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Abstract We investigate a question posed by policy makers, namely, “when will
changes in extreme precipitation due to climate change be detectable?” To answer
this question we use climateprediction.net (CPDN) model simulations from the BBC
Climate Change Experiment (CCE) over the UK. These provide us with the unique
opportunity to compare 1-day extreme precipitation generated from climate altered
by observed forcings (time period 1920–2000) and the SRES A1B emissions sce-
nario (time period 2000–2080) (the Scenario) to extreme precipitation generated by
a constant climate for year 1920 (the Control) for the HadCM3L General Circulation
Model (GCM). We fit non-stationary Generalized Extreme Value (GEV) models to
the Scenario output and compare these to stationary GEV models fit to the parallel
Control. We define the time of detectable change as the time at which we would
reject a hypothesis at the α = 0.05 significance level that the 20-year return level
of the two runs is equal. We find that the time of detectable change depends on the
season, with most model runs indicating that change to winter extreme precipitation
may be detectable by the year 2010, and that change to summer extreme precipitation
is not detectable by 2080. We also investigate which climate model parameters affect
the weight of the tail of the precipitation distribution and which affect the time of
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detectable change for the winter season. We find that two climate model parameters
have an important effect on the tail weight, and two others seem to affect the time of
detection. Importantly, we find that climate model simulated extreme precipitation
has a fundamentally different behavior to observations, perhaps due to the negative
estimate of the GEV shape parameter, unlike observations which produce a slightly
positive (∼0.0–0.2) estimate.

Keywords Extreme precipitation · Detection · Climate change ·
Climateprediction.net · Parameters · Generalized extreme value
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1 Introduction

In extreme value analyses, the primary questions researchers usually attempt to
answer are to assess probabilities of rare events, to estimate tail quantiles such as
r-year return levels, and to provide measures of uncertainty associated with these
estimates. Although still related to extreme values and rare events, the primary ques-
tions we address in this study are quite different in nature. The first question was
brought to us by policy makers; it is: “Under climate change and based on climate
model output, when will a change in extreme precipitation be detectable?” Detection
is the process of demonstrating that climate has changed in some defined statisti-
cal sense, without providing the reason(s) for the change (Hegerl et al. 2007). A
second question that arose from undertaking this study comes from the perspective
of climate modeling; it is: “Which climate model parameters affect the behavior of
extreme precipitation in climate model output?” To our knowledge, this is the first
time such questions have been addressed using a rigorous statistical approach to the
modeling and analysis of extreme precipitation using the Generalized Extreme Value
distribution (GEV).

1.1 Extremes and climate change

In a future subject to climate change, it is likely that changes to climatic and hydro-
logical extremes will have the greatest impact on human society (Tebaldi et al. 2006).
For this reason, there is great interest in assessing how climate change has already
affected and will continue to affect the characteristics of extreme weather events. In
the northern Hemisphere, many studies have noted upward trends in observations
of both mean precipitation and high quantiles of precipitation (e.g. Alexander et al.
2006; Meehl et al. 2005; Trenberth et al. 2007; Fowler and Kilsby 2003a, b) and
climate models suggest that these trends will continue under enhanced greenhouse
conditions (Tebaldi et al. 2006; Meehl et al. 2005). However, many questions still
remain about changes in extreme weather at more local scales and the causes of
observed changes. Despite the steady accumulation of evidence of human influence
on the hydrosphere (Tett et al. 2007; Hegerl et al. 2007), attribution of precipitation
trends to human influence is not yet possible below the global scale (Lambert et al.
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2004; Zhang et al. 2007). Attribution is the process of establishing the most likely
cause(s) of detected changes at a defined level of statistical confidence (Hegerl et al.
2007). However, it is likely that changes to extreme precipitation will be detectable
at smaller spatial scales and, perhaps, within the next 50 years (e.g. for UK observa-
tions, Fowler and Wilby 2010). Indeed, changes in moderately extreme precipitation
events are, in theory, more robustly detectable than changes in mean precipitation
(Frei and Schär 2001) because as precipitation increases (under the greater water
holding capacity of a warmer atmosphere) a greater proportion of rainfall is expected
to fall as heavy events (Hegerl et al. 2004, 2006; Katz 1999). This may increase the
signal to noise ratio and enable more robust detection of changes in extreme rainfall.

Because it is impossible to collect observations for future climate conditions,
much of what is known about the Earth’s potential response to altered atmospheric
conditions comes from climate model output. Global climate modeling is accom-
plished using General Circulation Models (GCMs), which are numerical models
which represent the known physical processes in the atmosphere, ocean, cryosphere
and land surface. They are generally run for decades of simulated time and the
output includes fields of temperature, precipitation, barometric pressure, humidity
and numerous other weather traits every few hours (of simulated time) and at every
location using a three dimensional grid over the globe. Climate model output is deter-
ministic in that, if given the same initial conditions, the model will output the exact
same measurements. However, because of the chaotic nature of the models and their
sensitivity to initial conditions, statistical models can be used to analyze the output
in much the same way as they are used to analyze observed weather data.

GCM output is relatively coarse in resolution (e.g. the Hadley Centre’s HadCM3
model is resolved at a spatial resolution of 2.5◦ latitude by 3.75◦ longitude) and
GCMs are thus unable to resolve significant sub-grid scale features (such as topog-
raphy) and processes (such as those related to clouds). These processes are instead
approximated or “parameterized,” where their known properties are averaged over
the larger scale grid-boxes. Indeed, many uncertainties must be considered within
the climate modeling process, including grid resolution, process parameterization,
model structure and emissions scenario (e.g. Giorgi and Francisco 2000; Covey et al.
2003) and, for this reason, GCMs may simulate quite different responses, simply
because of the way specific processes and feedbacks are modeled. One of our ques-
tions of interest is how different GCM parameterizations can affect the nature of
extreme precipitation in climate model output.

