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ABSTRACT: Thirteen regional climate model (RCM) integrations from the Prediction of Regional Scenarios and
Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) ensemble are used together with
extreme value analysis to assess changes to seasonal precipitation extremes in nine UK rainfall regions by 2070–2100
under the SRES A2 emissions scenario. Model weights are based on similarities between observed and modelled UK
extreme precipitation calculated for a combination of (1) spatial characteristics: the semi-variogram parameters sill and
range, and (2) the discrepancy in the regional median seasonal maxima. These weights are used to combine individual
RCM bootstrap samples to provide multi-model ensemble estimates of percent change in the return value magnitudes of
regional extremes. The contribution of global climate model (GCM) and RCM combinations to model structural uncertainty
is also investigated. The multi-model ensembles project increases across the UK in winter, spring and autumn extreme
precipitation; although there is uncertainty in the absolute magnitude of increases, these range from 5 to 30% depending
upon region and season. In summer, model predictions span the zero change line, although there is low confidence due to
poor model performance. RCM performance is shown to be highly variable; extremes are well simulated in winter and very
poorly simulated in summer. The ensemble distributions are wider (projections are more uncertain) for shorter duration
extremes (e.g. 1 day) and higher return periods (e.g. 25 year). There are rather limited differences in the weighted and
unweighted multi-model ensembles, perhaps a consequence of the lack of model independence between ensemble members.
The largest contribution to uncertainty in the multi-model ensembles comes from the lateral boundary conditions used by
RCMs included in the ensemble. Therefore, the uncertainty bounds shown here are conservative despite the relatively large
number of RCMs contributing to the multi-model ensemble distribution. Copyright  2009 Royal Meteorological Society
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1. Introduction

Under enhanced greenhouse conditions, it is likely that
projected changes to climatic and hydrologic extremes
will have the largest impacts on human society (Tebaldi
et al., 2006). The high latitudes of the Northern Hemi-
sphere are currently experiencing a trend towards
increased precipitation and enhanced variability (e.g.
Meehl et al., 2005; Alexander et al., 2006; Trenberth
et al., 2007), particularly in winter; observational anal-
yses in Europe suggest significant positive trends in pre-
cipitation intensities over the past decade (e.g. Brunetti
et al., 2000; Frei and Schär, 2001; Fowler and Kilsby,
2003a,b). Global climate model (GCM) studies consis-
tently suggest that increases in the frequency and inten-
sity of heavy precipitation are likely under enhanced
greenhouse conditions (Tebaldi et al., 2006; Meehl et al.,
2007), even in regions that may experience a reduction
in mean precipitation (Frei et al., 2006).
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The assessment of global and regional climate model
simulations and future projections of extremes is now
relatively common, yet few studies have examined the
uncertainties introduced by using multiple climate model
outputs (Fowler et al., 2007a), perhaps due to a scarcity
of suitable datasets. For example, Frei et al. (2006) and
Beniston et al. (2007) compared projections of change in
extreme precipitation for multiple regional climate mod-
els (RCMs) across Europe, but did not combine them into
a multi-model ensemble estimate. However, a variety of
applications in other fields have demonstrated that com-
bining models through a multi-model ensemble generally
increases the skill, reliability and consistency of predic-
tions (Tebaldi and Knutti, 2007). Indeed, Kendon et al.
(2008) suggest that three models is the minimum useful
ensemble size when considering changes in precipitation
extremes due to the large influence of natural variability
found amongst individual ensemble members.

In addition to natural variability, other sources of
uncertainties must be considered within the climate mod-
elling process for GCMs, e.g. grid resolution, process
parameterization, model structure and emissions sce-
nario (e.g. Giorgi and Francisco, 2000; Covey et al.,
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2003). When using RCM data the sources of uncertainty
increase, as outputs are influenced by RCM resolution,
numerical scheme, physical parameterizations and the
forcing lateral boundary conditions (Rummukainen et al.,
2001; Déqué et al., 2007; Elı́a et al., 2008). In a recent
application by the authors, Fowler et al. (2007b) applied
equal weighting to combine the results of six RCM
integrations from the Prediction of Regional scenarios
and Uncertainties for Defining European Climate change
risks and Effects (PRUDENCE) (Christensen et al., 2007)
ensemble. This first attempt to produce probabilistic esti-
mates of change in annual extreme precipitation was
tested on nine climatically homogenous rainfall regions
in the UK, generating larger uncertainty ranges than stud-
ies using integrations from a single RCM (e.g. Ekström
et al., 2005) and demonstrating the large influence of
GCM lateral boundary conditions on model projec-
tions; although all models projected increases in extreme
precipitation, ECHAM4/OPYC-driven RCMs projected
increases 20% higher on average than HadAM3H-driven
RCMs.

In this paper we extend the approach taken by Fowler
et al. (2007b) to derive regional multi-model ensemble
estimates for future change in UK precipitation extremes
by: (1) performing the analysis on a seasonal instead of
an annual temporal resolution; (2) developing a model-
specific weighting scheme. Recent approaches to the
construction of probability density functions (PDFs) of
change, e.g. Tebaldi et al. (2004, 2005) or Lopez et al.
(2006), suggest that non-uniform weighting may be more
appropriate as models have unequal skill in the simula-
tion of contemporary climate. To date, most weighting
methods have been based on model skill in simulating
areal average climate characteristics. However, Blenkin-
sop and Fowler (2007) noted that RCMs can skilfully
simulate areal average precipitation yet show poor skill
in simulating its spatial distribution; the same holds true
for extremes (Fowler et al., 2007b). Skilful simulation of
areal averages may hide compensating biases; therefore
models that produce errors with a less well-defined spa-
tial structure may artificially score better at representing
physical precipitation processes.

In this paper we therefore develop a set of region-
specific weights for each RCM depending on its simi-
larity in spatial characteristics and overall magnitude of
extreme precipitation statistics to its observed counter-
part. The weights are a combination of a discrepancy
measure (region specific) and a measure that reflects the
overall similarity in spatial dependence structure between
observed and RCM extreme precipitation fields (UK-
wide). Thus, each model weight is conditioned on both
its closeness to observed extreme values in a particu-
lar region and how well it captures the observed spatial
variability in precipitation extremes across the UK.

To describe UK-wide spatial characteristics, it is nec-
essary to use a measure that is not sensitive to phase
errors, i.e. errors that arise due to discrepancies in spa-
tial location (or temporal lag) of higher and lower values
between fields of comparison. For example, if a particular

RCM models correctly the magnitude of extremes but at
a slightly shifted position to that shown in the observed
field, the RCM will be given a poor score when using a
measure such as root-mean-square error. For this applica-
tion, where it is unreasonable to expect RCMs to simulate
extreme precipitation magnitudes with high precision on a
grid cell resolution, a flexible measure is required to iden-
tify which RCMs have poor representations of regional
variability in comparison with observations. For such a
task the semi-variogram is appropriate as it quantifies the
spatial dependence structure of a variable in space.

Specifically, the semi-variogram is defined as the vari-
ance between two values as a function of the separation
distance (lag) between them and is traditionally used
to estimate variables at previously unsampled locations,
with numerous examples of applications to precipitation
fields (e.g. Pardo-Igúzquiza, 1998; Goovaerts, 2000; Kyr-
iakidis et al., 2001; Pardo-Igúzquiza et al., 2006). How-
ever, the semi-variogram can also be used to investigate
particular spatial properties of precipitation (e.g. Holawe
and Dutter, 1999; Germann and Joss, 2001). Here, the
semi-variogram is calculated for extreme precipitation
fields to give a summary of UK-wide characteristics in
terms of spatial variability and range of dependence struc-
ture. This information is contained in the parameters
(partial sill and range) of the semi-variogram model (a
two-dimensional function fitted to each of the experimen-
tal semi-variograms) and these are then used in combina-
tion with the regional discrepancy measure to provide
model-specific weights. Thus, the overall aim of this
study is to create regional multi-model ensemble distri-
butions for each season showing projected change to the
5- and 25-year return values of long- and short-duration
precipitation extremes using the weights developed for
each region and RCM.

