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Abstract

Widespread major flood events in both the UK and Europe over the last decade have focussed attention on perceived

increases in rainfall intensities. The changing magnitude of such events may have significant impacts upon many sectors,

particularly those associated with flooding, water resources and the insurance industry. Here, two methods are used to assess the

performance of the HadRM3H model in the simulation of UK extreme rainfall: regional frequency analysis and individual grid

box analysis. Both methods use L-moments to derive extreme value distributions of rainfall for 1-, 2-, 5- and 10-day events for

both observed data from 204 sites across the UK (1961–1990) and gridded w50 km by 50 km data from the control climate

integration of HadRM3H. Despite differences in spatial resolution between the observed and modelled data, HadRM3H

provides a good representation of extreme rainfall at return periods of up to 50 years in most parts of the UK. Although the east–

west rainfall gradient tends to be exaggerated, leading to some overestimation of extremes in high elevation western areas and

an underestimation in eastern ‘rain shadowed’ regions, this suggests that the regional climate model will also have skill in

predicting how rainfall extremes might change under enhanced greenhouse conditions.
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1. Introduction

In the past decade, widespread flooding (Marsh,

2001; Lamb, 2001) and landslides (Lawrimore et al.,
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2001) in the UK and Europe have focussed attention

on perceived increases in rainfall intensities. Climate

model integrations predict increases in both the

frequency and intensity of heavy rainfall in the high

latitudes of the Northern Hemisphere under enhanced

greenhouse conditions (McGuffie et al., 1999; Jones

and Reid, 2001; Palmer and Räisänen, 2002). These

projections are consistent with recent increases in

rainfall intensity seen in the UK (Osborn et al., 2000;
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Fowler and Kilsby, 2003a,b), Europe (Brunetti et al.,

2000; Frei and Schär, 2001) and worldwide (e.g. Karl

and Knight, 1998; Iwashima and Yamamoto, 1993;

Zhai et al., 1999), although it is not possible to relate

one to the other, as cause and effect.

Changes to the magnitude, character and spatial

distribution of extreme rainfall may have serious

social and economic implications. Currently, the UK

government spends in excess of £300 million annually

on flood defences. This is likely to rise by another

£200 million when also taking climate change impacts

into account (DEFRA, 2001). Recent flood events in

the UK in winter 2000/2001 and Europe in summer

2002 produced insurance claims of £1 billion and 19

billion Euros, respectively, and have led the insurance

industry in the UK to re-evaluate its position in

relation to flooding. Currently, the Association of

British Insurers is considering the withdrawal of flood

insurance from the 10% of UK properties, worth some

£200 billion, considered to have inadequate flood

defences after 31st December 2002, and there has

been a similar insurance response to flood hazard

globally (Crichton, 2002).

Recent extreme rainfall events in the UK have

characteristically been multi-day, with unremarkable

one-day totals. However, there have been few

comprehensive analyses of the current or likely future

distribution of multi-day events (e.g. Osborn and

Hulme, 2002; Fowler and Kilsby, 2003a,b), with most

studies concentrating on daily extremes (e.g. Jones

and Reid, 2001; Osborn et al., 2000) or taking a case-

study approach (e.g. Huntingford et al., 2003; Lamb,

2001). Regional climate models (RCMs) provide the

best information currently available for estimation of

changes in extreme rainfall. A study by Jones and

Reid (2001) provided the first analysis of future

changes in one-day extreme rainfall over the UK.

Using results from the HadRM2 RCM (Murphy,

1999), their research suggested dramatic increases in

the heaviest rainfall events. However, this model has

now been superseded by the HadRM3H integrations,

used to produce the new UKCIP02 climate change

scenarios for the UK (Hulme et al., 2002).

