hulme, 2004). What is unclear so
far is which approaches are most suitable for the con-
struction of pdfs for regional impact studies. Should we
use outputs from multiple GCMs or RCMs, or both? How
do we combine the outputs to provide a pdf? Should we
‘weight’ model outputs? If we do then should we weight
on model ability to simulate observed climate or model
ability in prediction? How should the pdfs be applied to
examine impacts? Can we use percentiles from pdfs or
should we use a full Monte Carlo type approach? Finally,
how can the pdfs be linked to downscaling methods to
examine the additional uncertainties introduced by the
downscaling of climatic variables to the local, impact,
scale?

What is clear, however, is that probabilistic approaches
may offer an improvement over currently accepted meth-
ods such as: (a) comparing the impacts resulting from
using downscaled climatic variables from different GCMs
and RCMs and different emissions scenarios to provide
estimates of uncertainty (e.g. PRUDENCE FP5 project;
Christensen et al., 2007); and (b) comparing different
downscaling methods to assess uncertainties introduced
by the downscaling method (as discussed in “Comparison
of downscaling methods”). It is hoped that some of the
remaining questions can be addressed by the European
ENSEMBLES and U.S. NARCCAP modelling projects

and the UK Climate Impacts Programme (UKCIP08) sce-
narios that are presently underway.

Pattern scaling

Pattern scaling was originally developed by Santer et al.
(1990) and has been used in climate change scenario
construction for hydrological impact studies (e.g. Chris-
tensen et al., 2001; Salathé, 2005). It is particularly useful
in impact studies where climate model simulations are not
available for time periods of interest. The use of pattern
scaling in downscaling and hydrological impact studies
is widespread. For example, most RCMs are run only for
a time-slice from 2070 to 2100, whereas water resource
planners may be interested in climate change impacts in
the 2020s. Pattern scaling works by standardising the cli-
mate change pattern (change per degree Celcius of mean
global warming) for a variable X derived from a GCM
over a geographic region, x, i.e.�X̂(x), commonly by
taking a regression over the full model period. Then,
under the hypothesis that the response signal patterns
are largely independent of the forcing patterns and are
approximately stationary in time, the change pattern at
any future time t can be derived as:

� X(x, t) = �T (t).[� X̂(x)]

where �T (t)is the global mean temperature change.
This method has been shown to be valid in scaling
changes in different climatic variables for different geo-
graphic regions and time periods (e.g. Santer et al., 1994;
Mitchell et al., 1999; Tebaldi et al., 2004a).

The most extensive study of pattern-scaling to date is
that of Mitchell (2000, 2003). He investigated changes
in mean climate rather than extremes, finding instances
where pattern scaling is not appropriate due to non-linear
responses to radiative forcing. He developed a method
of scaling where, if the variable in question is assumed
to have a Gaussian distribution, changes in the entire
probability distribution may be obtained by individually
scaling the mean and standard deviation. If, as in the
case of precipitation, the variable follows a non-Gaussian
distribution it may be possible to estimate change by re-
scaling the distribution and relating it back to the mean
and standard deviation of the Gaussian distribution. This
improves upon the previous assumption that change in all
climate variables can be scaled linearly with temperature
change, which makes little sense for change in extremes
and changes in variables other than temperature.

Recent transient RCM simulations by the Rossby
Centre covering the full time period 1961–2100 (Erik
Kjellström, personal communication) show that even the
simplest pattern-scaling in time works well for many
variables for large parts of the year. However, in some
parts of northern Europe in the transition seasons of
autumn and spring, the pattern scaling method fails as
the regional changes do not follow the increase in global
mean temperature. This suggests that the assumption that
regional change occurs at the same rate as global change
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is not true in all cases and pattern scaling should be used
with caution.

Despite this, pattern scaling has been demonstrated to
be of use in probabilistic studies where regional climate
change scenarios can be constructed for emissions scenar-
ios where climate model simulations are not available by
combining GCM-simulated patterns with simple climate
model results (e.g. Dessai et al., 2005).

Downscaling multiple climatic variables

For hydrological impact studies of climate change, at
a minimum the climatic variables of temperature and
precipitation must be downscaled to provide inputs of
precipitation and potential evapotranspiration to hydro-
logical models. It is important however, to preserve the
correlation between the different downscaled variables.
The direct use of RCM data in impact studies, or use of
bias-corrected RCM data (e.g. Wood et al., 2004; Fowler
and Kilsby, 2007; Fowler et al., 2007; Graham et al.,
2007a,b etc.), preserves the physical correlation between
precipitation and temperature. However, most statistical
downscaling studies have considered the downscaling of
only one of these variables, simulating change in the other
variable in an ad-hoc fashion but normally by the sim-
ple application of climate CFs to observed climatic data
time series (e.g. Kilsby et al., 2007a). It is important
for more accurate assessment of potential hydrological
impacts that more complex approaches, where a number
of climatic variables are downscaled simultaneously from
climate model information, are developed. This section
discusses recent developments in such approaches using
statistical downscaling techniques, usually based on the
‘WG’ type approach (Wilks and Wilby, 1999) discussed
in “Weather generators”.

