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Abstract

A stochastic model is developed for the synthesis of daily precipitation using conditioning by weather types. Daily precipitation
statistics at multiple sites within the region of Yorkshire, UK, are linked to objective Lamb weather types (LWTs) and used to split
the region into three distinct precipitation sub-regions. Using a variance minimisation criterion, the 27 LWTs are clustered into
three physically realistic groups or ‘states’. A semi-Markov chain model is used to synthesise long sequences of weather states,
maintaining the observed persistence and transition probabilities. The Neyman-Scott Rectangular Pulses (NSRP) model is then
fitted for each weather state, using a defined summer and winter period. The combined model reproduces key aspects of the historic
precipitation regime at temporal resolutions down to the hourly level.

Long synthetic precipitation series are useful in the sensitivity analysis of water resource systems under current and changed
climatic conditions. This methodology enables investigation of the impact of variations in weather type persistence or frequency. In
addition, rainfall model statistics can be altered to simulate instances of increased intensity or proportion of dry days for example, for
individual weather groups. The input of such data into a water resource model, simulating potential atmospheric circulation changes,
will provide a valuable tool for future planning of water resource systems. The ability of the model to operate at an hourly level also

allows its use in a wider range of hydrological impact studies, e.g. variations in river flows, flood risk estimation etc.
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Introduction

Both observational and GCM (General Circulation Model)
future scenario data suggest a recent amplification of
climatic contrasts across the UK (Hulme and Jenkins,
1998). There have been significant shifts in the spatial and
temporal distribution of precipitation (Mayes, 1995). This is
seen most prominently in the marked increase in notable
flood events and drought episodes and may profoundly
affect water resource systems in vulnerable areas, as
exemplified by the 1995 Yorkshire drought (Marsh and
Turton, 1996). Linking the frequencies and characteristics
of floods and droughts to the prevalence of dominant
synoptic weather patterns may provide information on the
performance of a water resource system under future,
possibly slightly altered, climatic conditions.

The acknowledged lack of accurate information given by
GCMs on the potential hydrological impacts of climate
change (Rind ez al., 1992; McGuffie et al., 1999) at sub-grid
scales has directed research into utilizing the synoptic-scale
output of GCMs in regionally-based models (e.g. Wilby,
1994). Both dynamical downscaling methods using RCMs

(Regional Circulation Models) and statistical methods have
been developed. The statistical methods implicitly assume a
close relationship between atmospheric circulation patterns
and local climatic variables such as precipitation, tempera-
ture, and potential evaporation. To date, many such linkages
have been made for both large- and small-scale regions.
Studies include Europe (Bardossy and Plate, 1992;
Brandsma and Buishand, 1997; Goodess and Palutikof,
1998; Corte-Real ez al., 1998), the British Isles (Conway ez
al., 1996; Conway and Jones, 1998; Wilby, 1997; Kilsby ez
al., 1998), the United States (Hay ez a/., 1991; Hughes and
Guttorp, 1994) and Japan (Wilby et al., 1998).

However, regional climate change prediction is regarded
as a “cascade of uncertainty” (Mitchell and Hulme, 1999,
p57) by many researchers. This is partly due to the
uncertain future stability of derived current-climate re-
lationships between circulation patterns and local weather
elements (Wilby, 1997). For the British Isles, Wilby ez al.
(1995) have attributed this intra-weather class variability to
subtle changes in the dominant precipitation mechanism
(whether stratiform or convective), whereas Sweeney and
O’Hare (1992) have suggested changes in the intensity of
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circulation development or changes in depression trajec-
tories as contributing factors. To date, however, no rainfall
model has incorporated the ability to modify internal
weather class properties, to simulate changes which may be
occurring, e.g. due to the UK precipitation intensity
changes recently examined by Osborn ez 4l (2000).

This paper presents the development of a regional
stochastic rainfall model based on a weather type approach
with a spatial element. The spatial dimension of the model
allows the concurrent simulation of precipitation series for
very different climatological sub-regions within the same
water resource area. This multiple site generation of preci-
pitation has been previously demonstrated by Wilks (1998)
using the Richardson (1981) weather generator, WGEN,
but with no use of weather type information. In Yorkshire,
this split is between the east and west of the region, as the
dominant ‘westerlies’ bring much precipitation to the high
ground of the Pennines in the west, with lower precipitation
in the lee to the east. Conversely, in easterly airflows, most
precipitation falls in the east, with little reaching the
Pennines.