In this two-part paper, two methods are used to

assess the performance of the HadRM3H model in the

simulation of UK extreme rainfall and provide

new estimates of future change in extreme rainfall

across the UK; regional frequency analysis (RFA)
and individual grid box analysis (GBA). Both

methods derive extreme value distributions of rainfall

for 1-, 2-, 5- and 10-day events, fitted using

L-moments (Hosking and Wallis, 1997). The RFA

involves the regional pooling of annual maxima (AM)

and allows a more reliable estimation of high return

period rainfall events. The GBA provides additional

information on the spatial distribution of extremes. In

this paper, the performance of the HadRM3H model is

established by comparing return period estimates of

extreme rainfall from the control scenario with

estimates derived from the previous HadRM2 model

and observations. In the second paper (Ekström et al.,

2004), results from the HadRM3H model for a future

scenario of enhanced greenhouse conditions are

examined. This provides both a comparison of future

projected changes in extreme rainfall from HadRM2

and HadRM3H models and an indication of how these

estimated changes could be used in impact studies.

Scenarios derived from HadRM3H are currently the

standard in the UK, but will be superseded in due

course, and it is therefore useful to assess the

differences between model generations.

The application of RFA was pioneered in flood

frequency analysis (Hosking and Wallis, 1988; 1997),

but has been little used in climate change applications.

Return period estimation for extreme rainfall events

has commonly been based on single point data series,

e.g. Hennessey et al. (1997) and McGuffie et al.

(1999). However, RFA provides more robust return

period estimates than those estimated using single

point data series due to the inclusion of a larger data

set. This paper investigates not only the HadRM3H

model representation of extreme rainfall in the UK,

but also the potential differences in using point

estimates, e.g. the GBA, compared to the more

comprehensive RFA approach.
2. Data

2.1. Observations

Two observed datasets were used in the study The

station data set is that used by Fowler and Kilsby

(2003a), comprising 204 stations across the UK with

daily rainfall records for the 30-year period 1961–

1990. These stations were chosen so that each of



Fig. 1. Location of the 204 UK daily rainfall records with complete or almost complete data for the 1961–2000 period and the nine coherent

rainfall regions. The regions are: North Scotland (NS), East Scotland (ES), South Scotland (SS), Northern Ireland (NI), Northwest England

(NWE), Northeast England (NEE), Central and Eastern England (CEE), Southeast England (SEE) and Southwest England (SWE) (reproduced

with permission from Fowler and Kilsby, 2003a).

H.J. Fowler et al. / Journal of Hydrology 300 (2005) 212–233214
the nine spatially coherent rainfall regions for the UK

(Wigley et al., 1984; Wigley and Jones, 1987;

Gregory et al., 1991; Jones and Conway, 1997)

contained at least 20 records (see Fig. 1). The rainfall

stations were a compilation of 110 rainfall series used

by Osborn et al. (2000) in their study of UK rainfall

intensity changes, and subsequently used by Jones and

Reid (2001) in their analysis of future changes in UK

extreme rainfall estimated by the HadRM2 RCM, and

data from the British Atmospheric Data Centre (http://

www.badc.rl.ac.uk/).

Additionally, the 5 km gridded dataset developed

at the UK Meteorological Office (http://www.

metoffice.com/research/hadleycentre/obsdata/ukcip/

index.html) was used to provide five-day annual

maximum data for each year from 1961 to 1990

for each of the 5 km grid boxes. An explanation of
the production of this dataset is given in Appendix 7

of Hulme et al. (2002).

2.2. Models

Two RCM datasets were used in the analysis;

HadRM2 and HadRM3H, both developed at the

Hadley Centre of the UK Meteorological Office (see

Fig. 2). These regional models derive from the

HadCM2 (Johns et al., 1997) and HadCM3 (Gordon

et al., 2000; Johns et al., 2003) global climate models,

respectively. Global climate model (GCM) data are

not used in this analysis as the spatial rainfall patterns

associated with orography and land-sea differences

are not reproduced at their coarse resolution (e.g.

HadCM3 grid boxes are w265!300 km). Instead we

use results from RCMs embedded within GCMs,

http://www.metoffice.com/research/hadleycentre/obsdata/ukcip/index.html
http://www.metoffice.com/research/hadleycentre/obsdata/ukcip/index.html
http://www.metoffice.com/research/hadleycentre/obsdata/ukcip/index.html
http://www.metoffice.com/research/hadleycentre/obsdata/ukcip/index.html
http://www.metoffice.com/research/hadleycentre/obsdata/ukcip/index.html


Fig. 2. HadRM3H model dataset over the UK where points denote

grid box centres.
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which provide finer resolution detail of fine scale

weather features.