The SDSM approach (Wilby et al., 2002b) has been
widely used for the generation of multiple climatic vari-
ables in hydrological impact assessment. However, the
basic approach simulates climatic variables only at sin-
gle sites, like many similar approaches (e.g. Easterling,
1999; Kyselý and Dubrovsky, 2005). For hydrological
impact assessment, particularly in large basins, the down-
scaling of multiple climatic variables at multiple sites is
needed. A multi-site approach has been further developed
by Wilby et al. (2003) by extending the SDSM approach
using conditional re-sampling of area-averages to produce
daily time series at multiple sites, but for precipitation
only. Other re-sampling approaches for the simulation
of precipitation and temperature series at multiple sites
have been developed (e.g. Palutikof et al., 2002; Leander
et al., 2005), sometimes conditional on atmospheric cir-
culation patterns (e.g. Beersma and Buishand, 2003).
However these have not, as yet, been applied for climate
change impact assessment.

Similarly, WGs such as the CRU WG developed by
Jones and Salmon (1995), and modified by Watts et al.
(2004) are also presently restricted to single site applica-
tions, as described in “Weather generators”. Kilsby et al.
(2007b) describe a recent development of this approach,

which improves the simulation of daily extreme values
and variability due to the implementation of the third-
order moment – or coefficient of skewness – within the
NSRP model. The model can be used to simulate per-
turbed climates by applying CFs obtained from climate
models to the precipitation statistics of mean, variance,
proportion dry days, skewness, and lag-1 autocorrela-
tion within the NSRP model, and the mean and standard
deviation of temperature within theWG. Although the
model has been calibrated at a 5-km resolution through-
out the UK, it is only applicable for the simulation
of climatic variables for single-site or small catchments
(Kilsby et al., 2007b). The model is presently undergo-
ing extensions to simulate at an hourly resolution and at
multiple sites. However, it is still unclear how to improve
WG approaches to enable them to capture low frequency
variability, such as multi-season droughts, which may be
crucial for hydrological impact assessment.

Techniques have been developed for the generation of
multiple linked climatic variables at multiple sites. How-
ever, these are not generally applied at the daily time
scale needed for most hydrological impact assessments.
For example, Huth and Kyselý (2000) used a multi-
ple linear regression method to estimate monthly mean
temperature and precipitation for two catchments in the
Czech Republic from large-scale circulation height and
thickness fields. Techniques have also been developed
on reanalysis data, but not applied to climate model out-
puts to assess future climate change impacts. Gangopad-
hyay et al. (2005), for example, developed the K-nearest
neighbour approach of Lall and Sharma (1996) to down-
scale the NCEP 1998 medium-range forecast output. The
method uses an analogue-type approach to identify days
similar to a given feature vector and, using EOFs, identi-
fies a subset of days with similar features. These are then
randomly sampled to generate ensembles. This approach
has been used to generate hypothetical climate scenarios
(Yates et al., 2003). However, it is unclear how this type
of analogue approach could be used together with outputs
from GCMs or RCMs to develop climate change scenar-
ios for hydrological impact studies unless the assumption
is made that appropriate analogues exist in the training
set for future climate states.

SUMMARY AND NEXT STEPS
Example application linking probabilistic scenarios to a
downscaling method

This section proposes a method that links probabilistic
climate change scenarios to a WG downscaling method
for hydrological impact studies. This is an illustration of
one possible way that downscaling may be embedded
within a probabilistic framework and does not address
statistical versus dynamical downscaling uncertainty. A
flow diagram of the main steps in the methodology is
shown in Figure 1.

We use precipitation and temperature data from six
RCMs driven by boundary conditions from two differ-
ent Global Climate Models from the FP5 PRUDENCE
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Figure 1. Flow diagram showing steps in the methodology used to produce probabilistic scenarios of climate change impacts for the River Eden.
This figure is available in colour online at www.interscience.wiley.com/ijoc

N

Figure 2. Map showing re-gridded RCM cells on the CRU 0.5° by 0.5° grid for the UK. The two regions used in this study are shown in grey:
North West England (dark) and South East England (light).

project to provide a control (1961–1990) and future
(2071–2100) scenario. Each model was re-gridded onto
a common 0.5° by 0.5° grid to allow comparisons, with
the future scenario based on the SRES A2 emissions
scenario (Figure 2). The models used are detailed in
Table III.

A Bayesian scheme (as in Tebaldi et al., 2004b,
2005), described in “Probabilistic projections of climate
change”, is used to fit a pdf of change in temperature and
precipitation for regions in the north-west and south-east
of the UK using area-averages of the model output at
grid cells contained in that region. The Bayesian method
assumes uninformative (i.e. diffuse) prior probability

distributions for all the unknown quantities of interest,
among which the most relevant for this analysis are
current and future regional average temperature and
precipitation (for each season and under a specific
scenario) and climate models’ reliabilities. The data from
the regional models and from observation is incorporated
through Bayes’ theorem, in order to derive posterior pdfs
for all the unknown quantities. From these posterior pdfs,
the distribution of temperature and precipitation change
can be straightforwardly derived. These are shown in
Figures 3 and 4.

Although the estimation of pdfs of temperature and
precipitation change based on the six RCMs generates
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Table III. Selection of PRUDENCE Regional Climate Models used in this study. The AquaTerra acronyms are adopted here to
provide an easier understanding of the format of each model run. The first part of each acronym refers to the RCM and the

second to the GCM data used to provide the boundary conditions. Scenario simulations have the further suffix A2.