There is some question as to whether GCM output should be representative of
extreme weather phenomena. Due to their coarse resolution, GCMs would not be
expected to represent extreme precipitation events with the same intensity and fre-
quency as observations (Kiktev et al. 2003; Räisänen and Joelsson 2001). Wilson
and Toumi (2005) derived a simple expression for precipitation as the product of
advected mass, specific humidity and precipitation efficiency. The authors show that
the tail of the distribution of the product of these three random variables will have a
stretched exponential form with a shape parameter of two thirds, leading to estimates
having an apparent heavy tail. More importantly, they argued that this shape param-
eter is unlikely to change under climate change (even if the scale parameter does), as
it is invariant temporally with latitude.
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Many studies have examined GCM output to investigate changes in tail behav-
ior; examining the future projections from GCMs as indicative of what we may
expect from future precipitation extremes (e.g. Tebaldi et al. 2006). Difficulties in
comparing observed and modeled extreme precipitation result from both a lack of
robustness in the chosen metric due to the infrequent nature of extreme events (the
need for enough data—both observed and modeled—to provide a stable estimate
of their frequency and intensity) and from the different scales upon which obser-
vations and modeled output work—point observations versus coarse areal model
output (Osborn and Hulme 1997; Kharin and Zwiers 2005). Therefore, patterns of
modeled changes do not necessarily match observed changes, although qualitative
similarities have been found in some studies (e.g. Semenov and Bengtsson 2002;
Groisman et al. 2005; Tebaldi et al. 2006). Part of this difference is expected since
most GCMs do not simulate small-scale (<100 km) variations in precipitation inten-
sity, as occurs with convective storms particularly during summer. However, when
GCMs are compared with a reanalysis product (ERA40: a gridded data set at a
similar spatial scale to GCMs and representing the state of the Earth’s atmosphere,
incorporating observations and global climate model output), they are found to repro-
duce observed precipitation extremes reasonably well over North America (Kharin
et al. 2007). Therefore changes projected by GCMs are thought to be fairly robust,
even if the model scale implies that they do not exactly match observed extremes.
Nevertheless, it is unclear whether the tail behavior of observed precipitation will
be well-represented by climate models. In fact, one of the aims of this work is to
assess which climate model parameters directly affect the tail behavior of the GCM
precipitation output.

Multiple-model or perturbed-physics ensembles offer the best way to explore
these uncertainties. A perturbed-physics ensemble is an experiment where a sin-
gle climate model is run using various parameterizations whereas a multiple-model
ensemble is an experiment where multiple climate models with different struc-
tures and parameterizations are run. Climate models are extremely computationally
expensive to run. Most GCM simulations can only be run at institutions with super-
computing capabilities and a single run can take weeks or months to complete.
Therefore, multiple-model or perturbed-physics experiments are generally very lim-
ited in scope, and few studies have used multiple climate model outputs to explore
change to extreme precipitation (e.g. Fowler and Ekström 2009). This is despite the
fact that combining models through a multi-model ensemble generally increases the
skill, reliability and consistency of predictions (Tebaldi and Knutti 2007) and allows
assessment of the uncertainties within the climate modeling process.

1.2 The climateprediction.net (CPDN) perturbed-physics experiment

One of the largest perturbed-physics ensembles is maintained by the cli-
mateprediction.net (CPDN) project. The CPDN experiment was set up in 2001 (Allen
1999) to investigate the approximations in initial conditions, model parameterizations
and forcings that have to be made in state-of-the-art climate models. Rather than run-
ning a model on a supercomputer, the CPDN project is a large on-line experiment
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that utilizes distributed computing—that is, various ensemble members are run on
people’s home computers when they are idle (Christensen et al. 2005), producing
thousands of climate model runs. In this work, we analyze model output from 304
climate model runs with different parameterizations.

So far, most of the evaluation of CPDN output has concentrated on understanding
the effects of parameter variation in the climate model on climate sensitivity—the
global mean temperature response to a doubling of atmospheric CO2. Most of these
effects have been found to be due to a small subset of the parameters mostly con-
cerned with cloud dynamics: notably, the entrainment coefficient in clouds (entcoef),
the rate at which convective clouds mix with the surrounding air, was associated with
30% of the variation in climate sensitivity by Knight et al. (2007). Stainforth et al.
(2005) additionally found relationships between the critical relative humidity (rhcrit)
and the ice fall speed (vf1) and climate sensitivity.

In this paper we use General Circulation Model (GCM) outputs from the CPDN
BBC Climate Change Experiment (CCE), to examine when formal detection of
change in extreme precipitation may be possible within the UK. The CPDN BBC
CCE has produced pairs of GCM runs under transient forcing for the 1920–2000 and
2000–2080 time periods (Frame et al. 2009)—transient forcing means that a different
forcing is applied for every year of the simulation. These are collectively known as
the Scenario run from 1920 to 2080. The 1920–2000 run is based on observed forc-
ings, whereas the 2000–2080 run is based on the SRES A1B emissions scenario
(a mid-range scenario where atmospheric CO2 reaches ∼720 ppm by 2100; Naki-
cenovic et al. 2000). In addition a Control of the same length (160 years) was run
for each GCM ensemble member, using the same initial conditions and parameter
values. The Control simulations correspond to an unforced or stationary climate in
the year 1920. This was so that each physically distinct model in the experiment
could be checked for spurious model drifts (Frame et al. 2009) and also to provide
an unforced pre-industrial climate against which change can be detected. Each ‘data
set’ therefore consists of a pair of 160-year climate model runs: the Control and
the Scenario, where each pair has a different combination of the 34 climate model
parameters which are systematically varied (Table 1). See Frame et al. (2009) and the
“Appendix” for further details.

Due to the magnitude of the experiment, only a limited amount of output can
be retained for each climate model run. For most of the globe, output is averaged
over the so-called Giorgi regions (sub-continental scale regions for which monthly
summary data from the included model grid cells are retained; Giorgi and Francisco
2000). Grid cell level data is only retained for eight cells that lie over the UK at
the monthly time scale. As our interest lies in understanding extreme precipitation
we use the monthly maximum data. However, the maximum precipitation output
for the Giorgi regions is further complicated, as the maximum measurement at each
grid cell for each month is then averaged over the spatial domain of the region. It
is questionable whether these data should follow an extreme value distribution, so
here we limit our focus to the monthly maximum data for the eight UK grid cells
(Table 2). Rather than analyze the monthly maximum daily precipitation amounts, we
analyze the seasonal maxima, increasing our block size to roughly 90 days. This also
allows for easy comparison with previous UK observational and modeling studies
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Table 1 The parameters varied in the CPDN BBC CCE and the levels used for each in the one-way
ANOVA analysis