The HadRM2 model is nested within HadCM2 at a

resolution of w50!50 km, with integrations con-

ducted using boundary conditions from the HadCM2

model. The HadCM2 integrations used historical

levels of greenhouse gases (GHGs) during the period

1860–1990 and a compounding 1% increase in CO2

for the period 1990–2100, similar to IPCC scenario

IS92a (Leggett et al., 1992; Mitchell et al., 1995). Two

RCM integrations were then performed. This gave a

30-year control simulation (1961–1990) and a 20-year

simulation of increasing GHGs, representing the

period 2080–2100 (Murphy, 2000). The integration

of HadCM2 used to drive HadRM2 did not include

effects of sulphate aerosols, so their effect is omitted.

The HadRM3H integrations represent the current

‘state-of-the-art’ in climate modelling across Europe

and were used to produce the new UKCIP02 climate

change scenarios for the UK (Hulme et al., 2002).

Boundary conditions are derived from the global

atmosphere model, HadAM3H, (Pope et al., 2000)

which is of intermediate scale between the coarser

resolution HadCM3 and the RCM. The HadAM3H

model was run for a reference baseline period
(1961–1990). For this run, observed values of sea-

surface temperatures (SST) and sea-ice were used

instead of their HadCM3 modelled counterpart

(Hulme et al., 2002). In the future run (2071–2100),

changes in the SST and sea-ice projected by HadCM3

was added to the observations. This method of

downscaling gives a more realistic representation of

the North Atlantic storm track compared to using a

GCM alone (Hulme et al., 2002). Wind, temperature,

and humidity output from HadAM3H were then used

to run HadRM3H (Hulme et al., 2002).

Seven integrations of the HadRM3H model have

been run. Three of these provide an ensemble

representation of the control climate period (1960–

1990) and the other four represent future climate

conditions (2070–2100). Of the future integrations,

three form an ensemble based upon the IPCC A2

SRES (Special Report on Emissions Scenarios)

‘storyline’ (IPCC, 2000) (the UKCIP02 Medium-

High Emissions scenario) and the other is based on the

B2 SRES ‘storyline’ which has less severe conse-

quences in terms of climatic change (the UKCIP02

Medium-Low Emissions scenario). The ensemble

members involve the same model initiated from

three different points in the HadCM3 control run

(Hulme et al., 2002). The three ensembles have

similar long-term characteristics but show significant

year-to-year and decade-to-decade differences due to

internal climate variability. These provide a range of

potential changes in extreme rainfall across the UK,

because the range of outcomes is uncertain.
3. Analysis methods

Two complementary sets of analyses have been

undertaken to assess the performance of the

HadRM3H model in the simulation of UK extreme

rainfall on an annual basis: RFA (Section 3.1) and

GBA (Section 3.2). The regional approach allows

estimation of the magnitude of long return-period

rainfall events with more reliability than single site

analyses where only short records are available. The

GBA, on the other hand, shows the performance of the

RCM at its limited spatial resolution. In both

approaches, the analysis was performed using AM

of 1-, 2-, 5- and 10-day rainfall totals. Furthermore,

both approaches estimate extreme rainfall using
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the Generalised Extreme Value (GEV) distribution

fitted using the method of L-moments (Hosking and

Wallis, 1997) to define extremes with given return

periods. Although peak-over-threshold analysis may

produce more robust estimates, it was not used here as

differences in mean annual rainfall between the

observed and RCM datasets would require different

threshold values to be used for each simulation.