RCM Driving Data PRUDENCE
Acronym

AquaTerra
Acronym

Danish Meteorological HIRHAM HadAM3H A2 HCl HIRHAM H
Institute (DMI) HSl HIRHAM H A2

ECHAM4/OPYC ecctrl HIRHAM E
A2 ecscA2 HIRHAM E A2

Swedish Meteorological RCAO HadAM3H A2 HCCTL RCAO H
and Hydrological HCA2 RCAO H A2
Institute (SMHI)

ECHAM4/OPYC MPICTL RCAO E
A2 MPIA2 RCAO E A2

Hadley Centre – UK HadRM3P HadAM3P A2 adeha HAD P
Met Office adhfa HAD P A2

Météo-France, France Arpège HadCM3 A2 DA9 ARPEGE C
DE6 ARPEGE C A2

Figure 3. Percentage seasonal change in precipitation projected under the 2070–2100 SRES A2 emissions scenario from the control period,
1961–1990, for two UK regions: North West England (black) and South East England (red). Notations for seasons are winter (DJF, December
to February), spring (MAM, March to May), summer (JJA, June to August) and autumn (SON, September to November). The projection from

the IPCC AR4 suite of 14 GCMs for all UK is shown in green for comparison.

sensible results, being designed to handle an arbitrary
number of data points, one caveat of the Bayesian
approach is that independence is assumed between
ensemble members. This may be an oversimplification,
as many climate models share internal numerical and
parameterization schemes. Here in particular, as some
RCMs are driven by lateral boundary schemes from the
same GCM, this assumption may be even less defensible

and generate overly confident estimates of the uncertainty
in the changes. However, results for two UK regions
from the set of RCMs are comparable to the results
for the entire UK from the set of IPCC-AR4 GCMs
(Figures 3 and 4), suggesting that these RCMs are in
fact representative of the IPCC-AR4 results. There is
noticeable agreement in the location and even the spread
of the pdfs for all seasons but summer, where the GCM
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Figure 4. Percentage seasonal change in temperature projected under the 2070–2100 SRES A2 emissions scenario from the control period,
1961–1990, for two UK regions: North West England (black) and South East England (red). Notations for seasons are winter (DJF, December
to February), spring (MAM, March–May), summer (JJA, June–August) and autumn (SON, September–November). The projection from the

IPCC AR4 suite of 13 GCMs for all UK is shown in green for comparison.

Table IV. Seasonal mean λ values for the North West England region of the UK for the six selected regional climate models for
(a) precipitation, and (b) temperature. Note that λ values for all six models have been standardized to add to 1.0 for each season.
(a)

ARP C HAD P HIRH E HIRH H RCAO E RCAO H

DJF 0.07 0.19 0.25 0.26 0.08 0.15
MAM 0.08 0.05 0.11 0.23 0.26 0.27
JJA 0.15 0.06 0.16 0.23 0.18 0.22
SON 0.11 0.11 0.21 0.20 0.14 0.23

(b)

ARP C HAD P HIRH E HIRH H RCAO E RCAO H

DJF 0.23 0.22 0.12 0.19 0.11 0.13
MAM 0.17 0.22 0.15 0.26 0.09 0.10
JJA 0.08 0.18 0.09 0.25 0.16 0.25
SON 0.12 0.23 0.16 0.24 0.13 0.12

results are significantly less warm and less dry than the
RCM results.

The model-specific reliabilities parameters, λs in
Table IV, are also estimated jointly with the other
relevant quantities, as a function of each model’s
performance in reproducing current climate (1961–1990)
and each model’s agreement with the ensemble consensus
for future projections. Their interpretation as model
weights is thus straightforward, and, once standardized,

they can be applied as such in the downscaling step.
Since the Bayesian analysis produces joint posterior pdfs
of the lambda parameters, we use the posterior mean of
the distribution as our best estimate of model weights
(Table IV).

A WG approach was then used to downscale these
regional distributions of change in temperature and
precipitation to the catchment scale. This advanced WG,
the Environment Agency Rainfall and Weather Impacts
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Generator (EARWIG), incorporates a stochastic rainfall
model based on the NSRP model (Cowpertwait, 1991)
and a WG model based on regression relationships
between daily weather variables and daily rainfall (and
their autocorrelative properties, see Kilsby et al., 2007b
for details). The model is able to generate synthetic daily
climate data for any 5 km grid cell or small catchment
in the UK, for current climate (1961–1990) and future
climate scenarios.

In the Kilsby et al. (2007b) approach, daily outputs
from the HadRM3H RCM are used to derive factors of
change (CFs) from the current climate state based on the
UKCIP02 climate change scenarios (Hulme et al., 2002).
Within the NSRP part of the WG, five multiplicative
CFs are used to change future rainfall statistics of mean
daily rainfall, proportion dry days, variance of daily rain-
fall, skewness of daily rainfall and lag-1 autocorrelation.
Within the WG part, additive/multiplicative factors are
derived for change in temperature mean/variance; other
weather variables are dependent on rainfall and temper-
ature and these relationships are assumed to remain con-
stant under climate change. The CFs are based on the out-
puts from HadRM3H and vary at a spatial resolution of
50 km across the UK. More information on the method-
ology used to derive CFs can be found in Kilsby et al.
(2007b).

Here, we use the same methodology as Kilsby et al.
(2007b) to derive a suite of CFs for each of the
six PRUDENCE RCMs for a catchment in northwest

England, the Eden. These CFs are then applied within
EARWIG to produce 100 30-year synthetic climate
sequences for each RCM for the SRES A2 2080s scenario
and for a baseline scenario, 1961–1990. The 30-year
sequences were chosen to reflect the length of the RCM
control and future integrations. For the baseline, the sim-
ulation is based on observed climate statistics.