The normal precipitation pattern has resulted in the
installation of supply reservoirs, predominantly in the
Pennines to the west of the region. The model described
here has been developed as part of a study investigating the
effects of variations in the normal spatial pattern, which in
the 1995-1996 drought resulted in severe stress to the
Yorkshire water supply, necessitating the emergency
measure of tankering water from outside of the region.

The coupling of a semi-Markov based weather generator,
parameterized on historical data, with a stochastic rainfall
model, such as the NSRP model (e.g. Cowpertwait et al.,
19964,b), is also extremely powerful. It permits investigation
into not only the impacts of variations in weather type
persistence or frequency, as well as the alteration of rainfall
model statistics to simulate instances of increased intensity
or proportion of dry days for example, for an individual
weather class. This technique may provide a valuable tool
for future water resource management if climatic trends,
both observed and modelled, can be translated into
hydrological impacts.

Division of Yorkshire into coherent
precipitation sub-regions

To allow the spatial modelling of precipitation within a
water resource area that contains climatologically dissimilar
sub-regions, the region must be split into coherent
precipitation zones. In a similar analysis to that of Wigley
et al. (1984) for England and Wales, precipitation sub-
regions were determined for Yorkshire using 150 sites, each
with at least 10 years precipitation data available during the
period 1961-1990 (Fig. 1). Monthly totals at the 150 sites
were cross-correlated with each of six sites that are evenly
distributed across the Yorkshire region and provide a
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complete record for the 1961-1990 period: Moorland
Cottage (MC), Kirk Bramwith (KB), York, The Retreat
(YR), Hull, Pearson Park (HP), Lockwood Reservoir (LR)
and Great Walden Edge (GW) (listed in Table 1; Fig. 1).
Spline interpolation was used to produce a cross-correlation
contour map for each of the six sites.

Wigley er al. (1984) suggested 0.7, approximating fifty
percent of the variance, as a critical correlation level, in the
case of their work allowing the delineation of eastern- and
western-sides of the Pennine range of Northern England.
Areas exceeding this critical correlation for each of the six
sites were used to demarcate Yorkshire into three sub-
regions. The west of Yorkshire was shown as distinct from
the eastern sub-region, and bounded by the eastern edge of
the Pennines. The area encompassing the North York
Moors and Teesside was also shown as distinct from the
southeastern sub-region. This suggests that the Yorkshire
region should be split into three parts. These can be seen in
Fig. 2 and are labelled 1, 2, and 3 for the ‘Pennine’,
‘northeastern’ and ‘southeastern’ regions respectively.

Weather type classification

An automated method of weather type classification, based
on Lamb’s weather types, and developed by Jenkinson and
Collinson (1977) was used in model development. The
scheme is based on the single, widely available, free
atmosphere variable of daily-gridded mean-sea-level pres-
sure (MSLP)-and categorises surface flow by direction (in
intervals of 45°) and synoptic type, and compares favourably
with the subjective Lamb (1972) scheme on which it is
based. Days are classified using three indices of airflow: total
shear vorticity, strength of the resultant flow, and overall
direction of flow (Jones ez al., 1993). The objective scheme
contains a complete classification of daily atmospheric flow
over the British Isles from 1880 and continues to be updated
(http://www.cru.uea.ac.uk/cru/data/lwt.htm). The Lamb
scheme, however, ceased in 1997. Another important
advantage of the objective scheme is that it can be applied
to other parts of the world.

The objective Lamb weather type (LW'T) classification
contains eight directional types; north (N), north-east (NE),
east (E), south-east (SE), south (8S), south-west (SW), west
(W), and north-west (NW), and two non-directional types;
anticyclonic (A), cyclonic (C). The directional and non-
directional types can also be combined to define more
complex circulation types as ‘hybrid’ types, for example the
cyclonic westerly (CW). In addition, an unclassifiable (U)
type is provided. This gives 27 possible weather types.