The paper is divided into the following sections: Sec-
tion 2 presents the RCM and observed data used in
the study; Section 3 introduces the statistical methods
used for analysis; Section 4 presents an evaluation of
the RCMs’ ability to simulate extreme seasonal precipi-
tation over the UK and their future projections; Section
5 explores how probabilistic estimates of change in sea-
sonal extremes may be developed for homogeneous rain-
fall regions in the UK using simple weighting methods
and compares these to unweighted multi-model estimates;
and Section 6 provides a discussion of the results and
concludes the study.

2. Model output and observations

2.1. Models

The PRUDENCE ensemble contains daily outputs for
a range of climatic variables for control (1961–1990;
CTRL) and future (2071–2100; SCEN) RCM integra-
tions. We use 13 integrations, 12 from the PRUDENCE
ensemble and an additional RCM driven by HadAM3H,
METNO, under the IPCC SRES A2 emissions scenario
(Nakićenović et al., 2000).
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Nine of these RCM integrations were conducted by
nesting into the atmosphere-only high-resolution GCM
HadAM3H of the UK Hadley Centre. One RCM,
HadRM3P, is nested into HadAM3P, a more recent ver-
sion of the same atmosphere-only GCM. A variable
resolution global atmospheric model, Arpége, at approx-
imately the same resolution as the RCMs, is nested
directly into HadCM3. Two RCM integrations, HIRHAM
and RCAO, are driven by lateral boundary conditions
from the ECHAM4/OPYC3-coupled ocean–atmosphere
GCM as well as by HadAM3H.

HadCM3 (Gordon et al., 2000; Johns et al., 2003) is
a coupled ocean–atmosphere GCM at ∼300 km resolu-
tion and provides boundary conditions for HadAM3H/P.
HadAM3H (Pope et al., 2000) and HadAM3P (Jones
et al., 2005) have a resolution of ∼150 km in the
mid-latitudes and can be considered as essentially the
same model for Europe (Moberg and Jones, 2004). For
1961–1990, the HadAM3H/P models used an observed
ocean state; for 2071–2100, the ocean state was con-
structed by adding anomalies from a transient simu-
lation of HadCM3 for the SRES A2 emissions sce-
nario to observations. The ECHAM4/OPYC3-coupled
ocean–atmosphere GCM (Roeckner et al., 1996, 1999)
at ∼300 km resolution was developed by the Max Planck
Institute for Meteorology (MPI) and the German Cli-
mate Computing Centre (DKRZ). The HadAM3H/P and
ECHAM4/OPYC3 global mean temperature responses
are similar for the IPCC SRES A2 emissions sce-
nario (3.1 and 3.56 °C, respectively; Tim Osborn, per-
sonal communication); mid-range in the global mean tem-
perature responses for all GCMs presented by the IPCC
Third Assessment Report (2001).

Details for all RCMs considered in this study are
listed in Table I. All operate with grid spacing of ∼0.5°

longitude by ∼0.5° latitude (∼50-km spatial resolution)
over a European domain and outputs were re-gridded
to a regular 0.5° × 0.5° grid using an inverse distance
weighted interpolation algorithm to allow direct compar-
ison between models. Suffixes E and H denote RCMs
driven by ECHAM4/OPYC3 and HadAM3H/P/HadCM3
GCMs, respectively. More details on the experimental
design of the PRUDENCE integrations can be found in
Jacob et al. (2007).

2.2. Observations

An observational precipitation dataset at a comparable
scale to the RCM outputs was produced by taking a
daily average across the 5-km boxes contained within
each 0.5° × 0.5° grid cell for each day of 1961–1990 for
the UK Meteorological Office (UKMO) dataset (Perry
and Hollis, 2005a,b).

3. Methods

3.1. Extreme value analysis and uncertainty estimates

The statistical analysis of extreme seasonal precipitation
is based on daily precipitation totals and uses the same

methods as detailed in Fowler et al. (2007b). The multi-
model ensembles are generated using a combination of
nonparametric bootstrapping and regional frequency anal-
ysis (RFA) for each of the nine UK rainfall regions
(Figure 1) delineated by Wigley et al. (1984). The homo-
geneity of these regions for extreme precipitation was
tested by Fowler and Kilsby (2003a). For each RCM
integration seasonal maximum (SM) series of 1-, 2-, 5-
and 10-day precipitation totals are extracted for each grid
cell. These SM series are standardized by their median
(Rmed – equivalent to the 2-year return value; following
Fowler et al., 2005) to remove grid cell-specific factors
from the regional analysis and to allow the regional pool-
ing of standardized data for each region.

To represent regional uncertainty in extreme precip-
itation, the intra-regional variability is estimated using
a nonparametric bootstrap re-sampling method (Efron,
1979). A set of 10 000 bootstrap samples are drawn
from each pooled standardized regional SM dataset, to
produce separate samples for each region and event dura-
tion. The literature on bootstrapping suggests that when
re-sampling maxima or extreme order statistics (e.g. Zel-
terman, 1993; Shao and Tu, 1995), the size of a bootstrap
sample should be smaller than that of the original sam-
ple. However, as the regionally pooled standardized SM
distributions have relatively light tails, even though the
generalized extreme value (GEV) distribution provides
a good fit as proved by a quantile–quantile plot (not
shown), a bootstrap sample of the same size as the origi-
nal sample gives representative statistics for each region.
Distributional agreement between the bootstrap samples
and the original samples is tested using the two-sample
Kolmogorov–Smirnov (KS) test which determines if two
independent random samples are drawn from the same
underlying continuous population. The null hypothesis in
the KS test states that the two samples have similar empir-
ical distribution functions and that there is no significant
difference between them. For the boot strap samples of
the same size as the original sample, the null hypothe-
sis could not be rejected at α = 0.05, whereas using the
semi-parametric approach of Zelterman (1993) the KS
test suggested that the null hypothesis is rejected for all
bootstrap samples. Therefore, bootstrap samples of the
same size as the original sample population are used.

A GEV distribution is then fitted to each bootstrap
sample using L-moment ratios (Hosking and Wallis,
1997), and return values of precipitation intensities with
average recurrence of 5 and 25 years are estimated for
each region and event duration. The estimates are then
re-scaled using the regionally averaged Rmed from the
appropriate original SM dataset (see Appendix for more
details on the RFA methodology). This technique is used
to estimate regional distributions of return values for
UKMO, CTRL and SCEN.

Multi-model estimates of change are then generated
using the non-parametric bootstrap samples for each
RCM and region for 1-, 2-, 5- and 10-day extremes
following the methodology outlined in Fowler et al.
(2007b). A random number generator is used to sample
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Table I. The 11 regional climate models (RCM) and 13 integrations used in this study.

Model acronym Institution/model origin and references RCM Global climate model

ARPH French Meteorological Service; ARPEGE/IFS variable
resolution global model. Model: Déqué et al. (1998)

Arpège HadCM3

HADH Hadley Centre, UK Meteorological Office, Exeter; Regional
model at the Hadley Centre. Model: Jones et al. (2004a).