A simplified version of the Arno hydrologic model
(Todini, 1996) was calibrated for the Eden catchment
down to Temple Sowerby; with an area of 616 km2

and elevation range from 950 to 92 m (Figure 5). Rain-
fall in the catchment is predominantly from the west-
erly quadrant, producing an average annual rainfall
over 1961–1990 of 1146 mm and a mean flow of
14.44 m3 s−1. Model calibration was achieved in a split-
sample approach using a method of genetic algorithm
optimization, the shuffled complex evolution method for
global optimization (SCE-UA), developed by Duan et al.
(1992), with the Nash and Sutcliffe efficiency mea-
sure (CE) (Nash and Sutcliffe, 1970) and water balance
(WB) used as optimization criteria. Historic rainfall, PE
and flow data from the period 1976–1990 was used in
calibration (CE = 0.73, WB = 1.08) and for validation
from 1991–1998 (CE = 0.78, WB = 1.08). More detail
on the model is given in Fowler and Kilsby (2007).

Using the calibrated hydrologic model, 100 synthetic
30-year daily flow sequences were then produced for the
baseline and each of the six possible futures (one from

Figure 5. The Eden catchment in northwest England (to Temple Sowerby).
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Figure 6. Projected percentage changes in flow statistics for the 2070–2100 period (change from 1961–1990): (a) mean flow, (b) standard
deviation of flow, (c) 5th percentile of flow, (d) 95th percentile of flow. Seasonal change probabilities are given for winter (DJF, black), spring

(MAM, red), summer (JJA, green) and autumn (SON, blue).

each RCM) using the simulated climate data from EAR-
WIG as inputs. Seasonal statistics were then calculated
for each 30-year sequence; providing mean, standard
deviation, 5th and 95th flow percentiles.

To produce probabilistic estimates of future change in
flows in the Eden catchment, the λ values produced by
the Bayesian scheme (Table IV) for precipitation were
then used to provide a model-specific weighting for
each season, where the standardized λ values for all
models within one season add to unity. The λ value for
each RCM provided a weight for each model; directly
proportional to the number of 30-year flow sequences
from each model used in the analysis (where 0.01 = ten
30-year sections). For each baseline and future scenario

flow sequence, seasonal statistics of absolute and relative
change for the mean, standard deviation, 5th and 95th
flow percentiles were then calculated. When all sequences
are added together this gave 1000 ‘change statistics’ for
each flow statistic (mean, standard deviation and 5th and
95th percentiles). Finally, a kernel density function was
fitted to the 1000 ‘change statistics’ to give a smooth pdf
of change for each flow statistic.

This method provides a probabilistic estimate of future
climate change impacts on flow statistics in the Eden
catchment based on a weighted multi-model approach.
Figure 6 shows the seasonal pdfs of change in different
flow statistics for the Eden catchment in northwest
England for 2070–2100. However, these probabilistic
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estimates of future change are based on the results from
multiple RCMs for only one emissions scenario and one
hydrological model parameterization. Improvements to
the method may include an assessment of the further
uncertainty introduced by emissions scenario, and the
impact of the structure and parameterization of the hydro-
logical model upon the estimates. It may also be noted
that the outcome may be different if the lambda param-
eters were obtained for the model-specific reliability of
the resultant Q5, Q50 and Q95 statistics rather than the
regional average inputs.

Discussion and recommendations

This paper has provided an assessment of recent develop-
ments in downscaling methodologies through a review of
the downscaling literature. In recent years there have been
a plethora of new studies in downscaling. Figure 7 shows
the large growth in this literature since the mid-1990s;
with a total of 64 publications listed on the ISI Web of
Knowledge for ‘downscaling and climate’ in 2005. There
has, however, been more restricted growth in publica-
tions where downscaling methods are used to examine
impacts; only ∼30% of all downscaling studies. Indeed,
in the hydrological sciences there has been little addi-
tional use of these methods to examine impacts since their
inception; a search on the ISI Web of Knowledge reveals
only ten publications in 2005 when the search criteria
‘downscaling and hydrol* and impact’ are used. This is
despite the large increase in publications on downscaling
methods themselves.

In this review paper we have tried to address five
questions. In this discussion section we will try to answer
these questions in turn, as well as cross-matching our
research imperatives against those of Leung et al. (2003b)
(Table V) to see if there has been any progress in the
interim:

1. What more (if anything) can be learnt from downscal-
ing method comparison studies?

Systematic efforts within the research community since
the mid-1990s have provided a large amount of infor-
mation on the advantages and disadvantages of different
downscaling methods. This allows us to make statements
about the downscalable skill of different climatic vari-
ables with some certainty. In general, temperature can be
downscaled with more skill than precipitation, winter cli-
mate can be downscaled with more skill than summer due
to stronger relationships with large-scale circulation, and
wetter climates can be downscaled with more skill than
drier climates. However, direct comparison of the skill
of different methods remains difficult due to the range of
climate statistics that have been assessed in the literature,
the large range of predictors used, and the different ways
of assessing model performance. Although we now know
the theoretical strengths and weaknesses of each down-
scaling method, where systematic inter-comparisons have
been made, e.g. STARDEX, no single best downscaling
method is identifiable.

Simple statistical downscaling methods seem to per-
form as well as more sophisticated methods in reproduc-
ing mean characteristics; if the downscaling of mean cli-
mate is the main objective then the effort required to use
more sophisticated techniques is probably not warranted
by the additional downscaling skill provided. However,
the importance of reproducing mean climate characteris-
tics is dependent on the impact to be investigated, and
for many applications reproducing climate statistics such
as extremes may be just as important. In such instances,
a selection of downscaling methods should be used as,
even when methods are able to downscale to the observed
‘control’ climate with a degree of consistency, application
to future climate model output may produce very different
future projections. However, the choice of driving-GCM
generally provides the largest source of uncertainty in
downscaled scenarios.