Weather type grouping

The grouping of weather types is necessary to reduce model
complexity and the effects of over-parameterization of the
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Fig. 1. The locations of the 150 Yorkshire rainfall gauges used in regional division with an underiay elevation map (dark areas show highest

elevation), reaching around 700 m.

precipitation process within the less frequently occurring
weather types. Within Yorkshire, the overriding spatial
precipitation feature is the high precipitation amounts
provided by westerly weather types to the western, Pennine
sub-region. However, northerly and easterly weather types
are the main precipitation-bearers for eastern sub-regions.

To enable spatial cross-correlation within a rainfall
generator it is necessary to have the same weather type
groupings for each sub-region. To formulate physically
realistic groups, k-means clustering was applied separately
to each of the three sub-regions using weather type specific
seasonal statistics for mean daily precipitation and propor-

Table 1. Statistics for the six sites used in sub-regional delineation analysis. Rainfall statistics are for the period 1961-1990.

Site Altitude  Missing and  Mean annual Mean annual Max daily
(m) suspect (%)  rainfall (mm) proportion rainfall
dry days {mm)

Lockwood Reservoir (LR) (northeastern 193 1.70 803 0.45 104.6 (Sep)
sub-region) ‘

Hull, Pearson Park (HP) (southeastern 2 0.29 658 0.51 70.4 (Sep)
sub-region)

Moorland Cottage (MC) (Pennine sub-region) 343 249 1939 0.41 102.6 (Apr)

The Retreat, York (YR) (southeastern 18 0.56 640 0.54 67.9 (Jul)
sub-region)

Great Walden Edge No. 1 (GW) (Pennine 346 1.52 1342 0.37 74.7 (Jul)
sub-region)

Kirk Bramwith (KB) (southeastern sub-region) 7 418 593 0.58 74.9 (Jul)
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Fig. 2. Yorkshire precipitation sub-regions generated by the cross-correlation analysis.

tion dry days at each of the six sites. These provide good
spatial and altitudinal coverage of Yorkshire. This gave two,
one and three sites in the Pennine, northeastern and
southeastern sub-regions respectively (details in Table 1).

The k-means algorithm is based on Hartigan and Wong
(1979) and its objective is to find group memberships that
minimise the total within-cluster sum of squares over all £ of
the clusters. The objective function, ¢, can be represented
by (Corte-Real ¢t al., 1998):
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where K is the total number of classes, M is the number of
variables used, N, is the number of samples in the k-th
cluster.

A sample is assigned to a cluster by minimisation of the
Euclidean distance between the vector of observed values
(variables) and the mean of all the variables within a cluster.
The k-means algorithm regroups data until the optimal
cluster membership combination is achieved and the
samples no longer change clusters.

Little overall difference was found in weather grouping
between the seasons of winter and spring, or those of
summer and autumn and three groups adequately describe
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the spatial precipitation pattern in Yorkshire. Therefore, the
weather type groupings were optimised using a variance
minimisation algorithm. The year was split into two
arbitrary six-month periods and daily precipitation variance
within the weather group or ‘state’ was minimised to
ensure optimal coherency of the groupings. All tested
grouping combinations have a substantive physical basis
from information obtained from the k-means clustering
analysis and the unclassified weather type was omitted
from testing.

Analysis of various different grouping combinations
suggested that variance is minimised and persistence
maximised by the grouping arrangement detailed in Table
2. It is suggested that years are split into a ‘summer’ period
from April to September and a ‘winter’ period from October
to March. Three weather state groupings are defined for
each season, giving winter-anticyclonic (WA), winter-
northerly (WN), winter-westerly (WW), summer-anti-
cyclonic (SA), summer-northerly (SN) and summer-
westerly (SW) weather states.

It may be noted that in meteorological terms these may be
roughly defined as blocking (anticyclonic), zonal (westerly)
and meridional (notherly), and that the northerly weather
state contains both northerly and easterly Lamb weather

types.
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Table 2. Weather type group definitions for the three
weather states in both ‘summer’ and ‘winter’.