HadRM3P HadAM3P

HIRH Danish Meteorological Institute, Copenhagen; Dynamical core
from HIRLAM, Parameterizations from ECHAM4. Model:
Christensen et al. (1996, 1998). Physiographic datasets:
Christensen et al. (2001); Hagemann et al. (2001)

HIRHAM HadAM3H

HIRE ECHAM4/OPYC
RCAOH Swedish Meteorological and Hydrological Institute,

Norrköping; Rossby Centre Atmosphere Ocean Model. Model:
Döscher et al. (2002); Meier et al. (2003); Jones et al. (2004b);
Räisänen et al. (2004)

RCAO HadAM3H

RCAOE ECHAM4/OPYC
CHRMH Swiss Federal Institute of Technology (ETH), Zurich; Climate

High-Resolution Model. Model: Lüthi et al. (1996); Vidale
et al. (2003)

CHRM HadAM3H

CLMH GKSS, Institute for Coastal Research, Geesthatcht, Germany;
Climate version of ‘Lokalmodell’ of German Weather Service.
Model: Steppeler et al. (2003)

CLM HadAM3H

REMOH Max Planck Institute for Meteorology, Hamburg, Germany;
Dynamical core from ‘Europamodell’ of German Weather
Service, Parameterizations from ECHAM4. Model: Roeckner
et al. (1996); Jacob (2001)

REMO HadAM3H

PROMH Universidad Complutense de Madrid, Spain; Climate version
of PROMES model. Model: Castro et al. (1993); Arribas et al.
(2003).

PROMES HadAM3H

REGH The Abdus Salam International Centre for Theoretical Physics,
Italy (ICTP); Dynamical core from MM5, Parameterizations
from CCM3. Model: Giorgi et al. (1993a,b, 1999); Pal et al.
(2000)

RegCM HadAM3H

RACH The Royal Netherlands Meteorological Institute (KNMI),
Netherlands; Dynamical core from HIRLAM,
Parameterizations from ECMWF physics. Model: Tiedtke
(1989, 1993); Lenderink et al. (2003)

RACMO2 HadAM3H

METH Norwegian Meteorological Institute; Version of HIRHAM.
Model: Christensen et al. (2001); Hanssen-Bauer et al. (2003)

MetNo HadAM3H

The acronyms are adopted here to provide an easier understanding of the format of each model run. The first part of each acronym refers to the
RCM and the second to the GCM data used to provide the boundary conditions. All RCM integrations are from PRUDENCE except for METH.

the return values estimated for CTRL and SCEN from
the 10 000 non-parametric bootstrap samples separately
for each region, return period and event duration. The
percentage change in the return value between CTRL and
SCEN is then calculated for each one of these samples.
Assuming that the models have equal skill, the 10 000
estimates of percentage change in return values from each
RCM are then pooled for each region, return period and
event duration and the distributional properties examined
using box plots for each UK region for the 5- and 25-year
return values of 1- and 10-day precipitation extremes.

3.2. Deriving model weights

Here, we present the method that is used to quantify
differences in the spatial patterns of extreme precipitation
simulated by RCMs and noted by Fowler et al. (2007b).
Two measures of similarity are calculated and then

combined into a single measure (RV, equal weighting is
applied for the two measures); the first measure is region
specific (R) and the second is representative of the entire
UK-wide return value field (V ). The combined weight
is expressed as a percentage, and is used to determine
how many bootstrap samples to take from each RCM for
the multi-model-weighted ensemble. Thus, models which
have greater skill in simulating the observed regional
magnitude and spatial distribution of UK precipitation
extremes provide a larger contribution to the multi-model
ensemble distribution for each region.

3.2.1. UK-wide spatial-similarity weights

To quantify spatial similarity between fields of UKMO
and CTRL precipitation extremes we use two parame-
ters of the semi-variogram model, which is the mod-
elled experimental semi-variogram. The experimental
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Figure 1. The re-gridded regular 0.5° × 0.5° RCM grid and the
nine coherent rainfall regions. The regions are North Scotland (NS),
East Scotland (ES), South Scotland (SS), Northern Ireland (NI),
Northwest England (NWE), Northeast England (NEE), central and
eastern England (CEE), Southeast England (SEE) and Southwest

England (SWE) (from Fowler et al., 2007b).

variogram is given by the mean of the halved squared
increment as a function of distance for an intrinsic ran-
dom function Z(x) (Chilès and Delfiner, 1999):

2γ (h) = E{[Z(x) − Z(x + h)]2} (1)

where 2γ (h) is the expected squared difference between
two data values at separation distance (or lag) h. In
principle, the variogram shows how dissimilarity between
Z(x) and Z(x + h) evolves with distance h, where Z(x)

represents an extreme value estimate at location x. The
semi-variogram [γ (h)] is one half of the variogram and
is a measure of variability, which increases as samples
become more dissimilar. The definition of the variogram
assumes that the value Z is intrinsically stationary, which
implies that the expectation of Z is constant through the
spatial domain (here the UK) and that the semi-variance
is dependent on the lag only and not on the position of
x. In this application, both assumptions are likely to be
violated as the expectation of Z is likely to vary over the
domain as extremes vary in magnitude across the UK.
Visual inspection of the seasonal UKMO experimental
semi-variograms indicated a trend in the data at around
700–800 km, a feature that was also found in some,
but not all, CTRL extreme value fields. However, these
violations are not critical to the present study as the
semi-variograms are simply used to summarize spatial
characteristics in the extreme precipitation fields; they
are not used for interpolating or simulating extreme
rainfall. Since the return values are equally spaced
over the entire domain, the resulting experimental semi-
variogram is simply the average semi-variogram for the
region and the semi-variance comprises, in addition to
the sum of the semi-variogram, the squared difference
between the means (systematic difference) (Germann and

Joss, 2001). Furthermore, to ensure that distances in all
directions contributed equally to the experimental semi-
variogram, distances further than 330 km apart were
excluded from the calculation as otherwise distances in
the west–east direction would be underrepresented in
relation to north–south distances (due to the shape of
the UK).

The shape of the experimental semi-variogram can
be described by theoretical models. Geo-statisticians use
specific models that fulfil certain criteria, which become
important when the models are used to interpolate or
simulate the particular property in space (see Gringarten
and Deutsch, 2001 for details). Commonly used models
are the spherical, exponential, circular and Gaussian
models. These models fulfil the required criteria and
are defined by two parameters: the sill and the range.
These parameters have a physical interpretation, where
the sill is the semi-variance value that corresponds
to zero correlation; the semi-variances below the sill
indicate values that are positively correlated while semi-
variances above the sill indicate negatively correlated
values (Gringarten and Deutsch, 2001). The range is
simply the distance associated with the sill, giving the
distance at which the spatial auto-correlation between
data point pairs, on average, ceases or becomes negatively
correlated. Here, the sill and range are used in a crude
way, simply indicating the variance and the average size
of structures in the extreme value fields of UKMO and
CTRL.

Fitted semi-variogram models can be split into two
groups: those that reach a plateau and those that do not.
For those that reach a plateau, that plateau is the sill and
the distance at which it reaches the plateau is the range.
For those that do not have a plateau, the models reach
their sill asymptotically, and the range is an arbitrary
95% of the distance at which the sill is reached (Isaaks
and Srivastava, 1989). When fitting the semi-variogram
model to the experimental semi-variogram, the curve may
not always have a zero intercept with the y-axis. If this
is the case, the semi-variogram exhibits a nugget effect
(c0). The nugget is interpreted as non-spatial variation
due to measurement error and variations in the data that
relate to shorter ranges than the minimum sampled data
spacing. The sill minus the nugget is sometimes known
as the partial sill or structural variance.

To generate weights for each RCM, experimental semi-
variograms were calculated for the gridded pattern of
return values for UKMO and all CTRLs using only
grid cells for which there is observational data. Prior to
calculating the experimental semi-variograms, the pre-
cipitation field’s grid coordinates were transformed to
coordinates on a easting and northing grid reference sys-
tem (metres) so that Euclidean distances between data
pairs are calculated. Omni-directional semi-variograms
(using combinations of data pairs in all compass direc-
tions) were calculated for the UKMO and CTRL extreme
precipitation fields using a lag distance of ∼60 km; the
search radius for the experimental semi-variogram was
cut off at 330 km. Four separate semi-variogram models
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(spherical, exponential, Gaussian and circular) were fitted
using weighted least squares in geoR (Ribero and Diggle,
2001). The automated fitting procedure used a combina-
tion of over 100 different initial conditions (essentially
first guesses of nugget, sill and range) to ensure a good
fit. Additionally, visual inspection of all experimental
semi-variograms and their respective best fit model was
performed to ensure that the models captured the shape of
the experimental semi-variogram. The sill and range for
the best fitted model (based on the minimized weighted
sum of squares) was retained for the calculation of indi-
vidual RCM weights.