Parameter name Explanation Levels

alpham Albedo at melting point of ice 3

anthsca Sulfur cycle: scaling factor for emission 5

from anthropogenic sulfate aerosols

cloudtau Time a circulating air parcel remains in a cloud 3

ct Accretion constant 3

cw_land Precipitation threshold over land 3

cw_sea Precipitation threshold over sea 3

dtheta IC ensemble: initial condition parameter 10

dtice Temperature range of ice albedo variation 3

eacf Empirically adjusted cloud fraction 3

entcoef Entrainment coefficient 4

file_flux Ocean: heat and salinity flux adjustment 10

file particular to ocean spin up

file_nick Ocean: heat and salinity flux adjustment file 90

particular to atmospheric physics configuration

file_ocean Ocean start file 10

file_solar Solar_v01 9

file_volcanic Volcanic forcing scenario 50

haney Ocean: haney heat forcing coefficient 2

haneysfact Ocean: haney salinity forcing factor 2

i_cnv_ice_lw Type for convective ice 2

i_cnv_ice_sw Type for convective water 2

i_st_ice_lw Type for stratiform ice 2

i_st_ice_sw Type for stratiform water 2

ice_size Ice size in radiation 3

isopyc Ocean: isopycnal diffusion of tracer at surface 3

l0 Sulfate mass scavenging parameter L0 3

l1 Sulfate mass scavenging parameter L1 3

mllam Ocean: wind mixing energy scaling factor 2

num_star Threshold for condensation onto accumulation mode particles 3

rhcrit Critical relative humidity 3

so2_high_level Sulfur cycle: model level for SO2 (high level) emissions 3

vdiffdepth Ocean: increase of background vertical mixing 3

of tracer with depth

vdiffsurf Ocean: background vertical mixing of tracer 3

(diffusion) at surface

vertvisc Ocean: background vertical mixing of momentum (viscosity) 2

vf1 Ice fall speed 3

volsca Sulphur cycle: scaling factor for emission from 3

natural (volcanic) emissions
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Table 2 The eight UK grid cells used in the study and descriptions of their location and latitude–longitude

Name Description Latitude (min) Latitude (max) Longitude (min) Longitude (max)

ukhl Highlands 56.25 58.75 −5.625 −1.875

ukni N. Ireland 53.75 56.25 −9.375 −5.625

ukne Borders 53.75 56.25 −5.625 −1.875

eire Ireland 51.25 53.75 −9.375 −5.625

ukwm Wales and Midlands 51.25 53.75 −5.625 −1.875

ukla London and 51.25 53.75 −1.875 1.875

East Anglia

ukcw Cornwall 48.75 51.25 −5.625 −1.875

ukkt Kent 48.75 51.25 −1.875 1.875

(e.g. Osborn et al. 2000; Fowler and Kilsby 2003b; Fowler et al. 2005, 2007; Ekström
et al. 2005; Fowler and Ekström 2009). We analyze each season separately due to the
inherent seasonal effects of weather data. The spatial extent of each ‘data set’ or
model pair thus represents one grid cell of the eight GCM grid cells evaluated over
the UK. As 304 climate model pairs were used, in total, 9,728 (304 model pairs × 8
grid cells × 4 seasons) combinations were analyzed.

In Section 2, we examine the structure of the statistical model needed to describe
changing transient extreme precipitation through the fitting of a GEV distribution
with time-varying parameters. In Section 3, we examine the changes in extreme pre-
cipitation projected for 2000–2080 by the perturbed-physics climate model ensemble.
In Section 4, we then develop a methodology for estimating detection times for
changes in seasonal precipitation extremes and apply this to a large ensemble of
climate model pairs, much larger than has previously been examined in this regard.
In Section 5, we examine the dependence of climate model simulations of extreme
precipitation on parameter variations, the nature of this dependence and discuss these
results in comparison to other studies. In Section 6 we then conclude the paper.

2 Fitting a statistical model to describe transient extreme precipitation

The climateprediction.net experiment retains only summary information from each
climate model run including mean precipitation, mean temperature, maximum daily
precipitation (for each month), and others, recorded for each month for each year
of the simulation. As the only extreme precipitation data we have access to are the
maximum daily values for each month, it is natural to perform a block maximum
analysis and fit the generalized extreme value (GEV) distribution. Here, we fit using
the seasonal daily maximum value. That is, for each season (winter = December,
January, February; spring = March, April, May; summer = June, July, August;
fall = September, October, November) of each year, we retain the maximum daily
precipitation value. There are several excellent sources on extreme value theory
and fitting block maximum data including Beirlant et al. (2004), Coles (2001), and
deHaan and Ferreira (2006). The GEV is described by three parameters: a location
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parameter μ, a scale parameter σ > 0, and a shape parameter ξ , and has a cumulative
distribution function (cdf) given by:

P (X ≤ x)=exp

{
−

[
1+ξ

(
x−μ

σ

)]−1/ξ
}

where 1+ξ

(
x−μ

σ

)
> 0 (1)

Since the Control run has an unforced climatology (that of 1920), we assume that
the climate is stationary and thus choose a time-invariant model for this data. As the
Scenario run is forced by an observed climatology up to 2000 and by the SRES A1B
emissions scenario after 2000, we investigate models in which the GEV parameters
change with time and allow for a change in behavior in the year 2000.

Fitting extreme value models with time-varying parameters has become a well-
accepted practice, and Chapter 7 of Beirlant et al. (2004) and Chapter 6 of Coles
(2001) both give excellent overviews. Commonly, a simple parametric form is given
to the time varying parameter, for instance, the location parameter may be modeled
as μt = at + b. In recent work some authors (e.g. Chavez-Demoulin and Davison
2001) have advocated a non-parametric approach which allows for more flexibility in
modeling parameter behavior through time. Here, we restrict our attention to simple
parametric models as we must have an automated model selection procedure due to
the number of data sets to which we fit models.

To simplify notation, we will assume that we are analyzing data from a particular
climate model pair, season, and grid cell. Let t denote the number of years since
1920. We denote the random variable corresponding to the annual maximum for the
Control run for year t as Xc,t , and denote the observation as xc,t . The corresponding
random variable for the Scenario run is denoted Xs,t .

Our goal is to find a statistical model which will capture the difference in behavior
between the Scenario and Control runs across the different simulation model runs. A
priori, we believe that the parameter that is most likely to change between these
runs is the location parameter, μ. We proceed using a model selection process that
increasingly adds complexity to this parameter. The statistical model selection model
selection exercise is applied to all 9,728 datasets.