Weather state Objective Lamb weather types

Anticyclonic (A)
Northerly (N)

A, AE, ASE, AS, ASW

AN, ANE, N, NE, CN, CNE, E, SE,
CE, CSE

AW, ANW, S, SW, W, NW, C, CS,
CSW, CW, CNW

Westerly (W)

Generation of weather type series

MODEL DEVELOPMENT

Many researchers have used Markov chain models to
generate series of daily weather (e.g. Gregory ef al., 1992;
Hughes and Guttorp, 1994), the simplest of which is the
Richardson (1981) WGEN model. The approach taken here
is similar to that of Hay ez a/. (1991). A discrete-time semi-
Markov process is used to describe the occurrence of daily
weather types. Transitions between states are modelled
using the theory of Markov chains. However, additionally,
the duration of a weather state is modelled by sampling from
a distribution fitted to observed persistence properties. This
is an extension to an alternating renewal process that
generates sequences of wet then dry periods.

A finite set of three weather-type ‘states’ (W) has been
defined. At an initial time, state 7 is entered. An equal
chance is given to the initial state being any one of the
defined weather states for that season. After a random
duration within this state, defined by a distribution fitted to
the observed persistence probability distribution, the model
enters state 4;. The process continues with a randomly

defined duration within this state and then a transition to the
next state, i;.

The one-day transition probabilities are defined in two
matrices A and B, where A denotes the ‘summer’ and B the
‘winter’ period. These matrices consist of transition
probabilities 4; and Bj; respectively, where i and j are in
the set of W. The transition probabilities have values such
that 0 < A4;;, B; <1 for all 4 and ; and

=1 i=1

where 7 is the number of states and j = 1, n. The alternating
renewal process, by definition, defines within state transi-
tions as zero, such that:

Aiiy Bi =0, (3)

for i in the set of W (Mode, 1985). On a daily level, these are
modelled using the persistence probability distribution for a
weather state.

Transition probabilities were calculated using LWT data
from 1881-1996. Hay et al. (1991) calculated the mean
persistence time for each weather state and fitted a
geometric probability distribution to these. However, in
this case, transition probabilities for one-day transitions
were temporally variable, depending upon the duration of
the weather state (e.g. Fig. 3). For all weather states, within-
state transition probability is significantly lower until the
duration reaches at least three days. A significant difference
was found between the observed and fitted geometric
distribution using the chi-squared goodness-of-fit test.
These differences were particularly prominent at the
extremes, the geometric distribution underestimating the
frequency of occurrence of both short and very long
durations of some weather sequences, while overestimating
the medium values. Extreme value distributions such as the
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Fig. 3. Weather state transition probabilities from a state to itself after different persistence durations for the ‘winter’ period.

267



H.J. Fowler, C.G. Kilsby and P.E. O'Connell
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Fig. 4. Comparison of the 99.5 percentile of observed persistence probability distribution against the fitted gamma distribution for the ‘summer’

northerlies.

exponential or gamma distribution were therefore con-
sidered, and it was found that the gamma distribution
provided the best fit to the persistence probability
distribution for each weather state. Although this is a
continuous distribution, it can be used as a discrete
distribution as described below.

The gamma distribution is given by:

x, o = —I——x“_le—f

When « =1, the exponential distribution results. Using
integers for x-values cannot provide the required persis-
tence probability distribution for the occurrence of one-day
persistence. Therefore, x is replaced in the equation by
n — k, where n is the number of days that a weather type
state persists, and £ is a positive non-integer (k£ < 1).

A gamma distribution was fitted to the persistence
probability distribution of each of the six weather states
using L-moments to fit the'gamma distribution parameters
(see Hosking, 1997) with values of % conditioned by the
starting value of the distribution. The parameter values in
Table 3 were obtained.

Table 3. Fitted gamma probability distribution parameters
for the six weather states.

Parameter ‘Summer’ ‘Winter’

A N w A N W
k 0.349 0.330 0.400 0.280 0.300 0.411
alpha 0.591 0.549 0.727 0461 0480 0.691
beta 3.379 2.500 5.256 3.771 2.430 6.124
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WEATHER-STATE MODEL VALIDATION

A Monte-Carlo experiment consisting of fifty 116-year
simulated weather state was used to evaluate the capability
of the model to generate synthetic series with statistics
similar to those of the observed LWT 116-year series
(1881-1996). Comparisons were made of modelled and
observed transition and persistence probability distribu-
tions. The overall number of days of each weather state in
the 116-year record and the simulated mean-, minimum-,
maximum-occurrence, and variance were determined.
Finally, a comparison was made of the observed and
simulated distribution of annual daily occurrence of a
weather state, ordered over the 116-year period.