To identify which RCM extreme return value fields are
more similar to their observed counterparts, we create
a measure defined by the sill and range parameters of
the fitted semi-variogram models. First the Euclidian
distance is calculated between UKMO and CTRL using
their respective sill and range parameters in a normalized
parameter space. Parameters are normalized in order to
avoid uneven influence by either parameter on the final
semi-variogram weight. The distance is transformed to
an inverse distance (Webster and Oliver, 2001) and then
scaled to unity, providing model weights expressed as
fractions. The RCM-specific weights, V , indicate which
CTRLs are more similar to UKMO extreme precipitation
patterns in terms of their scale of dependence and
variance. The inverse distance weights imply that the
contribution from models that are ‘far away’ in parameter
space is relatively small.

3.2.2. Region-specific magnitude-discrepancy weights
and combined weights

Although the model semi-variogram is able to capture
spatial structure dependence, it does not reflect the
magnitude of values in the field to which the semi-
variogram is applied. Therefore, RCMs that have a
similar spatial structure will be given large weights even
though they may have significantly lower or higher return
values when compared with the observed precipitation
fields. To compensate for this potential drawback, the
model-specific UK-wide weight, V , is combined with
a region-specific weight, R, which provides information
with respect to the discrepancy in return values between
CTRL and UKMO.

As RCMs are not expected to capture fine scale
(grid cell scale) patterns in observed return values, a
discrepancy measure should be applied on a meaningful
spatial scale. Here we consider the UK rainfall regions to
be an appropriate scale and use as a discrepancy measure
the absolute difference between the regionally averaged
Rmed value for each RCM’s SM and the observed SM.
The region-specific weights are calculated and rescaled to
sum to unity in a similar fashion to those of the UK-wide
weights, i.e. by calculating inverse distances between
each UKMO and CTRL regionally averaged Rmed and
scaling to unity.

The final combined weight (RV ) for each RCM is then
given as the average of the UK-wide and region-specific

weights:

RVi = Vi + Ri

2
for i = 1, . . . , 13 models (2)

The combined weights are then used to determine the
proportion of the 10 000 bootstrap samples for each RCM
that contribute to the regional multi-model ensemble
distribution for the weighted example.

4. Results

4.1. Evaluation of control climate

To evaluate RCM skill in simulating the median and
range in magnitude of extreme regional precipitation in
comparison with observations, we calculated the average
and standard deviation of Rmed by model and region
and compared these for CTRL and UKMO. Figure 2
illustrates how the distribution of Rmed, used to rescale
from the fitted GEV growth factor to the return value,
differs for each region. Colour represents the CTRL and
UKMO datasets, while symbols represent regions. An
example for 10-day precipitation extremes is shown in
Figure 2. The results for 1 day are similar except for
a larger difference in the standard deviation of 1-day
summer Rmed between CTRL and UKMO and overall
larger relative differences for mean 10-day Rmed.

Regional extremes are underestimated by the RCMs in
all seasons. In winter and spring, the largest discrepan-
cies in both the regional average and standard deviation
of Rmed are found for regions that experience the heavi-
est precipitation, such as North Scotland (NS) and South
Scotland (SS), and Northwest England (NWE) and South-
west England (SWE) (Figure 2(a) and (b)). Other regions
show less discrepancy in the average Rmed but the stan-
dard deviation is generally underestimated. In summer,
the major discrepancy between RCM simulations and
observations lies in the underestimation of the region-
ally averaged Rmed (Figure 2(c)). This discrepancy is
particularly large for regions with heavy summer rainfall,
such as those mentioned above, but also for those regions
where extremes are reasonably well captured by RCMs
during the winter and spring seasons, e.g. Northeast Eng-
land (NEE) and central and eastern England (CEE). This
may be due to the predominance of local-scale convective
processes which cannot be properly resolved at the scale
of the RCM grid cell (∼50 km). In autumn, the RCMs
reproduce extremes well only in regions with low vari-
ability and low magnitude precipitation extremes [e.g.
CEE and Southeast England (SEE)], failing to capture
the high variability and high magnitude of observed pre-
cipitation extremes in northern and western regions. Due
to the large scatter, it is hard to make generalizations
with respect to individual model performance with the
possible exception of CLMH which consistently clusters
towards the right-hand side of the RCM markers, indi-
cating a smaller discrepancy in the regionally averaged
Rmed compared with other RCMs.
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Figure 2. Scatter plots of the mean (regional average) and standard deviation of Rmed values, comparing the UKMO and CTRL integrations
for 10-day extreme precipitation for (a) winter, (b) spring, (c) summer and (d) autumn. The CTRL datasets are denoted by different colours,
UKMO is shown in bold black, while symbols represent regions. This figure is available in colour online at www.interscience.wiley.com/ijoc

Figure 3 shows the seasonal 1- and 10-day, 5-year
return values estimated separately for each individ-
ual grid cell for UKMO. The spatial patterns of 1-
and 10-day return values are very similar; differing
only in magnitude. The highest magnitude extremes
are found along the western side of the UK, particu-
larly in the Scottish highlands, NWE, central and west-
ern Wales and the southwest moors during winter and
autumn. In spring and summer, overall magnitudes are
smaller and the highest magnitude extremes are found
mainly in the Scottish highlands, NWE and central
Wales.

In Figures 4 and 5, the percentage difference between
UKMO and each CTRL is given for individual grid
cells for the 5-year return value for 1- and 10-day
totals, respectively. In winter, most CTRLs show a
marked discrepancy from observations in CEE, NS and
SS. In CEE, the CTRLs overestimate the observed
extremes, particularly CLMH (1 day), HIRE (1 day) and
RCAOE (10 days), while in NS the CTRLs underes-
timate the observed extremes, particularly CHRMH (1
and 10 days), HIRH (1 and 10 days), REGH (10 days)
and METH (10 days). Although the spatial patterns of

discrepancies are very similar between the 1- and 10-
day winter plots, there are marked differences for certain
regions and RCMs. For example, CHRMH and CLMH
show larger overestimates in CEE for 1-day extremes
than 10-day extremes.

In spring, discrepancy patterns are largely similar to
those of winter, albeit with lower positive discrepan-
cies in CEE and SS (Figures 4(b) and 5(b)). The over-
all features of the 1- and 10-day patterns are similar,
with some regional differences for individual RCMs, e.g.
CHRMH, HIRH and HADH show larger underestimates
in NS, SS and NWE for the 10-day extremes. In sum-
mer, the discrepancy pattern is predominantly negative,
meaning that RCMs underestimate summer precipitation
extremes in comparison with observations; in particular
for HADH and HIRH, where the negative discrepancy
increases (becomes more negative) towards the south and
west of the UK. However, there are exceptions; REGH
shows a marked positive discrepancy in CEE. In autumn,
the largest discrepancies between CTRLs and UKMO
are found in NS and CEE. RCMs, particularly CHRMH
and HIRH, tend to underestimate autumn precipitation
extremes in NS and these negative discrepancies become
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Figure 3. Return value estimates for the UKMO 1- and 10-day totals with 5-year return period for each meteorological season. Season
and accumulation period is stated in each separate figure, where winter is denoted by DJF (December–February), spring by MAM
(March–May), summer by JJA (June–August) and autumn by SON (September–November). This figure is available in colour online at

www.interscience.wiley.com/ijoc

Figure 4. (a) Percent difference (discrepancy) between grid cells for UKMO and CTRLs for the 1-day 5-year return value during winter.
(b) Percent difference (discrepancy) between grid cells for UKMO and CTRLs for the 1-day 5-year return value during spring. (c) Percent
difference (discrepancy) between grid cells for UKMO and CTRLs for the 1-day 5-year return value during summer. (d) Percent difference
(discrepancy) between grid cells for UKMO and CTRLs for the 1-day 5-year return value during autumn. This figure is available in colour

online at www.interscience.wiley.com/ijoc
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Figure 4. (Continued).

larger for most RCMs for 10-day extremes compared with
1-day extremes. In CEE and NEE, most RCMs show
weak overestimation (somewhat larger in CLMH) for 1-
day extremes but this discrepancy reduces for 10-day
extremes, with the exception of RCAOE and to a lesser
extent RCAOH.