Perhaps just as important as the choice of down-
scaling method is the choice of predictor variables
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Table V. Summary table of research imperatives in regional climate change research (from Leung et al. (2003b).

Recommendations

Downscaling
• We need to develop physics parameterizations for higher spatial resolution global or regional climate models. Such
parameterizations may be scaleable for applications at different spatial resolutions. Regional climate models can be used
as test beds for such development.
• Coordinated intercomparison and diagnostics of models (GCMs, RCMs, and SD) are needed. This will require an
infrastructure for experimental protocols and community participation.
• We need to quantify predictability at the regional scale. Climate variability increases with spatial resolution, but
perhaps only up to a point. Regional predictability may increase or at least be similar to larger-scale predictability at a
certain regional resolution.
• Different ways of generating ensemble simulations with RCMs need to be explored to improve signal to noise or
estimating uncertainty.
Evaluation and Diagnostics
• Need to further develop regional observational datasets. Downscaling may be useful to fill data gaps. Communications
between the modelling and data communities needs to be improved.
• Inter-variable relationships, higher-order statistics (e.g., frequency of extreme and variability), and teleconnections
(relationships and integral constraints between large-scale and regional scales) need to be more widely used to measure
downscaling skill.
• Evaluating circulation is an alternative way to evaluate surface variables. Downscaled climate in process models (e.g.
hydrologic models) and secondary variables should be used more often in evaluating downscaling techniques and value.
• Archiving of higher temporal frequency outputs is needed for more detailed evaluation.
Applications
• Regional climate information needs to be easy to obtain, use, and validate.
• To produce more realistic future climate scenarios for impact assessment, use of realistic driving forces and more
complete representation of climate components are needed. Climate system models are moving toward incorporating
biogeochemistry and lakes. Regional prediction of complex physical and socioeconomic systems is also needed for
integrated assessment.
• We need to involve stakeholders in determining the resolution of regional climate information required in different
impact assessments.
• Other applications of regional climate information, such as storm surges or air quality, should be tested.
Overall
• Impact assessments in the past required patching together isolated modelling, diagnostics, analyses, and assessment
studies with disparate goals. We need coordinated end-to-end prediction systems to test the whole approach of impact
assessment.
• Seasonal prediction is a useful framework for assessing the added value of downscaling because results can be
evaluated with observations. Projects utilizing various approaches for seasonal prediction can show whether
downscaling can improve accuracy in addition to providing greater spatial detail. Such experiments could lead to
seasonal forecasts for various applications. Improvements in seasonal predictions using the super-ensemble approach
demonstrate the value of utilizing as many models as available.
• Funding agencies tend to support model applications or projects that produce predictions more than development or
evaluation of models that are used in making predictions. This problem needs to be addressed.
• All downscaling techniques have been shown to be valid and produce useful results. Research on the various
downscaling methods should proceed along parallel paths to the limit of funding availability.

in statistical schemes, particularly for the downscal-
ing of precipitation. Failure to incorporate predic-
tors that account for physical interactions in the cli-
mate system will produce poorly downscaled climate
whichever method is employed. Additionally, a fun-
damental lack of predictability makes some climates
difficult to downscale. This is not necessarily due to
the applicability of statistical methods but rather due
to a lack of good quality observational data or poor
climate model parameterization, possibly due to the
dominance of convective processes, in these areas.
Considerable gaps consequently remain in the global
distribution of downscaling studies with most stud-
ies concentrating on the mid-latitudes. Tropical and

high-latitude locations have been relatively overlooked
to date.

This review suggests that we now understand the
strengths and weaknesses of different standard down-
scaling techniques. Coordinated inter-comparisons of
downscaling methods and their ability to reproduce
higher-order statistics, two of the recommendations of
Leung et al. (2003b), have been undertaken. We would
recommend therefore, that additional comparison stud-
ies are not needed. Instead, the researcher should
concentrate on defining the climatic variables that it
is necessary to accurately downscale for each different
impact application. The needs of hydrological impact
studies differ considerably and in standard downscaling
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studies little consideration has been given to the most
appropriate downscaling method to use for a particular
application. Different climates, different seasons and dif-
ferent climatic variables may be more accurately down-
scaled by using more appropriate downscaling meth-
ods. We would therefore recommend the incorporation
of a ‘sensitivity’ step as standard in all downscaling
procedures; where the climatic variables that have the
largest impact on the hydrological system are first identi-
fied, and the most appropriate downscaling method then
determined.

2. Can dynamical downscaling contribute advantages
that can not be conferred by statistical downscaling?
Applications of dynamical downscaling in the literature

have consistently shown that outputs from RCMs cannot
be used in impact studies without first applying a ‘bias-
correction’ on observations. Despite this need for addi-
tional correction before their use in impact studies how-
ever, several studies have now illustrated how dynami-
cal downscaling provides ‘added value’ for the study of
climate change and its potential impacts. Regional cli-
mate change signals can be significantly different from
those projected by GCMs, particularly in regions with
complex orography which remain unresolved by GCM
simulations. RCMs are able to better capture the effects
of orographic forcing and rain-shadowing and provide
improved simulation of higher moment climate statistics;
hence providing more plausible climate change scenarios
for extreme events and climate variability at the regional
scale. Despite this there is still a need, as stated by Leung
et al. (2003b), for more research examining the statistical
structures of climate signals at different spatial scales to
establish whether predictability of the climate system is
improved by regional modelling.