Table 3 Models tested in the statistical model selection procedure

Model 1 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μc, σc, ξc)

Model 2 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μs, σc, ξc)

Model 3 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μc + at, σc, ξc)

Model 4 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μs + at, σc, ξc)

Model 5 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μc + at + bt I{t>2,000}, σc, ξc)

Model 6 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μs + at + bt I{t>2,000}, σc, ξc)

Model 7 Xc,t ∼ GEV(μc, σc,ξc) Xs,t ∼ GEV(μ*, σs, ξc)

Model 8 Xc,t ∼ GEV(μc, σc, ξc) Xs,t ∼ GEV(μ*, σs, ξs)

Here, t denotes number of years since 1920, and μ*denotes the best fitting of statistical models 1–6
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The tested statistical models are given in Table 3. Model 1 implies there is no
change between the Control and Scenario runs, and model 2 summarizes the change
as a level shift. Models 3 and 4 both allow the Scenario to have a linear trend in μ.
Model 3’s trend begins at the same level as the Control (as both the Control and Sce-
nario begin with the same climatology), and model 4’s linear trend has no restriction
on the intercept. Models 5 and 6 allow for a change in behavior of μ at the year 2000
when the Scenario changes from observed to hypothesized forcings.

Both the Control and Scenario data sets are fit simultaneously via maximum like-
lihood as some of the models in Table 3 share parameter values between the Control
and Scenario models. The various models are then compared using the AICc crite-
rion. The AICc is a standard tool for model selection based on the likelihood value
and which penalizes for the number of model parameters, where a lower score implies
a better fit (Burnham and Anderson 2002). It is given by the relation:

AI Cc = 2 log (L) + 2k + 2k
(k + 1)

(n − k − 1)
, (2)

where L denotes the likelihood, k the number of parameters, and n the number of
observations. While our belief is that the location parameter will capture much of the
difference between the Control and Scenario runs, we also test to see if changes can
be detected in the scale and shape parameters. Rather than test all possible combina-
tions of μ, σ , and ξ we simply take the best fitting of models 1 through 6 and see if
allowing σ or both σ and ξ to change improves the fit (models 7 and 8 in Table 3).

Two examples of this model selection procedure are shown in Fig. 1. The left
panel of Fig. 1 shows the selection for model pair 1, grid cell 1 and season 1 (winter)
and the right panel shows the selection for model pair 1, grid cell 8 and season 1
(winter). Using the AICc criterion, model 5 is chosen to be the best at grid cell 1 but

Fig. 1 Return level estimates (solid) and 95% confidence intervals estimated via the delta method (dashed)
of statistical model 5 for the Control (black) and Scenario (red) for the simulation of climate model pair 1,
grid cell 1, and season 1 (left) and for statistical model 4 for the Control (black) and Scenario (red) for the
simulation of climate model pair 1, grid cell 8, and season 1 (right).
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Table 4 Results of the model selection exercise for simulation climate model pair 1, grid cell 1, and
season 1 for which model 5 was found to be best (left) and for simulation climate model pair 1, grid cell 8,
and season 1 for which model 4 was found to be best (right)

Model pair 1 Season 1 Grid cell 1 Model pair 1 Season 1 Grid cell 8

−2∗llh k AICc −2∗llh k AICc

Model 1 2,547.778 3 2,553.854 2,637.648 3 2,643.724

Model 2 2,529.329 4 2,537.456 2,633.726 4 2,641.853

Model 3 2,480.919 4 2,489.046 2,604.304 4 2,612.431

Model 4 2,473.932 5 2,484.123 2,591.575 5 2,601.766

Model 5 2,463.743 5 2,473.935 2,595.880 5 2,606.071

Model 6 2,463.721 6 2,475.990 2,590.719 6 2,602.988

Model 7 2,462.069 6 2,474.337 2,589.580 6 2,601.848

Model 8 2,461.709 7 2,476.068 2,587.848 7 2,602.207

In the table, llh stands for log-likelihood and k is the number of parameters

model 4 is deemed best at grid cell 8. Figure 1 shows the point estimate and 95%
confidence intervals for the return levels as a function of year and Table 4 details the
results of the model selection exercise for these two examples. The 95% confidence
intervals are estimated via the delta method (Oehlert 1992).

Results from the model experiment are summarized in Figs. 2, 3, and 4 for
the 9,728 different model pairs. Figure 2 shows the histogram of the model (1–6)

Fig. 2 Histogram of selected statistical model 1–6 for the four seasons combined for all grid cells.
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Fig. 3 Histogram of selected statistical model 1–6 for each grid cell (region) for the winter season.

Fig. 4 Histogram of selected statistical model 1–6 for each grid cell (region) for the summer season.
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chosen as best by the AICc criterion. This only selects among the 6 different statisti-
cal models for the location parameter μ, holding σ and ξ constant across the Control
and Scenario runs. Model 5 was most often chosen as the best model in both the
winter and spring seasons and this agrees with what we know about how the data
were simulated, with a common starting point. There is an apparent different behav-
ior between the seasons, with winter and spring tending to choose hinge-type models
(5 or 6), while for summer and fall a common model for the Control and Scenario
runs is more likely to be selected. Thus, there is less evidence of a change in extreme
precipitation in future climate projections over the UK for summer and fall than in
spring and winter.

It was also examined whether the chosen model was improved by allowing σ and
ξ to vary. In winter, 50% of model 7 and model 8 had a lower AICc score than the
selected model (1–6) which only modeled a difference in the μ parameter. The results
for the other three seasons were: spring (36%), summer (39%), fall (39%). To keep
things simple in this initial investigation, we therefore restrict our attention to the first
six statistical models in the subsequent results.

Figure 3 shows the selected model (1–6) for each of the eight grid cells in the
winter season. Likewise, Fig. 4 shows the selected model (1–6) for each grid cell in
the summer season. There appears to be more consistent behavior between the grid
cells for the winter season than for the summer season, with very few selections of
either model 1 or 2 suggesting that change in extreme precipitation is projected for
the Scenario run. The overwhelming selection of model 5 or 6 for the winter season
(Fig. 3) for all grid cells also suggests that the trend in the μ parameter changes in the
year 2000 and implies that extreme precipitation may increase at a greater rate after
2000. Figure 4 suggests that there is less consistent behaviour among the eight UK
grid cells in summer with the majority of selections choosing model 1 or 2 and thus
suggesting no change in extreme precipitation in the Scenario run, although in the
ukhl and ukni regions (UK Highlands and Northern Ireland) there is a shift towards
the selection of model 5 or 6.