Estimates of extreme rainfall are expressed here in

terms of quantiles. The quantile of a return period (T)

is an event magnitude so extreme that it has

probability 1/T of being exceeded by a single event

in any given year (Hosking and Wallis, 1997). The

return period can also be seen as the average interval

between events of a given magnitude. The ‘risk

equation’ relates the return period (T) to the risk (r) of

a design exceedance within a specified number of

years (M), where M may be the design lifetime of a

structure, i.e.

r Z 1 K ð1 K1=TÞM (1)

More detail on quantile estimation can be found in

Palutikof et al. (1999). In this paper we estimate

the rainfall amounts associated with 5-, 10-, 25- and

50-year return periods for the RCM control inte-

grations and compare these to observed estimates for

the ‘common’ period 1961–1990. The period is

‘common’ in the sense that the model is given

boundary conditions of the observed SSTs and sea

ice distribution together with the measured GHG

concentrations. Neither GCM (HadAM3H) nor RCM

(HadRM3H) should be expected to reproduce

sequences of dry and wet seasons on dates these

were actually observed, however, except for the

extent to which these are related to SST forcing.
3.1. Regional frequency analysis

The RFA builds on the regionalisation of UK

rainfall, first developed by Wigley et al (1984), and

later improved and updated by Wigley and Jones

(1987), Gregory et al. (1991) and Jones and Conway

(1997). This regionalisation identified five spatially

coherent regions for England and Wales, three for

Scotland and one for Northern Ireland. For each

of these regions, a standard RFA approach based on

L-moment methods (Hosking and Wallis, 1997) was
taken to generate rainfall ‘growth curves’ for the

rainfall AM data sets. This used the observed dataset

1961–1990 (as Fowler and Kilsby, 2003a), the control

scenario from the HadRM2 model and the control

ensemble of HadRM3H, comprising three runs each

of 31 years.

A growth curve is a standardised extreme value

plot of AM. In this study we standardise by Rmed (the

median AM rainfall), following the method used in

the Flood Estimation Handbook (FEH) (IH, 1999)

(detailed in Appendix). For each grid box (for model)

and station (for observed), the AM were standardised

using the grid box (station) Rmed for that period. L-

moment ratios derived from single grid box (station)

analyses within a region were then combined by

regional averaging and weighted according to record

length (after Hosking and Wallis, 1997). A GEV

distribution or ‘growth curve’ was then fitted for each

region and aggregation level (1-, 2-, 5- and 10-days)

for the RCM (observed) data by matching the sample

L-moments to the distribution L-moments. Using

these growth curves, the event magnitude for a 5-, 10-,

25- and 50-year return period were estimated for each

data set and region using the fitted growth factor

multiplied by the regional Rmed. This methodology is

explained in more detail in the technical appendix and

in Fowler and Kilsby (2003a).

3.2. Grid box analysis

For the GBA, the event magnitude at the 5-, 10-,

25- and 50-year return period were estimated

individually per grid box, based on the same

L-moment approach as the RFA.

Two approaches may be followed for comparing

model grid box extreme rainfall estimates with

observed values. The first method is by aggregation,

where, for example as in Huntingford et al. (2003),

observed daily series from many stations lying within

the grid box are spatially averaged to produce a single

grid-average daily series. This method is very data

intensive, and sufficient data are not available in some

parts of the UK. More importantly, the method is not

easily applicable in other parts of the world with

poorer data provision. Therefore a second, ‘down-

downscaling’, method is used here, where the

observed station estimates are modified by an areal

reduction factor (ARF) so that they represent



Table 1

Factors for converting Rmed from fixed to sliding duration

Duration (days) Factor

1 1.16

2 1.11

5 1.035

10 1.005
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the equivalent RCM grid box value. The assumptions

required by the use of ARFs are discussed later.

This approach is used together with the ‘index-flood

method’, central to RFA, where the standardised growth

curves estimated from the RFA are multiplied by a value

of Rmed estimated from the UKMO dataset (see Section

2.1) to produce rainfall estimates for the different

rainfall durations and the range of return periods that are

used here.

The only readily available gridded annual maximum

rainfall data were those of the observed UKMO 5 km

grids of five-day AM for each year 1961–2000 (see

Hulme et al., 2002, their Appendix 7). These were used,

as described below, to predict Rmed at 1-, 2- and 10-day

duration, using regression relations based on the five-

day Rmed, which were derived using the observed daily

station data set. Regressions using additional predictors

(e.g. SAAR (Standard Annual Average Rainfall, 1961–

1990) and location) were investigated but found to give

no significant improvement.