Transition probabilities are fitted well by the semi-
Markov chain model (Table 4). All errors are within two
standard deviations from the observed value. The mean
squared error (MSE) between the observed persistence
probability distributions and the simulated persistence
probability distributions is low and similar to the MSE
between the observed and fitted distributions. The model is
therefore capable of reproducing both observed transition
and persistence probability distributions.

As a more rigorous check of model performance, the
mean, maximum and minimum total number of days of each
of the six weather states simulated by the model in the fifty
116-year simulated series, and the variance within the fifty
series were compared against observed statistics. For these
purposes the first and last year of each generated series were
omitted, as the ‘winter’ season overlaps calendar years,
leaving 114 years of data for comparison. The observed
totals (Table 5), in all cases, lie within one standard
deviation of the mean of the fifty simulated series, and
annual errors are small. The mean annual model error in
prediction is less than a day for all six weather states, the
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Table 4. Observed and modelled transition-probability statistics, includ-
ing within state probabilities, for the fifty Monte-Carlo 116-year series.
Error refers to the observed transition probability minus the mean of the
50 simulated transition probabilities. ‘

Statistic ‘Summer’ ‘Winter’
A N w A N w

Observed A 0.63 0.10 0.27 0.60 0.07 0.33
Modelled A

Average 0.63 0.10 0.27 0.60 0.07 0.33
Maximum 0.65 0.11 0.29 0.62 0.08 0.34
Minimum 0.61 0.09 0.25 0.58 0.07 0.31
o 0.01 0.01 0.01 0.01 0.00 0.01
Error 0.00 0.00 0.00 0.00 0.00 0.00
Observed N 0.22 0.52 0.26 0.26 0.47 0.27
Modelled N

Average 0.22 0.53 0.26 0.25 0.48 0.27
Maximum 0.23 0.55 0.28 0.27 0.51 0.29
Minimum 0.21 0.50 0.23 0.24 0.46 0.24
c 0.01 0.01 0.01 0.01 0.01 0.01
Error 0.01 —0.01 0.01 001 -0.01 0.01
Observed W 0.13 0.10 0.77 0.12 0.09 0.79
Modelled W

Average 0.13 0.10 0.78 0.12 0.09 0.80
Maximum 0.14 0.10 0.78 0.13 0.09 0.81
Minimum 0.12 0.09 0.77 0.11 0.08 0.78
g 0.00 - 0.00 0.00 0.00 0.00 0.01
Error 0.00 0.00 0.00 0.00 0.00 0.00

worst being the ‘winter’ northerly type with an over-  for each weather state (Table 6) using the fifty simulations.
prediction of 0.7 days yr™ . The mean annual occurrence of each weather state is well

An analysis was also made of the annual statistics of  simulated by the model, with discrepancies of less than a day
maximum, minimum, mean daily occurrence and variance  between observed and simulated statistics. Additionally, the

Table 5. Observed and simulated total number of days in 114 years of each weather state.
Difference refers to the difference between average simulated and observed values (i.e.
average — observed). Anomaly yr~! refers to the number of days per year of each
weather state that are over- or under-estimated by the model (i.e. difference/114).

Statistics ‘Summer’ ‘Winter’

A N w A N A\
Observed 6032 3505 11325 5442 2813 12494
Simulated
average 6015 3545 11302 5428 2892 12428
maximum 6362 3718 11686 5662 3086 12797
minimum 5759 3281 10 896 5200 2710 12142
difference -17 40 -23 —14 80 —66
o 126.80 93.51 163.10 104.26 94.97 137.97
20 253.60 187.02 326.18  208.51 189.94 275.94
anomaly yr~! —0.15 0.35 -020 -0.12 0.70 —0.58
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Table 6. Comparison of annual statistics for the observed and mean of the simulated fifty
114-year series. Ensemble maximum and minimum indicate the maximum or minimum
total days in a year of that weather state within the fifty simulated 114-year series.