3 Projected changes in extreme precipitation

Before estimating the detection times, it is useful to consider the changes in seasonal
extreme precipitation projected by the CPDN ensemble as larger changes, in gen-
eral, may imply earlier detection times (Fowler and Wilby 2010). The goal of this
section, therefore, is to simply summarize the projected changes in seasonal extreme
precipitation across the 304-member CPDN ensemble.

For each ensemble member, the best GEV model fitted in Section 2 to the Sce-
nario climate model run was used to provide point estimates for the 20-year return
level at 2020, 2050 and 2080. This estimate was, in each case, then divided by the
point estimate for the 20-year return level at 1975 (approximating the baseline from
1961 to 1990) from the same GEV model fit to provide an estimate of the percent
change by 2020, 2050 and 2080 respectively. This was performed across the 304-
member CPDN ‘Scenario’ model ensemble and is presented as box and whisker
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plots in Figs. 5, 6, 7 and 8 which show the mean and uncertainty in the projected
changes to the 20-year return level of 1-day extreme precipitation totals in winter,
spring, summer and fall respectively for each of the eight UK grid cells (regions).
The 20-year return level was chosen arbitrarily as an example; previous work using
regional climate model projections has projected even larger changes at higher return
levels (e.g. Fowler and Ekström 2009) although as higher return level estimates have
higher sampling uncertainty, so detection may be more difficult.

Figure 5 shows that winter 1-day extreme precipitation is projected to increase
across the UK. The median change by 2020, 2050 and 2080 from the 1961 to 1990
baseline is projected to be an increase of around 5%, 10% and 20% respectively.
Although there is large uncertainty surrounding these projections, particularly by
2080, the majority of the CPDN ensemble members project substantial increases in
1-day extreme winter precipitation over the next 70 years.

In spring, the majority of CPDN ensemble members again project increases in the
20-year return level of 1-day extreme precipitation (Fig. 6). However, the projected
changes are not as large as for winter, with median changes of less than 20% in all
UK grid cells projected by 2080.

In summer and fall, a similar pattern of change emerges for the UK, with small
increases projected for northern and western grid cells (UK Highlands and Northern
Ireland), no change projected for north-east and north-west England (ukne, nkwm

Fig. 5 Box and whisker plots showing the mean and uncertainty in percentage changes to the 20-year
return level of 1-day extreme precipitation by 2020, 2050 and 2080 from the 1961 to 1990 baseline
projected by the CPDN BBC CCE for winter.
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Fig. 6 As in Fig. 5 but for spring.

Fig. 7 As in Fig. 5 but for summer.
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Fig. 8 As in Fig. 5 but for fall.

and ukla) and small decreases projected for southern grid cells such as Cornwall and
Kent (Figs. 7 and 8 respectively). Median projected increases in the 20-year return
level of 1-day extreme precipitation by 2080 in northern and western grid cells is
around 10%, whereas the projected decreases in southern grid cells are of a similar
magnitude.

4 Estimating time of a detectable difference in extreme precipitation

We define a detectable increase in extreme precipitation as the point when we would
reject (at the α = 0.05 level) the null hypothesis that the 20-year return levels from
the two runs are equal in favor of the alternative hypothesis that the 20-year return
level from the Scenario run is greater than that from the Control run, thus detect-
ing a change from the background climatology pre-1920. As we are estimating the
parameters for the Control run and Scenario runs simultaneously, we can estimate
the information matrix, and calculate the associated error of our estimate for the
difference in return levels via the delta method. Note that to define detectability we
could have chosen other return levels but chose to only use one return level as an
example. In other work (Fowler and Wilby 2010) it has been noted that as the return
level increases the time to detection also increases.

Figure 9 shows two examples of this process. In this figure the 90% confidence
interval is shown because of correspondence to the one-sided test of significance
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Fig. 9 Illustration of our definition of detected difference. Plot shows the estimated difference in return
levels and 90% confidence intervals. Climate model pair 1, grid cell 1, season 1 (left) has a detected
difference at 84 years. The confidence bands narrow to zero when t equals zero as the Control and Scenario
runs in statistical model 5 have the same parameters when t = 0. Climate model pair 1, grid cell 8, season
1 (right) was fit best with statistical model 4 and has a detected difference at at 71 years.

at the 5% level. For the first example, model 5 was chosen to be the best model.
According to model 5, the Control run and the Scenario run have the same parameters
at the start, thus the difference in return levels is zero initially. As time progresses the
Scenario run’s model parameters change, and the uncertainty increases. A detectable
difference was found at year 84 (2004). In the second example, model 4 was chosen
to be best. Model 4 is not a hinge model, and when fit to this data, it found that the
Scenario run had lower initial return levels than the Control run. By year 71 (1991),
it was found that the Scenario run had a significantly higher 20-year return level.

Figure 10 summarizes the results of this exercise across model pairs and grid cells
for the winter, spring, summer and fall seasons using empirical cumulative distribu-
tion functions (cdfs) of the time of detected difference. That is, letting t denote year
and Di denote the time of the detected difference for model i as defined above, then
we plot n−1 ∑ n

t=1 I (Dt > t) verses t where I denotes the indicator function. The
cdfs do not reach a height of 1 as in no season do all model pairs detect a difference
in extreme precipitation in the 160-year simulation run. For the winter season, more
than 50% of the climate model pairs found a detectable difference by ∼90 years
(2010), although ∼18% of the data sets showed a detectable difference at year 1
(1920: caused by level shifts in the fitting of statistical models 2 or 4), and ∼8% of
the datasets did not detect a difference in return levels over the 160 year model run.
For the spring season, more than 50% of the climate model pairs found a detectable
difference by ∼110 years (2030), although ∼22% of the data sets showed a detectable
difference at year 1 (1920: caused by level shifts in the fitting of statistical models
2 or 4), and ∼20% of the datasets did not detect a difference in return levels over
the 160 year model run. However, for the summer and fall seasons respectively, only
∼30% and 40% of the data sets showed a detectable difference over the 160-year
model run. This difference in behavior between the summer/fall and winter/spring
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Fig. 10 Empirical cumulative distribution functions (cdfs) of the time of detected difference for the winter,
spring, summer and fall seasons. The vertical black dotted line indicates the year 100 (real year 2020) and
the horizontal red dashed line the point beyond which the probability of detection is more likely than not.
The cdf does not reach 1 in any season as there are some climate model pairs for which no difference was
detected over the course of the model run. Equally, for some climate model pairs a statistical model was
chosen which produced a difference at year 1.

seasons is not unexpected, especially given the known difficulties that climate models
have in resolving convective precipitation.