Before using it as the predictor in the regression, a

grid of Rmed five-day 5 km values was calculated
Table 2

Regression results: predicting 1-, 2- and 10-day Rmed from 5-day Rmed

Gauge data

Predictor Coef SE Co

One-day RMEDZ12.3C0.346 five-day RMED

Constant 12.3381 0.5793

Five-day RM 0.345679 0.0078

R-SqZ90.5%; R-Sq(adj)Z90.5%

Two-day RMEDZ9.68C0.550 five-day RMED

Constant 9.6807 0.6251

Five-day RM 0.549582 0.0084

R-SqZ95.4%; R-Sq(adj)Z95.4%

Ten-day RMEDZK12.9C1.60 five-day RMED

Constant K12.880 1.167

Five-day RM 1.59930 0.0158

R-SqZ98.1%; R-Sq(adj)Z98.0%
from the annual maximum values for the years

1961–1990.

The site Rmed values for 1961–1990 were based on

discrete or fixed duration observations (i.e. 09:00–

09:00). It is, however, customary to use sliding

duration estimates for design purposes, e.g. allowing

for the maximum rainfall observed in any continuous

24-h period irrespective of its actual start and end

times. Sliding duration estimates are larger than fixed

duration, particularly for smaller durations, so the

values were converted using the factors in Table 1.

These factors have been interpolated from values used

in FEH (IH, 1999) for 1-, 2-, 4- and 8-day durations.

To check that the observed Rmed values were correct

and representative, Rmed values corresponding to the

daily gauge locations were extracted from the FEH.

Good correspondence between site Rmed (1961–1990)

and the FEH values was found. This check is, however,

limited by the use of records for time periods different to

1961–2000 to form the FEH estimates. The FEH data

are generally from 1960 to 1995, with a smaller number

of longer records, and the number of records decreasing

from 1990 to 1995 (IH, 1999).

Regressions of Rmed for 1-, 2- and 10-day events

were carried out on Rmed5 using site Rmed (1961–

1990), and the coefficients and results are shown in

Table 2. As expected, the regression models explain

more variance for longer durations, with the poorest

results for one-day duration with r2 around 0.91.

Scatter plots of the regression model values against
using station data

ef T P

21.30 0.000

64 43.95 0.000

15.49 0.000

86 64.77 0.000

K11.03 0.000

5 100.93 0.000



Fig. 3. Rmed values: estimates from regression models vs observed for station data.

Table 3

Areal reduction factors used to convert point rainfall to 2500 km2

areal average rainfall

Duration (days) Factor

1 0.87

2 0.90

5 0.93

10 0.94
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the observed values are given in Fig. 3. Inspection of

the residuals reveals that sites with the highest

residuals are essentially different for the three

durations. To investigate any geographic variation in

model fitting, the residuals were plotted on maps (not

shown) and this showed a slight tendency for model

overestimation in the north-west and understimation

in the south-east. An improved model may be

obtained using Geographically Weighted Regression

(Brunsdon et al., 2001) or a similar technique. Finally,

5 km grids of 1-, 2- and 10-day Rmed were calculated

from the observed UKMO five-day Rmed grid.

In order to make the regressed 5 km Rmed data

comparable to the 50 km HadRM3H model data,

Rmed values were averaged within each HadRM3H

grid box. To estimate other quantiles the averaged

Rmed values were then scaled using coefficients

derived from the regional growth curves produced in

the RFA.
3.3. Areal reduction factors

It is generally accepted that the grid box rainfall of

GCMs have the spatial characteristics of areal averages

(Reed, 1986; Osborn and Hulme, 1997). On this basis we

assume that the RCM represents a 50 km climate.

However, the maximum areal average rainfall rate will

always be less than the maximum rate estimated at a

point. This difference is usually referred to as the ARF.

Due to the differences in scale between the observed and
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the RCM datasets it is necessary to apply an ARF. An

ARF is a value, which can be applied to a point rainfall of

a specified duration and return period to give the areal

rainfall of the same duration and return period.