Statistic Ensemble Maximum Mean Minimum Ensemble Variance
maximum minimum
‘Summer’
Observed A 85 529 27 153.8
Simulated A 93 83.3 52.8 25.9 15 133.2
Observed N 53 30.7 14 66.7
Simulated N 67 56.6 31.1 11.2 7 81.1
Observed W 129 99.3 69 166.6
Simulated W 145 132.4 99.1 65.0 49 177.0
‘Winter’
Observed A 78 47.7 25 133.5
Simulated A 93 78.8 47.6 21.7 11 125.3
Observed N 49 24.7 8 92.8
Simulated N 61 50.1 254 8.6 4 63.5
Observed W 136 109.6 75 181.3
Simulated W 157 140.8 109.0 73.1 58 170.6

means of the maximum and minimum simulated annual
occurrence over the fifty simulations fit the observed
maximum and minimum annual occurrence well. The
ensemble minimum and ensemble maximum annual totals
generated in the fifty simulated 114-year series are lower
and higher, respectively, than the observed maxima and
minima. Variance is generally under-estimated by the
model.

The effect of errors in simulated variance and ensemble
maxima and minima upon model performance was further
investigated. The annual occurrence of each weather state
was calculated for each year of the fifty 114-year simula-

tions. These 114 annual totals were then ranked in
ascending order for each of the fifty simulations, giving
fifty ordered sequences for each weather state. For each
rank, the mean of the fifty ordered sequences was calculated.
This gave an expected distribution of annual totals for each
weather type over a 114-year period. A similar procedure
provided maximum and minimum error or uncertainty
bounds about this distribution. The observed 114-year
series was treated similarly and annual totals were ordered
for each weather state.

Figure 5 shows the distribution of the ‘summer’ anti-
cyclonic weather state. The error bands are small for all

*Summer’ anticyclonics

;

s | =====Observed

i, = = Mean Sim
------ Min Sim

? ...... Max Sim

.

0 20 40 €0

Fig. 5. Total number of days occurrence of ‘summer’ anticyclonics for 114 years shown in an ordered sequence with boundary limits.
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weather states. The MSE between observed and mean
simulated ordered sequences is low for all weather types,
excepting that of ‘winter’ northerlies (WN). The model
slightly overestimates the frequency of low annual occur-
rences of WIN, and similarly underestimates the frequency
of high occurrence, with a maximum of four days error for
any one ranking. However, errors are in the order of one to
two days annually, and model simulations are considered
satisfactory.

Development of a rainfall model
(WeatherSim)

EXPECTED REGIONAL PARAMETERS

The Neyman-Scott Rectangular Pulses (NSRP) model is a
clustered point-process stochastic rainfall model, and is
fully described by Cowpertwait (1991, 1994, 1995) and
Cowpertwait e al. (19964,b). The model has five parameters
when fitted to a single site (Table 7). An analysis was made
of the fitted model parameters that could be expected within
the Yorkshire region. Parameters were fitted to daily
precipitation data from 1961-1990 for each of the six sites
detailed in Table 1 using a single-site model. The model fits
were achieved on a monthly basis using the following
sample moments: p(1), ¢(24), y(1), y(6), y(12), y(24) and
7(48), p(1), p(6), p(12), p(24), p(48), where p is mean
precipitation, ¢ is proportion dry, y is variance, p is auto-
covariance and the number in brackets corresponds to the
time period in hours (same terminology as Cowpertwait ez
al., 19965). Hourly variance statistics were derived from the
daily variance using regression equations for the UK
produced by Cowpertwait ez al. (19965).

The fitted A~! values provided a range for rate of storm
arrivals of between two and six days. The highest rate occurs
in autumn at Moorland Cottage (Pennines) with a storm
origin every 1.8 days. The lowest rate occurs in May at
Lockwood Reservoir (northeast region), with a storm origin
every six days. Maxima are found for both the southeastern
and northeastern sub-regions in autumn, with a minimum
in the Pennines during this time. This may be due to an
increase in northerly weather types during the months of
September and October.