4.2. Future projections for individual models

Probability distributions of change in extreme precipi-
tation were created using the 10 000 return value esti-
mates generated for each RCM, event duration (1, 2, 5 or
10 days) and region by the non-parametric bootstrapping
exercise detailed in Section 3.1 and further elaborated in
Fowler et al. (2007b). We show only results for 1- and
10-day totals for the 5-year return value due to space
constraints.

In general, RCM projections of change vary consider-
ably and uncertainty ranges are larger for 25-year than
5-year return values, as would perhaps be expected.
Figure 6 shows estimates of the percent change in the
1-day 5-year and 10-day 5-year return values, respec-
tively, for each RCM and each season under the SRES
A2 2071–2100 emissions scenario for the NS region.

Figures 7 and 8 show the same plots for the NWE and
SEE regions, respectively. These illustrate the model
uncertainty in predictions for contrasting regions of the
UK, although discussion will be made of results for other
regions.

RCM projections are most consistent for winter
extremes. All RCMs project increases in the 1-day 5-
year and 10-day 5-year return values; although there is
an overlap of the probability distribution with the zero
change line for some RCMs, mainly HADH, in south-
ern regions, these are in the minority. ECHAM-driven
RCMs, in particular RCAOE, project larger increases
than Hadley-driven RCMs in winter. There is a greater
uncertainty for 25-year return values; more RCMs project
zero change or reductions. The results are similar for
spring, with most RCMs projecting increases in extreme
precipitation for both 1- and 10-day events. However,
there is no distinction between projections from ECHAM-
and Hadley-driven RCMs.

In summer, the projections are less consistent in terms
of sign and, in general, span the zero change line for the
1-day 5-year event. At the 25-year return value, RCM
predictions span a wide range but are skewed positive.
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Figure 4. (Continued).

For the 10-day 5-year event, there is a split between
northern regions (NS, SS, ES, NWE and NEE), where
RCMs consistently predict a decrease in return value, and
southern regions, where model predictions span the zero
change line. In autumn, most RCMs predict increases
in the 1-day and 10-day 5-year return values; at 1 day
some RCMs predict very large increases, particularly the
ECHAM-driven RCMs and particularly in England and
Wales. For the 25-year return period, the predictions are
more uncertain but most RCMs still predict increases (not
shown).

5. Sensitivity of results to model weighting

There are obviously different ways by which we may
combine RCMs. In many cases, simple weighted aver-
ages, using the historical relationship between forecasts
and observations (e.g. Krishnamurti et al., 2000), have
been found to perform better than simple averages where
each model is weighted equally. Although it intuitively
makes sense to trust, and thus weight, the better perform-
ing models more, it is difficult to objectively quantify
model skill and therefore derive model weights (Tebaldi

and Knutti, 2007). Here, we show results from pooling
RCM estimates of change in extreme precipitation using
equal weighting and for a simple weighting technique
based on the skill of RCMs in simulating the magni-
tude and spatial distribution of observed extremes. Pro-
portional weighting of large multi-model ensembles has
previously been used to derive probabilistic estimates for
future flows in the Eden catchment, UK (Fowler et al.,
2007a; 2008) and for changes in temperature, rainfall and
summer flow abstractions for the Thames catchment, UK
(Manning et al., in press).

5.1. Future projections using simple weighting
schemes

For the weighted estimates, we use the semi-variogram
parameters of sill and range in combination with the
regionally averaged Rmed values, following the method-
ology outlined in Section 3.2. Unlike the Rmed weights,
the semi-variogram weights are the same for each region
as the experimental semi-variograms are calculated using
all UK grid cells to ensure a robust estimate of the
semi-variogram. Thus, while the regionally averaged
Rmed weights vary with region and season (as shown
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Figure 4. (Continued).

in Figure 2) the semi-variogram weights vary only with
season. In Figure 9, the experimental semi-variograms
and the respective semi-variogram models are shown for
each season for the 1-day 5-year return values. The semi-
variograms reflect the spatial characteristics as seen in
Figure 3 and display seasonal characteristics that persist
through event duration and return period. The largest spa-
tial variability (as indicated by the sill value) is found
during winter, followed by autumn, spring and summer;
a similar order of intra-seasonal variability to that shown
by the regional Rmed plots in Figure 2. Less variability
is found in range, which tends to vary around ∼130 km.
The CTRL semi-variogram models also show seasonal
variability, albeit less so compared with the UKMO
data, particularly for autumn and spring. Furthermore,
the CTRL models appear to have a longer range com-
pared with the UKMO models, indicating that the spatial
dependence is greater in the CTRL extremes compared
with the UKMO extremes; a result in agreement with the
greater standard deviation shown for the UKMO region-
ally averaged Rmed values in Figure 2.

To visualize the impact of each of the two measures
separately and in combination, weights for all three

schemes are first derived for two regions with clear
differences in precipitation characteristics, NS and SEE.
Figure 10 shows the seasonal weights for each RCM
for the 1- and 10-day, 5-year return values. The semi-
variogram weights are not resolved on a regional basis
but represent the overall performance of the RCM
in capturing the spatial characteristics of the extreme
precipitation field; thus weights vary only by season and
event duration. The homogeneity of the semi-variogram
weights shows that there are relatively small differences
in the RCMs’ abilities to replicate spatial structures in the
extreme precipitation fields. Only on a few occasions is
a RCM given a larger weight compared with the overall
RCM ensemble; e.g. in winter and summer for the 1-day
totals and only in winter for the 10-day totals. However,
the model weights based on the regionally averaged
Rmed values show large differences, not only between
seasons but also between regions. In NS model weights
are very similar, indicating that the RCMs perform
equally well (or poorly in the case of NS). In SEE, on
the other hand, some RCMs are given very large weights,
particularly in winter and autumn for 1-day return values
and in summer and spring for 10-day return values.
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Figure 5. (a) Percent difference (discrepancy) between grid cells for UKMO and CTRLs for the 10-day 5-year return value during winter.
(b) Percent difference (discrepancy) between grid cells for UKMO and CTRLs for the 10-day 5-year return value during spring. (c) Percent
difference (discrepancy) between grid cells for UKMO and CTRLs for the 10-day 5-year return value during summer. (d) Percent difference
(discrepancy) between grid cells for UKMO and CTRLs for the 10-day 5-year return value during autumn. This figure is available in colour

online at www.interscience.wiley.com/ijoc

It is clear that some RCMs are given very large weights
due to a high similarity to observations in their regionally
averaged Rmed. However, given that the semi-variogram
weights show clear differences between UKMO and each
CTRL in terms of spatial characteristics, we suggest that
using the model weights based on regionally averaged
Rmed alone would bias the distribution towards RCMs
that perform well in capturing the magnitude of extremes
but may show deficits when considering spatial charac-
teristics. Thus, here we use a combination of the two
weights, also displayed in Figure 10.