Applications of this allow direct comparison of return

periods estimated for observed and RCM data. In the UK,

the values of ARF given in the Flood Studies Report

(NERC, 1975) have been widely used in design, and are

used in the FEH (IH, 1999). The ARF values used here

are taken from the FEH and are found in Table 3. These

vary with duration and size of area but are assumed to be

invariant with location within the UK and with return

period. The former assumption may not apply to future

extreme rainfall as the proportions of convective and

frontal rainfall and thus the spatial scale of events may

change. Osborn (1997) certainly demonstrated that the

long-term-mean intensity of areal-mean rainfall and the

long-term-mean intensities at points within this area can

change by different relative amounts if the spatial scale of

rainfall events changes. The latter assumption has also

been challenged in research by Stewart (1989) and Allen

and Degaetano (2002) where ARFs were found to

decrease with return period. However, it was decided to

use the same methodology as FEH given that there is no

consensus as to the best approach. Therefore, an ARF (see

Table 3 for values) was applied to return period

magnitudes estimated for the observed datasets to allow

a fair comparison with those estimated for the RCM data.
3.4. Uncertainty estimation

An estimate of uncertainty in return period predictions

gives some confidence in the use of the growth curve for

design purposes Here we use a non-parametric bootstrap

simulation method (Efron, 1979) to estimate confidence

intervals for the 5-, 10-, 25- and 50-year return period

estimates detailed above. If each dataset of annual maximum

values is defined as having n data points then, as defined by

Efron and Tibshirani (1993), bootstrap simulation samples

the original dataset with replacement multiple times

to produce multiple independent samples of size n. This

approach is also termed resampling and is described below.

If the original dataset is described as

x Z fx1; x2;.; xng (2)

then for each dataset 100 bootstrap samples are

generated as
x� Z fx�1 ; x
�
2 ;.; x�n g (3)

where each x�1 is a random sample (with replacement)

from fx1; x2;.; xng:

For each bootstrap sample fx�1 ; x
�
2 ;.; x�n g; the GEV

distribution is then fitted and the event magnitudes for

5-, 10-, 25- and 50-year return periods are estimated.

The distribution of these 100 estimates of the event

magnitude of a given return period allows the

construction of the 5th and 95th percentiles for the

GEV distribution fitted to each original dataset.

No explicit account has been taken here of the

spatial dependence of rainfall events between stations

in a given region. It is clear, however, that in both the

observed and modelled data some regions are affected

by a single storm event, giving rise to large totals at

several sites. Hosking and Wallis (1988), however,

found that; (a) any bias in quantile estimates is

unchanged by the presence of inter-site dependence;

(b) regional heterogeneity exerts a stronger effect on

the growth curve than inter-site dependence, and,

moreover; (c) even when both heterogeneity and inter-

site dependence are present, RFA is more accurate than

a single site analysis. As a definitive methodology to

account for spatial dependence is unavailable, this

research relies on the bootstrap simulation method to

estimate the likely error. The 5th and 95th percentiles

may then be considered as the uncertainty interval for

the various return period estimates, although other

methods may give larger estimates of uncertainty.
4. Results

4.1. Mean rainfall

Jones and Reid (2001) found that annual UK rainfall

totals were over-estimated by the HadRM2 model.

This over-estimation occurs particularly at high grid

box average elevations (e.g. western Scotland, Lake

District and north Wales) and in the East Anglia region.

Here, SAAR (Standard Annual Average Rainfall,

1961–1990) from the observed 5 km!5 km UKMO

dataset is compared with the mean annual rainfall from

the control climate integration of the HadRM3H model

(Fig. 4).

The HadRM3H model overestimates mean rainfall

in winter and spring months, particularly at high



Fig. 4. Percentage errors in representation of mean annual rainfall

1961–1990 by HadRM3H when compared to UKMO dataset.
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elevations in a similar way to HadRM2 (Jones and