Leung et al. (2003b)’s review also suggested that ‘to
develop credible high-resolution climate simulations for
impact assessment, a logical approach is to use mul-
tiple GCMs with multiple ensembles and force multi-
ple RCMs’. The production of ensemble RCM simu-
lations driven by multiple GCMs is now possible and
has been achieved within large research projects such as
PRUDENCE, ENSEMBLES and NARCCAP. This has
enabled improvements to the realism of control simula-
tions and the study of future change in extreme events.
The use of ensemble simulations is very important to
establish the statistical significance of changes associ-
ated with events that have low probability of occurrence.
However, it is still uncertain how large an ensemble
of integrations is needed to quantify these uncertain-
ties. Alternative approaches suggested by Leung et al.
(2003b) include ‘factor analysis’, where ensembles of
results are produced by perturbing, for example, ini-
tial and lateral boundary conditions, perturbing model
parameters, using different models, bootstrapping and re-
sampling techniques. Investigations are now routinely
made in the UK, by both the Hadley Centre and cli-
mateprediction.net, into the uncertainties associated with
changes to initial conditions and model parameterization,

and simple statistical emulators have been developed to
provide representations of outputs from complex GCMs;
thus assessing further parameter combinations. This has
allowed the assessment of uncertainties resulting from
various sources.

Applications to geographically diverse regions and
model inter-comparison studies have allowed the stren-
gths and weaknesses of dynamical downscaling to be
better understood. This has recently proliferated their use
in impact studies. However, despite this recent increase,
hydrological impact studies using regional climate model
information are still relatively rare. Leung et al. (2003b)
suggested that there is a ‘need to involve stakeholders in
determining the resolution of regional climate informa-
tion required in different impact assessments’. The lack
of this in the past may be one of the reasons for the
poor uptake of downscaling methods by the hydrological
impacts community. However, many initiatives are now
rising to this challenge. For example, the next set of cli-
mate change scenarios for the UK, UKCIP08, are being
developed under a steering group comprised of stake-
holders among others.

3. Can realistic climate change scenarios be produced
from dynamically downscaled output for periods out-
side the time period of simulation using methods such
as pattern scaling?

Many studies have shown that realistic climate change
scenarios can be produced from dynamically downscaled
output for periods outside the time period of simula-
tion. For regional temperature response over the next
century, pattern scaling provides a reasonable estimate.
Recent transient RCM simulations for 1961–2100 have
shown that simple pattern-scaling works well for many
variables for large parts of the year. However, due to
the non-linear responses to radiative forcing by other
climatic variables, such as precipitation, pattern scal-
ing on linear temperature change makes little sense.
Therefore, given that only temperature can be reli-
ably pattern-scaled, the approach offers limited scope
for studies of transient climate change, except perhaps
where snowmelt is the dominant driver of hydrological
change.

The production of many transient RCM simulations in
the ENSEMBLES project will allow further investigation
of this issue, and possibly even obviate the need for pat-
tern scaling in future studies. Nonetheless, pattern scaling
is the best currently available method for the production
of climate change scenarios for periods outside the time
period of simulation when using dynamically downscaled
data. Although an alternative to pattern scaling between
RCM runs exists; to downscale statistically from transient
GCM outputs.

4. What new methods can be used together with
downscaling to assess uncertainties in hydrological
response?
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Probabilistic methods seem to offer a more robust way
of assessing climate change impacts with much consider-
ation given to uncertainties in the modelling framework,
although few studies have so far examined impacts on
hydrological systems. These allow the inclusion of uncer-
tainty estimates using a multi-model approach which can
potentially be used in the planning of adaptation mea-
sures. Although the implementation of such methods in
examining climate change impacts on hydrological sys-
tems has now begun, there are many avenues of research
still to be addressed: (1) How should the outputs from
multiple RCMs and GCMs be used – weighting meth-
ods? (2) Which approaches are most suitable for the
construction of pdfs for regional impact studies? (3) How
can the pdfs be applied to examine impacts? (4) How may
pdfs be linked to downscaling methods?

Model credibility has thus far been based on the ability
to reproduce the observed conditions in the ‘control
integration’ as we have no way of assessing what will be
the ‘true’ future response. Many different methods have
been used to assess model outputs against observations.
Most commonly, the regional average of the long-term
mean or seasonal mean for different climatic variables is
compared for observations and climate models outputs.
Model weighting is then determined according to ability
in reproducing the observed mean climate. However,
there has been little assessment of whether ability to
reproduce average observed conditions predicates ability
in future prediction. More research is needed in this
area on questions such as: do we need to assess model
ability to reproduce change in climate conditions to
assess model ability in future predictions? A measure of
prediction ability rather than downscaling ability may be
more appropriate for model weighting, if indeed, model
weighting is appropriate. An alternative approach may be
to give equal weighting to all models and thus all possible
outcomes.

Emphasis has been put on the reproduction of regional
mean climate in model weighting, but for many impact
studies the reproduction of daily and inter-annual vari-
ability may be more important. Busuioc et al. (2001) for
example suggest that the optimum statistical downscaling
model for climate change applications will be one which
has the highest skill in reproduction of low frequency
variability, rather than having the most skill in terms of
explained variance. Alternatively, Wetterhall et al. (2006)
suggest that the ability to model inter-annual variability
is an important measure of the sensitivity to the climate
signal. Therefore, a model that is used for climate change
studies should be able to differentiate between dry and
wet years; again differentiating models based on variabil-
ity rather than mean statistics.