Tables II–V give the individual RCM weights for
each region and season for the 1-day, 5- and 25-year
return values and the 10-day, 5- and 25-year return
values. Some general conclusions can be drawn from
Tables II–V; e.g. per season and region, weights are
generally larger in autumn for the 1-day totals and during
winter for the 10-day totals. When considering all regions
together, the seasons with largest variability in weights

are autumn (1 day) and summer (10 days). The regions
that have most variable model weights are CEE, SEE and
NEE for the 1-day totals and ES and SEE for the 10-day
totals. Regions with least variability in model weights are
SS and SWE for all event durations and return values.
The RCM that is repeatedly given a high weight within
different regions is CLMH. However, REMOH is given
the highest individual weights, with 44.4% in CEE in
autumn for the 1-day 5-year return value, 38.4% in CEE
in autumn for the 1-day 25-year return value, 45.4% in
ES in spring for the 10-day 5-year return value and,
finally, 45.4% in ES in winter for the 10-day 25-year
return value.

5.2. Future projections using a simple weighting
scheme – comparison with equally weighted pooling

In Figures 11–14, results of weighted (column 1) versus
unweighted (column 2) multi-model distributions are
compared with pooled results from a 4 × 4 ensemble
of RCM integrations: HIRHAM and RCAO driven by
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Figure 5. (Continued).

HadAM3H and ECHAM4/OPYC3 (columns 3 and 4,
respectively, unweighted). Figures 11 and 12 show box
plots of the estimated percent change in 1-day 5-year
and 1-day 25-year return values, respectively, for each
season, and Figures 13 and 14 show the same plots for
the 10-day 5-year and 10-day 25-year return values.

In winter, the weighted multi-model ensemble distri-
bution for 1-day 5-year precipitation extremes is wide
but projects positive change in all regions (Figure 11,
column 1). The most likely range of change (the 25th
to 75th box plot quartiles) is from 15 to 30%, with
slightly smaller increases projected for SWE and NI.
The weighted and unweighted distributions are similar
(Figure 11, columns 1 and 2), although there is a nar-
rowing of the inter-quartile range (reduced uncertainty)
for the weighted distribution. Differences between pro-
jections from Hadley-driven RCMs (Figure 11, column
3) and ECHAM-driven RCMs (Figure 11, column 4) are
greater; respectively, projecting increases of ∼10–30%
and ∼30–50% depending on region. For the 25-year
event (Figure 12), the distribution indicates greater uncer-
tainty and the contrast between RCM projections is
larger; Hadley-driven RCMs project no change or reduc-
tions in the 1-day 25-year return value in NS and
NI (Figure 12, column 3) but ECHAM-driven RCMs

project larger increases in the 25-year than the 5-year
return value, particularly in northern and western regions
(Figure 12, column 4). Pooling the RCMs therefore pro-
duces wider multi-model ensemble distributions for the
25-year return period, although the weighted distribu-
tions (Figure 12, column 1) provide tighter constraints
on the inter-quartile range of projected changes than the
unweighted distributions (Figure 12, column 2) for all
regions except perhaps NWE. The projected ranges for
regional increases are 10–30% in Scotland, northern and
central England, and 5–20% in southern England and
Northern Ireland (NI).

The distributions of the multi-model ensemble are nar-
rower for projected change in the 10-day 5-year return
value in winter, with an estimated increase of 5–20%
(lower in SWE) from the multi-model weighted ensemble
(Figure 13, column 1 compared with Figure 11, column
1). Weighted and unweighted multi-model ensembles are
very similar, suggesting perhaps that all RCMs reason-
ably simulate 10-day precipitation extremes. Projected
increases are larger for ECHAM- than Hadley-driven
RCMs, but the differences are not as great as for 1-
day extremes (Figure 13, columns 3 and 4 compared
with Figure 11, columns 3 and 4). At the 25-year return
period, Hadley-driven RCMs project a gradient of change
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Figure 5. (Continued).

from a median increase of ∼20% in northern Scotland to
no change in southern England (Figure 14, column 3),
whereas ECHAM-driven RCMs give a median increase
of 20–30% across the UK (Figure 14, column 4). The
multi-model ensemble (weighted or unweighted; columns
1 and 2) shows a gradient of change with higher increases
in the north (∼20%) than south (∼0%) of the UK.

In spring, the multi-model ensemble (weighted and
unweighted) suggests increases in the return values of
1- and 10-day 5-year events in all regions (Figures 11
and 13, columns 1 and 2). The RCMs project the most
likely range of change to be 10–20% for the 1-day 5-year
return value and 10–25% for the 10-day 5-year return
value (except for SWE which is lower), with only small
differences between the weighted and unweighted multi-
model ensembles. For most UK regions the inter-quartile
range is above the zero change line, except in SWE and
NI. There is no clear distinction between projections from
Hadley- and ECHAM-driven models (Figures 11 and
13, columns 3 and 4), although ECHAM-driven models
project smaller increases than Hadley-driven models
for 10-day events. Projected changes in 25-year return
values are similar at 1 day for Hadley-driven models

but uncertainty ranges are larger (Figure 12, column
3 compared with Figure 11, column 3). For ECHAM-
driven RCMs (Figure 12, column 4), little change in the
1-day 25-year return value is projected for NEE, CEE
and SEE; the largest increases (∼20%) are projected for
ES and NI. At both 1 and 10 days, the weighted and
unweighted multi-model ensembles (Figure 12, columns
1 and 2) are very similar, although, for the 1-day 25-
year return value the inter-quartile range is perhaps
widened by weighting (Figure 12, columns 1 and 2).
The ECHAM-driven RCMs project large uncertainty in
changes to the 10-day 25-year return value; particularly
in northern and western regions, due to large differences
in changes projected from the individual RCMs for this
season.

In summer, the multi-model ensembles are wide and
weighting RCMs’ results make little difference to esti-
mated changes; perhaps all RCMs are equally bad at
simulating summer precipitation extremes. Summer is the
only season where the RCMs project a decrease in pre-
cipitation extremes. For the 1-day 5-year event, the most
likely range of change is from −10 to 0% in North and
East Scotland but from −5 to +15% changes in South
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Figure 5. (Continued).

Scotland, England and Wales and NI (Figure 11, columns
1 and 2). ECHAM-driven RCMs (Figure 11, column 4)
show a much larger uncertainty range in predictions than
Hadley-driven RCMs (Figure 11, column 3), although
uncertainties vary considerably from region to region.
For the 1-day 25-year event, Hadley-driven RCMs pre-
dict a gradient of change from ∼20% increase in North
Scotland to zero change in SEE (Figure 12, column 3).
ECHAM-driven RCMs predict much larger changes in
western regions: ∼20% increase in NW and SW Eng-
land and ∼30% increase in NI. The distributions of the
multi-model weighted and unweighted ensembles project
changes for the 1-day 25-year return value from −10
to +20% (Figure 12, columns 1 and 2). For the 10-day
5-year return value (Figure 13, columns 1 and 2), the
multi-model ensemble projects decreases in extremes in
northern regions but increases in southern regions. The
uncertainty range is again much greater for ECHAM-
driven RCM projections (Figure 13, columns 3 and 4).
The spatial pattern of projected changes is similar for the
25-year event (Figures 13 and 14), although with smaller
increases.