5 Climate model parameter effect on the shape parameter and time
of detection

One of the primary goals of CPDN is to understand the effect that different climate
model parameters have on the simulated climate and, as such, the CPDN ensemble
uses a parameter sampling strategy that chooses one of a small number of possible
values for each parameter detailed in Table 1. In terms of describing extreme precip-
itation, a parameter of primary interest is the GEV shape parameter, ξ , as it controls
the weight of the tail. To our knowledge, it is not well understood which climate
model parameters could possibly affect ξ .

To attempt to answer this question, we ran a sequence of simple one-way analysis
of variance (ANOVA) tests for each of the 34 different model parameters found in
Table 1. The analysis was run only on the Control climate model runs as we wish
to limit our focus to the effect of the model parameters on the simulation of extreme
precipitation rather than possible effects of the different forcing scenarios. In each
ANOVA, ξ as estimated by the 2,432 different simulations serves as our variable and
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the different parameter settings serve as treatment. Normality and equality of variance
of the ξ ’s were checked for a handful of the model parameters, and the standard
ANOVA assumptions could not be rejected. Regardless, the ANOVA analysis here
is done only as a data mining exercise rather than as a traditional hypothesis test,
and the p-values simply tell us which climate model parameters are worthy of further
investigation rather than as a strict assessment of statistical significance.

Each season’s data was analyzed separately, and we performed the analysis across
the eight grid cells, assuming that the effect of altering the climate model parameter
did not interact with location. For each ANOVA, there were 2,432 estimated shape
parameters unequally divided into approximately three or four treatment levels for
each climate model parameter (see last column of Table 1). Because the sample size
was huge, the ANOVA could detect very small differences in the means of the treat-
ment groups and assess them as significant. Most of the ANOVA analyses returned a
p-value of less than 0.01. To better assess the importance of the differences in treat-
ment means, we employ the statistic ω2, which is an effect size measure for one-way
ANOVA (Olejnik and Algina 2003). Like r2 in a regression analysis, ω2 can be inter-
preted as the percentage of the total variability explained by the treatment effect. The
definition is given by:

ω2 =
(
σ 2

total − σ 2
error

)/
σ 2

error (3)

where σ 2
error = E

(
Yi j − μ

)2 and σ 2
error = E

(
Yi j − μi

)2, and the common estima-

tor is: ω2 = (ssEffect − dfEffect × msError) / (ssTotal + msError) (Hays 1973,
page 484). Here ssEffect is the sum-of-squares due to the treatment effect (i.e.
between-treatment variance), dfEffect is the degrees of freedom associated with the
treatment effect, the treatment effect, msError = ssError/dfError which are all asso-
ciated with the within-treatment variance, and ssTotal is the total sums-of-squares.
These quantities can all be found in a standard ANOVA table.

Despite having low p-values indicating significant differences, the importance
(ω2) associated with these differences for most climate model parameters was also
found to be small. For most climate model parameters, the difference in treatment
means explained less than 2% or 3% of the total variability in the ξ ’s. However,
two climate model parameters were found to explain a non-negligible amount of
the variability in the GEV shape parameter estimates. Figure 11 shows box plots
for the different treatments for the climate model parameters “entcoef” (entrainment
coefficient) and “vf1” (ice fall speed) for the summer season. The respective ω2

values for these two parameters were found to be 0.35 and 0.09. That is, these two
climate model parameters (each when analyzed independently of all other parame-
ters) explain respectively 35% and 9% of the total variability found in the estimates of
the shape parameters. Entcoef has a positive relationship with the GEV shape param-
eter whereas vf1 has a negative relationship. Similar, but less dramatic relationships
can be seen for these same two parameters for the spring and fall seasons, and the
effect is minimal for entcoef and negligible for vf1 for the winter.
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Fig. 11 Box plots showing different treatments of the climate model parameters “entcoef” (left) and “vf1”
(right) and their effect on the estimated shape parameter for the summer season. These two variables were
detected by the data mining exercise which employed a one-way ANOVA analysis.

The above results are interesting in that (to our knowledge) no one has before
tied tail behavior associated with simulated extreme precipitation events to any par-
ticular climate model parameters although much is known about heavy precipitation
behavior from observational and theoretical analyses (e.g. Wilson and Toumi 2005).
Previous investigations into CPDN ensemble parameters have suggested that opti-
mum values of two parameters—the entrainment coefficient (entcoef) and the ice
fall speed (vf1)—show first order sensitivity to climate sensitivity—the mean global
temperature response to a doubling of atmospheric CO2 (Sanderson et al. 2008).
Indeed, all CPDN investigations suggest that entcoef is dominant in establishing rel-
ative humidity profiles that lead to strongly different responses to greenhouse gas
forcing (Sanderson et al. 2008; Stainforth et al. 2005; Sanderson and Piani 2007;
Knight et al. 2007).

It is well known that the variation in humidity and atmospheric circulation are
critical in determining the occurrence of heavy precipitation. However, Wilson and
Toumi (2005) suggest that precipitation efficiency must play a critical role in the
occurrence of heavy precipitation. Precipitation efficiency is controlled by cloud
microphysics, entrainment, detrainment, the water holding capacity of the column,
and large-scale divergence above the moisture level (Trenberth et al. 2003). The
entrainment coefficient in HadCM3L affects how air is diluted in rising cumulus
cloud columns and has a big impact on the global top-of-the-atmosphere energy bud-
get as well as on climate sensitivity. Therefore, the value of entcoef partially controls
the amount of convective activity (Gregory and Rowntree 1990) and it makes physical
sense that it would affect intense summer precipitation, which is presumably mostly
convective (Myles Allen, personal communication). For prediction of changes to
heavy precipitation, Wilson and Toumi (2005) assert that predicting the future evo-
lution of the precipitation efficiency is perhaps at least as important as predicting
humidity changes. Our results suggest that entcoef also has an important effect on
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heavy precipitation generation in climate models. However, parameterizing (choos-
ing a particular value for) this variable will be challenging as it is poorly quantified
even for our current climate (Wilson and Toumi 2005).