It is not yet clear how model ability in future predic-
tion may be assessed; and, such, there has been no real
advance in this research area since Leung et al. (2003b)’s
review. However, it is clear that in most cases it is impos-
sible to designate a ‘best model’ as their simulation skill
for key statistics varies between, and even within, cli-
matic variables both temporally and spatially. Important

questions must be asked as to how such models should
be assessed, as those models which well reproduce the
observed mean statistics of the climate at a regional scale
may not well reproduce the spatial variability over the
same region. Given that within-region differences are
likely to be important when considering specific impacts
of climate change it may be more appropriate to assess
how well models reflect the spatial characteristics of cli-
mate, large-scale circulation patterns or paired climate
regions. Evaluating circulation patterns is still an alterna-
tive that is frequently overlooked. Currently, we would
recommend that models are chosen that best reproduce
the climatic statistics important for an impacts study; an
impacts specific climate model selection. It is hoped,
however, that large ongoing projects such as ENSEM-
BLES will be able to provide solutions to many of these
questions.

The consistent downscaling of multiple climatic vari-
ables has been successful using bias-corrected RCM out-
puts. However, to incorporate probabilistic methods into
impact assessment, use must be made of either distributed
computing methods such as Climate Prediction. Net or
statistical downscaling methods that allow the simula-
tion of multiple, long climatic time series. Progress has
been made in the simulation of multiple climatic variables
using WGs but these still function at only the single-site
level. For hydrological impact studies it is important that
these types of approaches are extended to simulate at
multiple sites across a region, that they can be easily re-
parameterized for future climate change, and that there
is assessment of their ability to produce low frequency
variability.

5. How can downscaling methods be better utilized
within the hydrological impacts community?
Despite a thorough exploration of the weaknesses and

strengths of different downscaling methods, predictor
variables and downscaling domains within the literature,
there has still been little application of these methods
for hydrological impact assessment. Where these have
been achieved there is still little thought given to how the
results can be best used for robust management decisions
leading to adaptation.

Current assessments of climate change effects on
hydrological systems are made mainly using offline mod-
elling approaches. Outputs from climate model integra-
tions are used to drive hydrological models and esti-
mate climate change impacts. However, because feedback
effects are important, coupled regional modelling systems
may provide more useful predictions of climate impacts,
particularly now that RCMs are available at higher spatial
resolutions more appropriate for hydrological modelling.
These ‘whole system models’ may be more appropriate
for the assessment of adaptation and mitigation strategies.
However, there has been no examination of whether on-
or off-line approaches provide better estimates of future
climate change impacts and what temporal and spatial
scales are appropriate for coupling. There is a need for
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these types of comparison studies. We still, as recom-
mended by Leung et al. (2003b), need to develop ‘coor-
dinated end-to-end prediction systems to test the whole
approach of impact assessment’.

Additionally, within the hydrological community, mod-
els are normally designed for use in stationary conditions.
These are then used in changing or changed conditions
in impact studies without testing of whether these mod-
els are predictive. In the same way that climate model
ability to reproduce observations may not predicate its
ability to predict future climate, traditional split-sample
testing may not give a robust estimate of a hydrological
model’s ability to predict the effects of climate change.
The main assumption, that hydrological parameters will
remain the same, may simply not hold true under climate
change. Although there has been some research into the
problem of equifinality – that different model parameter-
izations produce similarly good flow simulations – more
research is needed into which hydrological models are
predictive and why.

CONCLUSIONS

In conclusion, since the 1990s there has been a thorough
exploration of the strengths and weakness of different
downscaling methods within the literature and there is no
need for additional comparison studies. Although there
has been a huge expansion of the downscaling literature
only about one third of all downscaling studies consider
impacts, and only half of these consider hydrological
impacts. Within studies considering hydrological impacts
there is still little consideration given to applied research;
how the results can be best used to enable stakeholders
and managers to make informed, robust decisions on
adaptation and mitigation strategies in the face of many
uncertainties about the future.

As many of the impacts of climate change will not be
detectable in the near future (e.g. Wilby, 2006), there
is a need for decision-making tools for planning and
management that are robust to future uncertainties. In
hydrological impacts research there is a need for a move
away from comparison studies into the provision of such
tools based on the selection of robust, possibly impact-
specific, downscaling methods. This is essential, together
with the examination and understanding of uncertainties
within the downscaling and modelling system, as for
example, attempted by Wilby and Harris (2006). Prob-
abilistic methods seem to offer a more robust way of
assessing climate change impacts, but much research is
still needed on the best way to apply such methods for
different impacts and in different locations. It is still
unclear who exactly should be responsible for generat-
ing probabilistic hydrologic scenarios. If this is to be the
decision-maker or practitioner rather than the scientist,
then this implies a need for more tools where the ‘hard’
science and data is embedded and hidden, such as EAR-
WIG (Kilsby et al., 2007b). Nevertheless, as these allow
the inclusion of uncertainty estimates using a multi-model

approach which can be used in the planning of adapta-
tion measures, they seem to offer the most potential for
advancement within both the ‘downscaling for hydrolog-
ical impacts’ science community and for practitioners.
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Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL. 2006. Future
change of precipitation extremes in Europe: an intercomparison
of scenarios from regional climate models. Journal of Geophysical
Research-Atmospheres 111: D06105, DOI: 10.1029/2005JD005965.
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Klein Tank AMG, Können GP. 2003. Trends in indices of daily
temperature and precipitation extremes in Europe, 1946–99. Journal
of Climate 16: 3665–3680.