In autumn, the distributions of the weighted and
unweighted multi-model ensembles consistently project

increases for both the 1-day 5-year and 10-day 5-year
return values, with the most likely range of change
being 10–25% (except for NI which is lower) and
5–20%, respectively (Figures 11 and 13, columns 1
and 2), with narrow uncertainty ranges and weight-
ing seemingly making little difference. However, pre-
dictions from Hadley- and ECHAM-driven RCMs for
the 1-day 5-year return value are markedly different,
with predicted increases of 0–20% and 20–60%, respec-
tively, with the larger increases predicted for southern
parts of the UK (Figure 11, columns 3 and 4). For
the 10-day 5-year return value, this difference is not
so marked but predicted increases for ECHAM-driven
RCMs are still larger than those for Hadley-driven RCMs
(Figures 11 and 13, columns 3 and 4). The distribu-
tion of the multi-model ensemble of changes in the
25-year return value is similar but wider (Figures 12
and 14, columns 1 and 2). For the 1-day 25-year
event, ECHAM-driven RCMs predict very large changes;
median estimates range from ∼20 to 60% with the largest
increases predicted for NWE (Figure 12, column 4); these
large increases are not similarly predicted at 10 days,
where projected changes are ∼20–30% (Figure 14, col-
umn 4).
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Figure 6. Estimates of percent change in the 1-day 5-year and 10-day 5-year return values, respectively, for each RCM and each season
under the SRES A2 2071–2100 emissions scenario for the North Scotland region (NS). This figure is available in colour online at

www.interscience.wiley.com/ijoc

6. Discussion and conclusions

Inter-model comparison projects, such as the EU-funded
PRUDENCE and ENSEMBLES and their North
American counterpart NARCCAP, have made available
high-resolution climate model data from several RCMs
to the climate impacts community. However, when faced
with results from a range of models, it is difficult
to interpret and communicate results, particularly when

there is low agreement between individual models. In
Fowler et al. (2007b) six RCMs from the PRUDENCE
ensemble were used to investigate projections of regional
change in UK annual precipitation extremes. To represent
inter-model variability, bootstrapped samples of change
in regional extremes for each model were pooled to pro-
vide an unweighted multi-model ensemble. However, it
was clear that some RCMs failed to capture not only the
expected geographical pattern of extremes but also their
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Figure 7. Estimates of percent change in the 1-day 5-year and 10-day 5-year return values, respectively, for each RCM and each season
under the SRES A2 2071–2100 emissions scenario for the Northwest England region (NWE). This figure is available in colour online at

www.interscience.wiley.com/ijoc

median magnitude, as seen in observations, suggesting
that those RCMs were perhaps less suitable for exam-
ining regional change. Here, we addressed this issue by
using a combination of the spatial structure and regionally
averaged Rmed discrepancy of each RCM to weight its
contribution to the multi-model ensemble. We assumed
that RCMs that simulate extremes with dissimilar char-
acteristics to observations are poorer at representing pre-
cipitation processes at the scales required for regional
studies and hence should have less weight in the multi-
model ensemble. Furthermore, we used a larger set of

RCMs, 13 models instead of 6, and the analysis was per-
formed separately for each season. Here precipitation was
aggregated to the regional level, as estimates of return
value magnitudes are improved due to the effect of data
pooling and use of the regionally averaged Rmed (Fowler
et al., 2007b). Kendon et al. (2008) found that 3 × 3 grid
cell pooling conveyed the greatest benefits to estimating
return values, which is the approximate size of most UK
rainfall regions.

We derived RCM weights by combining two simple
weighting schemes. The first weight (V ) was derived

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 29: 385–416 (2009)
DOI: 10.1002/joc



402 H. J. FOWLER AND M. EKSTRÖM

Figure 8. Estimates of percent change in the 1-day 5-year and 10-day 5-year return values, respectively, for each RCM and each season
under the SRES A2 2071–2100 emissions scenario for the Southeast England region (SEE). This figure is available in colour online at

www.interscience.wiley.com/ijoc

from experimental semi-variograms calculated for each
RCM, accumulation, season and return period. Four dif-
ferent semi-variogram models were fitted to the exper-
imental semi-variogram and the model with best fit
was retained for further analysis. We then normal-
ized the semi-variogram model parameters of sill and
range and calculated the inverse distance between CTRL
and UKMO data in sill-range parameter space to give
weights. The second weighting scheme (R) was based
on the discrepancy between the CTRL and UKMO
regionally averaged Rmed. When combined, the weights

scaled to unity were used to indicate the relative propor-
tion of the regional RCM bootstrap sample to include
in the multi-model ensemble distribution (shown in
Tables II–V).

The weighting scheme identified regions and seasons
where there were large discrepancies in model perfor-
mance. For example, weights were more unevenly dis-
tributed in the regions CEE, SEE and NEE for the 1-day
totals and ES and SEE for the 10-day totals. Simi-
larly for seasons, the largest variability in weights was
found for autumn (1 day) and summer (10 days). Due
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Figure 9. Experimental semi-variograms and fitted semi-variogram models for UKMO (asterisk and full line) and CTRLs (plus sign and dotted
lines) for the 1-day 5-year return value during (a) winter, (b) spring, (c) summer and (d) autumn.

Figure 10. The distribution of weights for the 5-year return value for the 1- and 10-day totals for two rainfall regions: northern Scotland (NS)
and Southeast England (SEE). For each season (x-axis), the magnitudes (y-axis) for three weighting schemes are visualized. The ‘×’ markers
denote the regionally averaged Rmed weights (R), ‘�’ markers denote the combined Rmed and semi-variogram parameter weights (RV ) and

the ‘+’ markers denote the semi-variogram parameter weights (V ).

to considerable variability across different regions and
seasons, it is difficult to make an assessment of indi-
vidual model performance. However, CLMH was most
frequently assigned large weights in different regions or
seasons and the largest individual weight (45.4%) was
assigned to REMOH for the 10-day 5-year return value
in ES in spring and for the 10-day 25-year return value
in ES in winter.

Using the combined weights, multi-model ensembles
of percent change were created for each region, season,
accumulation period and return period (Figures 11–14).
Identifying the effects of using the weighting scheme
is difficult due to the very large inter-model differences
among seasons and regions. However, the overall effect
of using the weighting scheme seems to be a tightening of
the regional distributions compared with the unweighted
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distributions, see for example summer for the 10-day 25-
year return value (Figure 14). Irrespective of weighting
scheme, the distributions associated with the 25 return
values tend to be wider than those for the 5-year return
value.

Regional differences are most pronounced in the
weighted multi-model ensembles during summer.
Although most distributions span the 0% change line in
summer, for Scotland, NEE and NI, a significant propor-
tion of each distribution shows an expected decrease in
extremes, particularly for longer duration events. How-
ever, since RCMs cannot adequately simulate summer
precipitation extremes, we have little confidence in their
projections. In other seasons, there is less regional vari-
ability and the expected change is generally of the same
sign; predominately positive changes are predicted from
the multi-model ensemble, although less so for 10-day
events. We have much confidence in the multi-model pro-
jections for winter as extreme precipitation in this season
is reasonably well simulated by RCMs. In winter, the
multi-model ensemble suggests changes of 15–30% in
the 1-day 5-year event across the UK under the SRES
A2 2070–2100 emissions scenario; similar increases are
projected, albeit with larger uncertainty, for the higher
25-year return period. For longer duration extremes, dis-
tributions are narrower and so we have greater confidence
in the projections. For the 10-day 5-year event in winter,
increases of 5–20% are projected across the UK, with a
magnitude of change for the 25-year return period simi-
lar to that for the 1-day event. In spring, for the 5-year
return period the projected range of change is from 10
to 20% in the 1-day return value and 10–25% in the
10-day return value; projections are similar for the 25-
year return period. In autumn, the range of change is for
10–25% increases in the 1-day 5-year return value and
5–20% increases in the 10-day 5-year return value. In
autumn, it is notable that ECHAM-driven RCMs pre-
dict much larger increases than Hadley-driven RCMs,
but the ensemble membership, where 11 of 13 RCMs
are driven by Hadley models, implies that the multi-
model ensemble is skewed towards more conservative
increases.