The ice fall speed in clouds, “vf1”, has also been associated with a significant
percentage of the variation in climate sensitivity and has a major impact on cloud
cover and cloud optical properties (Myles Allen, personal communication); a large
value of this parameter allows the fast fallout of cloud ice (Sanderson et al. 2008).
Sanderson and Piani (2007) found that reducing the ice fall speed parameter resulted
in increased long-wave clear sky and increased low-level layer clouds, allowing the
air to remain moister. This ‘moistening’ effect causes the simulation of increases
in extreme precipitation in the climate model output in the same way as the effect
due to increased warming. In the future climate, warmer air will be able to hold
more moisture generated by increased evaporation from warmer oceans. When this
moister air moves over land, more intense precipitation is produced (Meehl et al.
2005). Nevertheless, it is interesting that for extreme precipitation, these climate
model parameters change the distribution not only in terms of a possible location
and/or scale shift, but also by changing the rate at which the tail decays.

In addition to the effects that parameters entcoef and vf1 have on the GEV shape
parameter, Fig. 11 also gives interesting information about the values of the shape
parameter estimates. It is clear from both box plots that many of the CPDN BBC
CCE climate model runs produce a negative estimate of the shape parameter. Most
studies of observed extreme precipitation yield shape parameter estimates that are
slightly positive (usually in the range of about 0.0 to 0.2), which indicates heavy
tailed-behavior (e.g. Fowler and Kilsby 2003a). It is accepted in the climate model-
ing community that climate models do not model convective precipitation well, and
perhaps this causes the simulated extreme precipitation to have this fundamentally
different behavior.

Returning to our initial idea of investigating the time of a detectable difference in
extreme precipitation, we also investigated if any of the climate model parameters
had an effect on when a change in extreme precipitation would be detectable. Here,
of course, we analyze the model pair data sets (Control and and Scenario). We did
not consider our response variable to be continuous as it is possible to never have a
detectable change during the 160 years of the climate model run and also to have a
detectable change at 1920 (year 1: where statistical model 2 or 4 is fitted). Instead,
we perform a simple contingency table analysis. We bin the response variable into
four categories: (1) detect at 1920 (year 1), (2) detect before 2000 (by year 80), (3)
detect after 2000 (after year 80), and (4) no detection by 2080 (by year 160). We
perform the analysis only for the winter season as this is when we see the greatest
detection rate and also the greatest variability among the climate models for when a
detectable change occurs.

We perform the standard chi-squared test for contingency tables and, because of
the number of separate tests we run, reject the null hypothesis of independence only
if the p-value associated with the test is less than 0.01. Only two climate model
parameters are found to have p-values low enough to reject the null hypothesis. The
parameter “ct”, which describes the accretion constant, has a p-value of 1e-4, and the
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Fig. 12 Contingency table. Areas of each block correspond to the percentage of models that correspond to
each category. The horizontal direction corresponds to the different levels of the climate model parameters
“ct” (left) and “anthsca” (right). The vertical direction corresponds to the year that a change in extreme
precipitation was detectable (1—detect at year 1, 2—in the time period 1920–2000, 3—in the time period
2000–2080, 4—no detect).

parameter “anthsca”, which describes the scaling factor for emissions from anthro-
pogenic sulfur aerosols, has a p-value of 2e-4. Figure 12 summarizes the data in the
contingency tables for each of these significant climate model parameters. The plot
for ct shows that an increase in this parameter corresponds to an earlier detectable
change in extreme precipitation. The pattern for anthsca is a bit less evident, but it
appears that increasing this parameter tends to result in a later detectable change.

6 Discussion and conclusions

In this paper we have investigated a methodology for estimating detection times for
changes in seasonal precipitation extremes and applied this to CPDN BBC CCE out-
puts from the HadCM3L GCM. These parallel climate runs allow us to compare
model output forced by observed climatology from 1920 to 2000 and the SRES A1B
emissions scenario from 2000 to 2080 to model output with an unforced climatology
for 1920. We have investigated the statistical models that are best applied to describe
extreme precipitation from transient GCM runs in different seasons for grid cells
over the UK and the changes projected by those models for 2020, 2050 and 2080.
Additionally, we have investigated the climate model parameters that most affect the
simulation of extreme precipitation.

We used 304 climate model pairs, providing 9,728 unique combinations for anal-
ysis. For winter and spring, the statistical model most frequently chosen by the AICc
criterion suggested a change in the GEV location parameter at the year 2000, that is,
when the forcings switch from observed to the SRES A1B emissions scenario. How-
ever, in summer and fall the statistical model most commonly chosen suggested that
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there was no difference between the Control and Scenario, or that there was no trend
in GEV location parameter within the Scenario. Although there was evidence of sig-
nificant trend in the GEV scale and shape parameters in the winter season, there was
less evidence in other seasons. Therefore, statistical models were restricted to fitting
time-varying trends in the GEV location parameter only in this initial investigation.

The CPDN BBC CCE ensemble projects substantial changes to the 20-year return
level of 1-day extreme precipitation during the next 70 years, with median changes
in winter approximating increases of 5%, 10% and 20% for 2020, 2050 and 2080
respectively when compared to 1961–1990. These changes are comparable in mag-
nitude to those projected for the UK by Regional Climate Models (RCMs) from the
PRUDENCE ensemble (Fowler et al. 2007; Fowler and Ekström 2009). Increases in
spring are projected to be lower than winter and projected changes in summer and fall
range from small increases to small decreases depending on the grid cell; increases
are commonly seen in northern grid cells and decreases in southern grid cells.