The mean waiting time for rain cell origins after the storm
origin, B!, was between 24- and 48-hours in general.
However, the minimum is under 10 hours at Hull
(southeastern region) during November. Shorter mean
waiting times are found in the winter than the summer,
except at Pennine sites where mean waiting times are short
throughout the year. The mean number of raincells per
storm, v, shows an approximately sinusoidal relationship
with maxima in winter and minima in summer at all sites.
The mean number of raincells per storm is four to seven in
winter and two to five in summer months, although more
raincells are generated per storm at Pennine sites than
elsewhere.

The fitted mean cell duration, ', is always less than 12
hours. The southeastern sites and the Pennine site of Great
Walden Edge have very low mean raincell duration,
especially in winter months. Higher altitude sites, e.g.
Lockwood Reservoir and Moorland Cottage, have a high
fitted mean cell duration throughout the year. The mean cell
intensity, Xi~!, has a maximum of 7mm hr~" at the high
Pennine site of Moorland Cottage in winter months. In
general, Pennine sites show a maximum in winter months
and minimum in summer months. At eastern sites, and
especially prominent at Lockwood Reservoir, the maximum
intensity occurs during the months of September and
October. This may be related to the marginal difference
between the land and the North Sea surface temperature
during these months, coupled with the increase in northerly
weather types, bringing increased convective precipitation
to the east of the region, which would be felt most at higher
altitude sites.

FITTING OF WEATHER ‘STATE’ PARAMETERS
(MODEL CALIBRATION)

Site seasonality was investigated prior to the NSRP fitting
by analysing monthly mean daily precipitation for anti-
cyclonic, westerly and northerly weather states at each of the
three sites. These are plotted in Fig. 6. At Moorland
Cottage, the mean daily precipitation distribution for the
westerly weather state closely matches the distribution of
observed mean daily precipitation. The mean daily
precipitation totals for the westerly weather state in August

Table 7. The parameters of a one-cell NSRP model.

Parameter Explanation

47! (lambda)  the mean waiting time between adjacent storm origins th™

B! (beta) the mean waiting time for cell origins after the storm origin (h™")

v (nu) the mean number of type 1 rain cells associated with a storm origin (—)
7 (eta) the mean duration of a type 1 cell (h)

& (xi) the mean cell intensity for type 1 cells (mmh™")
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Fig. 6. Monthly mean dasly rainfall plotted for each weather state; anticyclonic, me&t’erly and northerly, at Moorland Cottage, Lockwood Reservoir

and Kirk Bramwith.

and September are much higher than those of April, May,
June and July, and in fact more akin to the winter totals. )
This reinforces the climatological fact that Pennine
summers are very short. The year is split into two periods:

272

~ April to August (season 1) and September to March (season

2) At Lockwood Reservoir, a relationship was found
between the northerly weather state and observed mean
daily precipitation. totals. The northerly weather state
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Table 8. The fitted parameters for a one-cell model.

Parameter
Weather

state

Site

A—l
(b7

By

G™ (=)

n
(h)

SA

SN

SW

WA

WN

wWw

MC
LR

MC
LR

MC
LR

MC
LR

MC
LR

MC
LR

0.0094
0.0140
0.0055

0.0322
0.0480
0.0099

0.0383
0.0338
0.0333

0.0076
0.0075
0.0068

0.0389
0.0471
0.0100

0.0288
0.0206
0.0159

0.115
0.063
0.020

0.403
0.031
0.023

0.086
0.029
0.347

0.024
0.043
0.180

0.184
0.055
0.059 1

0.025
0.038
0.086

1.765
1.000
1.524

1.485
1.058
4.510

2.346
1.326
1.278

3.582
6.544
4.637

1.000
1.285
1.874

2.770
3.115
5.545

0.621
0.570
1.548

0.375
0.218
1.061

12.000
0.327
0.353

0.385
12.000
12.000

0.526
0.376
12.000

0.501
0.765
12.000

provides the highest precipitation totals to the northeastern
region (Fig. 6) and splits the climatological year into two
approximate intervals, January to June (season 1) and July to
December (season 2). At Kirk Bramwith, the year can be
split into two intervals, April to September (season 1) and
October to March (season 2), based upon the northerly
weather state precipitation distribution. Season 1 and season
2 are arbitrarily titled ‘summer’ and ‘winter’ in each case.
The N