The rather limited differences in the weighted and
unweighted multi-model ensembles of percent change
may be a consequence of a lack of model indepen-
dence (Tebaldi and Knutti, 2007) and has been noted
in other studies (e.g. Manning et al., in press). The
comparison of RCMs driven by lateral boundary con-
ditions from ECHAM4/OPYC with those using Hadley
Centre GCMs (HadAM3H/P or HadCM3) suggests that
a large proportion of uncertainty in the distributions
stems from the driving lateral boundary conditions. Fur-
thermore, many RCMs contain structural similarities,
for example, METNO is the Norwegian version of
HIRHAM, and many other RCMs share parameteriza-
tion schemes. Consequently, although we have shown
that semi-variogram parameters and regionally averaged
Rmed discrepancy can be used to weight the combina-
tion of RCMs in a multi-model ensemble and this is

shown to influence predictions of extreme precipitation
in winter and spring, our results suggest that the largest
uncertainty in projections of change to future precipita-
tion extremes is linked to the driving lateral boundary
conditions of the RCM (see Figures 11–14, columns 3
and 4). Using a combined weight solely on the basis
of the spatial variability of extremes and their region-
ally averaged Rmed discrepancy in relation to obser-
vations is therefore not entirely satisfactory. Here, we
have used an application-specific weighting; however, it
is likely that a multi-scale approach to weighting, assess-
ing not only the simulation of synoptic-scale regional
climate, but also the simulation of continental-scale and
global modes of variability, may be more appropriate.
Hence, the uncertainty bounds shown here are in many
respects still conservative despite the relatively large
number of RCMs contributing to the multi-model ensem-
bles.

Nevertheless, importantly for policy makers, the multi-
model ensembles of change project increases in extreme
precipitation for most UK regions in winter, spring and
autumn. This change is physically consistent with warmer
air in the future climate being able to hold more mois-
ture. The use of multi-day extremes and return periods
also showed that short-duration extreme precipitation is
projected to increase more than longer-duration extreme
precipitation, where the latter is associated with narrower
uncertainty ranges. However, for both types of precipi-
tation event there is considerable uncertainty as to the
magnitude of change. In summer there is less confidence
in RCM projections and results are more varied; for most
regions ensembles span the 0% change line indicating
potential for both increases and decreases in extremes.
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A1. Technical appendix

A1.1. Regional frequency analysis

RFA usually follows a two part index-flood procedure,
which is a convenient way of pooling statistics from
different samples (Hosking and Wallis, 1997) and can
be used for any type of data. If the data are available at
N sites (here grid cells), with site i having sample size
ni and observed data Xij , j = 1, . . . , n. Then Xi(F ),
0 < F < 1, forms the frequency distribution’s quantile
function at site i. In an index-flood procedure, the sites
(grid cells) must form a homogeneous region, with
identical frequency distributions at the N sites (grid cells)
apart from the site-specific scaling factor, the index-flood
(Hosking and Wallis, 1997).

This is normally checked using the ‘discordancy mea-
sure’, Di (Hosking and Wallis, 1997), which compares
the L-moment ratios of a site (grid cell) with those of the
pooling group as a whole, hence identifying sites (grid
cells) that are unusual relative to the pooling group. A
high value of the discordancy measure indicates that a site
(grid cell) may be discordant within the pooling group,
or that the record contains a few unusual precipitation
events. If M is the number of sites (grid cells) in the
pooling group and ui is a vector of the L-moment ratios
at site i, then (after Robson and Reed, 1999) (A1):

ui = (t1, t2, t3)
T (A1)

where t1 is L-CV, t2 the L-skewness, t3 the L-kurtosis
and superscript T denotes the transpose of a vector.
Thus defining two matrices U (Equation (A2)) and A
(Equation (A3)) as:

U = 1

M

M∑

i=1

ui (A2)

A =
M∑

i=1

(ui − U )(ui − U )T (A3)

Then the discordancy measure Di for site (grid cell) i is
given by (Equation (A4)):

Di = 1

3
M(ui − U )TA−1(ui − U ) (A4)

where A−1 is the inverse of matrix A.
Critical values of the discordancy measure for each site

(grid cell) in a pooling group based on a 10% significance
level are suggested by Hosking and Wallis (1997). For
a pooling group with more than 15 members, as in
this study, values of Di higher than 3.0 show possible
discordancy. The UK rainfall regions have previously
been checked for homogeneity using observed site data
by Fowler and Kilsby (2003a).

The index-flood procedure may then be defined as
(from Hosking and Wallis, 1997) Equation (A5):

Xi(F ) = Rmedi x(F ), i = 1, . . . , N (A5)

where Rmedi is the index-flood (here it is the median
of the seasonal maxima frequency distribution for an
individual grid cell), and x(F ) is the regional growth
curve, a quantile function identical at every site (grid
cell) within that region.

The site-specific index-flood variable, Rmedi , is natu-
rally estimated for each site (grid cell) as the median [as
in the Flood Estimation Handbook (IH, 1999)] of the SM
dataset at site (grid cell) i.

Secondly, the regional growth curve, x(F ), 0 < F <

1 is derived, using a pooled analysis of the dimen-
sionless rescaled data, xij = Xij /Rmedi , j = 1, . . . , ni ,
I = 1, . . . , N . Here, L-moments are used to derive the
regional growth curve. The L-moment ratios of L-CV, L-
Skewness and L-Kurtosis are derived for each site (grid
cell) within a region and then combined by regional aver-
aging (as Hosking and Wallis, 1997). Thus, giving an
example formula for L-CV (Equation (A6)):

LCVpooled =
N∑

i=1

wiLCVi (A6)

where N is the number of sites (grid cells) in the pooling
group and the weight wi is an effective record length at
the ith site (grid cell) defined by Equation (A7):

wi = ni

N∑

i=1

ni

(A7)

The denominator is the total number of station-years of
record in the pooling group, while the numerator is the
number of station-years at the ith site (grid cell). Since in
this analysis all grid cells have the same record length,
all of the weights, wi , are equal. The L-Skewness and
L-Kurtosis moment ratios are derived in the same way
(see Hosking and Wallis, 1997, for details).

L-moments are then used to fit the GEV distribution
for each standardized SM dataset by matching the sample
L-moments to the distribution L-moments.

The GEV distribution has three parameters and is
described by Equation (A8):

x(F ) = ξ + α

k
[1 − (− ln F)k] (k �= 0) (A8)

where ξ is the location parameter, α the scale parameter,
k the shape parameter and F refers to a given quantile.

A regional growth curve was fitted for each region
using the regionally averaged L-moment ratios. The fitted
growth curve is given by Equation (A9):

x(F ) = 1 + β

k
[(ln 2)k − (− ln F)k] (A9)

where

β = α

[ξ + (α/k)][1 − (ln 2)k]
(A10)
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The parameter k is estimated from the L-skewness
(Hosking et al., 1985) (Equation (A11)):

k ≈ 7.8590c + 2.9554c2 (A11)

where

c = 2

3 + t3
− ln 2

ln 3
(A12)

The parameter β is estimated using L-CV (Hosking and
Wallis, 1997) as Equation (A13):

β = kt2

t2[�(1 + k) − (ln 2)k]+
�(1 + k)(1 − 2−k)

(A13)

where � denotes the gamma function, t2 the L-CV L-
moment ratio and t3 the L-Skewness L-moment ratio.

Quantile estimates at site (grid cell) i can then be
obtained by combining the estimates of Rmedi and x(F )

as Equation (A14):

Xi(F ) = Rmedi x(F ) (A14)
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Nakićenović N, Alcamo J, Davis G, de Vries HJM, Fenhann J,
Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La
Rovere EL, Michaelis L, Mori S, Morita T, Papper W, Pitcher
H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A,
Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen
S, Victor N, Dadi Z. 2000. Emissions Scenarios. A Special
Report of Working Group III of the Intergovernmental Panel
on Climate Change. Cambridge University Press: Cambridge;
559.

Pal JS, Small EE, Eltahir EAB. 2000. Simulation of regional – scale
water and energy budgets: Representation of subgrid cloud and
precipitation processes within RegCM. Journal of Geophysical
Research 105: 29579–29594.
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