Knutti R, Stocker TF, Joos F, Plattner GK. 2002. Constraints on
radiative forcing and future climate change from observations and
climate models ensembles. Nature 416: 719–723.

Knutti R, Stocker TF, Joos F, Plattner GK. 2003. Probabilistic climate
change projections using neural networks. Climate Dynamics 21:
257–272.

Knutti R, Joos F, Muller SA, Plattner GK, Stocker TF. 2005.
Probabilistic climate change projections for CO2 stabilization
profiles. Geophysical Research Letters 32(20): L20707. DOI:
10.1029/2005GL023294.
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Widmann M, Bretherton CS, Salathé EP. 2003. Statistical precipitation
downscaling over the Northwestern United States using numerically
simulated precipitation as a predictor. Journal of Climate 16:
799–816.

Wigley TML, Raper SCB. 2001. Interpretation of high projections for
global-mean warming. Science 293: 451–454.

Wigley TML, Jones PD, Briffa KR, Smith G. 1990. Obtaining subgrid
scale information from coarse-resolution general circulation model
output. Journal of Geophysical Research 95: 1943–1953.

Wilby RL. 1998. Statistical downscaling of daily precipitation using
daily airflow and seasonal teleconnection indices. Climate Research
10: 163–178.

Wilby RL. 2006. When and where might climate change be detectable
in UK river flows? Geophysical Research Letters 33: L19407, DOI:
10.1029/2006GL027552.

Wilby RL, Wigley TML. 1997. Downscaling general circulation model
output: a review of methods and limitations. Progress in Physical
Geography 21: 530–548.

Wilby RL, Wigley TML. 2000. Precipitation predictors for downscal-
ing: observed and general circulation model relationships. Interna-
tional Journal of Climatology 20: 641–661.

Wilby RL, Harris I. 2006. A framework for assessing uncertainties
in climate change impacts: low flow scenarios for the River
Thames, UK. Water Resources Research 42: W02419, DOI:
10.1029/2005WR004065.

Wilby RL, Hay LE, Leavesley GH. 1999. A comparison of downscaled
and raw GCM output: implications for climate change scenarios
in the San Juan River basin, Colorado. Journal of Hydrology 225:
67–91.

Wilby RL, Conway D, Jones PD. 2002a. Prospects for downscaling
seasonal precipitation variability using conditioned weather
generator parameters. Hydrological Processes 16: 1215–1234.

Wilby RL, Dawson CW, Barrow EM. 2002b. SDSM – a decision
support tool for the assessment of regional climate change impacts.
Environmental Modelling & Software 17(2): 145–157.

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 27: 1547–1578 (2007)
DOI: 10.1002/joc



1578 H. J. FOWLER ET AL.

Wilby RL, Tomlinson OJ, Dawson CW. 2003. Multi-site simulation
of precipitation by conditional resampling. Climate Research 23:
183–194.

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO.
2004. Guidelines for use of climate scenarios developed from
statistical downscaling methods, Supporting material of the
Intergovernmental Panel on Climate Change, available from the
DDC of IPCC TGCIA, 27.

Wilby RL, Whitehead PG, Wade AJ, Butterfield D, Davis RJ, Watts G.
2006. Integrated modelling of climate change impacts on water
resources and quality in a lowland catchment: River Kennet, UK.
Journal of Hydrology 330: 204–220.

Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J,
Wilks DS. 1998. Statistical downscaling of general circulation model
output: a comparison of methods. Water Resources Research 34:
2995–3008.

Wilby RL, Hay LE, Gutowski WJJ, Arritt RW, Takle ES, Pan Z,
Leavesley GH, Clark MP. 2000. Hydrological responses to
dynamically and statistically downscaled climate model output.
Geophysical Research Letters 27: 1199–1202.

Wilks DS. 1992. Adapting stochastic weather generation algorithms for
climate change studies. Climatic Change 22: 67–84.

Wilks DS, Wilby RL. 1999. The weather generation game: a review
of stochastic weather models. Progress in Physical Geography 23:
329–357.

Wood AW, Leung LR, Sridhar V, Lettenmaier DP. 2004. Hydrologic
implications of dynamical and statistical approaches to downscaling
climate model outputs. Climatic Change 62: 189–216.

Xu CY. 1999. From GCMs to river flow: a review of downscaling
methods and hydrologic modelling approaches. Progress in Physical
Geography 23(2): 229–249.

Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K. 2003. A
technique for generating regional climate scenarios using a nearest-
neighbour algorithm. Water Resources Research 39: 1199, DOI:
10.1029/2002WR001769.

Zhu C, Pierce DW, Barnett TP, Wood AW, Lettenmaier DP. 2004.
Evaluation of hydrologically relevant PCM climate variables and
large-scale variability over the continental U.S. Climatic Change 62:
45–74.

Zorita E, von Storch H. 1997. A survey of statistical downscaling
techniques. GKSS report 97/E/20, GKSS Research Center:
Geesthacht.

Zorita E, von Storch H. 1999. The analog method as a simple statistical
downscaling technique: Comparison with more complicated
methods. Journal of Climate 12: 2474–2489.

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 27: 1547–1578 (2007)
DOI: 10.1002/joc