Detecting significant differences in extreme precipitation is related to the magni-
tude of the projected change as well as the statistical model best fitted to the Scenario
run. For winter, a detectable difference from the 1920 background climatology at the
20-year return level is found by most models within the 160 year window and at
∼90 years (2010) for more than 50% of the models. However, the majority of the
models did not detect a difference over the 160-year climate model run in summer
and fall. Although we do not have good observations for many rain gauges back to
1920, other work using RCMs to determine when a climate change signal may be
detectable in UK extreme precipitation suggests that, even within observational con-
straints, this may be achievable before 2050 (Fowler and Wilby 2010). Therefore, for
some regions of the UK and particularly during the winter season, flood managers
will soon be able to make adaptation decisions about these types of extreme event
in the light of formally detected changes in flood risk, useful for the prioritization
of spending on flood defence infrastructures. However, in other seasons, and par-
ticularly for summer flash flooding caused by convective rainfall events which are
poorly simulated by both GCMs and RCMs (Fowler and Ekström 2009), adaptation
decisions will need to be made before changes in flood risk are formally detected.

The second part to this study was to examine which parameters have an influence
on the simulation of extreme precipitation in the HadCM3L GCM. Two effects were
analyzed: the effect upon the GEV shape parameter using a simple one-way analysis
of variance (ANOVA) test, and the effect upon the time of detection using a contin-
gency table analysis. Two climate model parameters were found to have important
effects on the nature of the summer season GEV shape parameter which governs tail
behavior: “entcoef”, the entrainment coefficient, and “vf1”, the ice fall speed. Two
other parameters were found to have a significant influence on the time of detectable
change: “ct”, the accretion constant, and “anthsca”, the scaling factor for emissions
from anthropogenic sulfur aerosols. Significantly, our results suggest that precip-
itation efficiency (through the entrainment coefficient) has an important effect on
heavy precipitation generation in climate models as has been found for observations
(Wilson and Toumi 2005) although climate model simulated extreme precipitation
seems to have a fundamentally different behavior to observations, perhaps due to
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the negative estimate of the GEV shape parameter, unlike observations which pro-
duce a slightly positive (∼0.0–0.2) estimate. Wilson and Toumi (2005) suggest that
the stretched exponential shape of the tail of the observed rainfall distribution will
be largely unaffected by climate change. However, the scale of the distribution will
be determined by multiplicative changes in the magnitudes of vertical mass flux,
specific humidity and the precipitation efficiency (Wilson and Toumi 2005). Cor-
rectly parameterizing the precipitation efficiency will be challenging, as it is poorly
quantified even for our current climate (Wilson and Toumi 2005), but this will be nec-
essary for good predictions to be made for changes to precipitation extremes using
climate models.

One current caveat to this study is that all climate models within the CPDN BBC
CCE ensemble are treated equally, even though we may not believe that they are all
equally likely or valid. However, although it intuitively makes sense to trust, and
thus weigh, the better models more, it is difficult to objectively quantify model skill
and therefore derive model weights (Tebaldi and Knutti 2007). In further work we
hope to produce a method of weighting better models by assessing not only their
ability to simulate the properties of observed extreme precipitation (an application-
specific weighting) but also other measures. Ultimately, it is likely that a multi-scale
approach to weighting, assessing not only the simulation of synoptic-scale regional
climate, but also the simulation of continental-scale and global modes of variabil-
ity may be more appropriate for the weighting of climate models from very large
ensemble simulations such as CPDN.
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Appendix: The CPDN BBC climate change experiment

The CPDN project comprises three separate experiments which each examine uncer-
tainties in model initial conditions, model parameterizations and external forcings.
The first experiment was used to characterize realistic ranges for model param-
eters using the ‘slab ocean’ version of the Hadley Centre’s General Circulation
Model (GCM), HadSM3, which was run for 15 years each for a ‘calibration’ phase,
a ‘control phase’ where greenhouse gases are kept at pre-industrial levels, and a
‘future’ phase where CO2 in the atmosphere is double that of the control phase
(Stainforth et al. 2005; Piani et al. 2005). In the second and third experiments, CPDN



H.J. Fowler et al.

conducted a forcing ensemble designed to explore uncertainty in past (and future)
forcings. This is an important source of uncertainty in climate change projections.
Kiehl (2007) have shown that the Coupled Model Intercomparison Project (CMIP)
models under-sample uncertainty in historical forcing (Frame et al. 2009) and Joshi
and Gregory (2008) have suggested that the physical climate response can be quite
different depending on the forcing.

The second and third CPDN experiments are collectively known as the “CPDN
BBC Climate Change Experiment” (CCE) (Frame et al. 2009). These experiments
used a reduced resolution ocean version of the atmosphere-ocean coupled HadCM3
GCM of the UK Meteorological Office Hadley Centre, HadCM3L (Jones and Palmer
1998). The atmosphere component of the model is at a resolution of 2.5 × 3.75◦
latitude–longitude and has 19 vertical levels (known as N48; comparable resolu-
tion to ∼T42). The ocean component of the model is run at a reduced resolution
in comparison to the standard HadCM3 model; with a resolution of 2.5 × 3.75◦
latitude–longitude, 20 vertical levels and a 1 h time-step. For each ensemble mem-
ber, there is a ‘flux-readjustment’ spin up of HadCM3L with a standard atmosphere
using the 1880–1920 climatology. In addition, the BBC CCE version of HadCM3L
includes a modification to the ocean bathymetry: Iceland was removed and the Den-
mark straits deepened (Jones 2003), improving the northward transport of heat in
the coarse-resolution ocean; and includes the interactive sulfur cycle described by
Ackerley et al. (2009a, b).

In the second experiment this was used to produce a ‘transient hindcast ensemble’
of 1920–2000 using historical forcings, exploring the stable parameterizations of the
climate model identified in the first experiment (Frame et al. 2009). Four observed
datasets were used to obtain a range of plausible solar forcings (see Frame et al. 2009
for details). As these all underestimate the trend in solar index, a fifth dataset was
arbitrarily created by doubling the trend in solar index in one of the data sets. Vol-
canic forcings were also added using five datasets based on observations of volcanic
aerosol in the stratosphere. The third experiment was then run to produce a ‘transient
prediction ensemble’ of 2000–2080 using variable natural (solar and volcanic forc-
ings) under the SRES A1B emissions scenario (Nakicenovic et al. 2000: a mid-range
scenario) using the same model parameterizations. Future solar forcing used three
scenarios: increasing at the same rate as over the past 80 years; decreasing at the
same rate; no significant trend either way. Future volcanic forcing is simulated using
ten possible scenarios based on sampling from historic datasets. A full description of
the models used in the BBC CCE can be found in Frame et al. (2009).
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