Reid, 2001), but underestimates rainfall in summer

and autumn (not shown). These seasonal anomalies

lead to a significant underestimation of annual mean

rainfall in some parts of the UK (see Fig. 4). This is

particularly apparent around eastern coastal regions,

and also in the Cheshire plain where, in one of the

ensemble members, mean annual rainfall is as low as

250 mm (observed values are between 600 and

700 mm). These discrepancies in model represen-

tation of mean annual rainfall are thought to be a

result of an over-strong orographic control on rainfall

within the HadRM3H model. Not only does this

provide a large overestimation of mean annual rainfall

in areas of high elevation, but regions on the leeward

side of areas of high elevation, such as the north-east

England coast, show a classic ‘rain-shadow’ effect

with very low simulated mean annual rainfall.
4.2. Shape of growth curve

The shape of fitted GEV distributions for observed

regional AM series was investigated by Fowler

and Kilsby (2003a) Although most growth curves

were found to approximate a straight line, others had

significant curvature. This was found to be especially

prevalent in the south of England, and is possibly due

to the existence of two mechanisms of extreme

rainfall; frontal (flat) and convective (curved upper

section) (Fowler and Kilsby, 2003a).
The ratio between the two L-moments L-CV and

L-Skewness represents a measure of the shape of the

growth curve. Fig. 5 shows a comparison of this ratio

for the one-day event for observed and RCM data,

respectively. In the observed series, it can be seen that

eastern regions generally display a greater L-CV

value than western regions, suggesting higher varia-

bility in these regions. The highest L-Skewness values

are found in southwest and southeast England. These

decrease northwards, falling to much lower values in

Scotland (Fowler and Kilsby, 2003a). This indicates

that rainfall extremes are much larger in the north

relative to those in southern regions of the UK. This

spatial pattern of variation is similar to those in the

Flood Studies Report (NERC, 1975).

Fig. 5 shows that for both RCMs, L-CV and

L-Skewness are too low at the one-day level, with the

HadRM3H model performing marginally better than

the HadRM2 model. However, both modelled series

replicate the fall in L-CV from eastern to western

regions and in HadRM3H, the observed fall in

L-Skewness values from the south to the north of the

UK is also replicated. At the 10-day level, HadRM3H

again provides an improvement upon HadRM2 (not

shown). L-CV and L-Skewness are well represented

by HadRM3H in most regions, although there is a

slight overestimation of L-Skewness in England.

Fig. 6 shows a comparison of regional growth

curves produced for the SEE region using observed,

HadRM2 and HadRM3H AM series. The RCM

growth curves are too flat, particularly at the one-

and two-day level, and underestimate the magnitude

of long return period events. The underestimation of

the one-day rainfall event magnitude in southeast

England by HadRM2 was also noted by Jones and

Reid (2001). This may be caused by the poor

representation of convective rainfall processes within

the RCMs since the one- and two-day AM in these

regions tend to be a result of convective summer and

autumn storms. Jones and Reid (2001) also attributed

this anomaly to the RCM not capturing transient or

migratory storm activity arriving from the continent.

Further north, one- and two-day AM are generally

the result of frontal rainfall in autumn or winter

months (see Fig. 7, for example) causing less

curvature at the upper end of the growth curve

(Fowler and Kilsby, 2003b). RCMs are therefore able



Fig. 5. Comparison of one-day annual maximum observed regional L-CV and L-Skewness with, (a) HadRM3H control ensemble, one-day and,

(b) HadRM2 control, one-day.
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to simulate extreme one-day AM in these regions

better than in more southerly regions of the UK.

4.3. Return period estimates

In this section we use return period (quantile)

estimates, firstly to evaluate the representation of

extreme rainfall by the RCMs for different regions of

the UK and, secondly, to quantify the intra-ensemble

variability in the simulation of extreme rainfall events

by the HadRM3H model.
4.3.1. Event magnitude of a given return period

Figs. 8–11 present the estimated magnitudes of the

10-year and 50-year return period, using the 1- and

10-day rainfall events for observed, and HadRM2 and

HadRM3H control data from the RFA. It can be seen

that, in general, magnitudes are lower in the east of

England and become higher as a move is made north

and west. The event magnitudes at these return

periods from the control integrations of both

HadRM2 and HadRM3H are quite similar to those

from observations. However, it can be seen that both



Fig. 6. Comparison of growth curves for southeast England for (a) observed 1961–1990, (b) HadRM2 control climate scenario and,

(c) HadRM3H control climate scenario ensemble mean.
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Fig. 7. The timing of extreme rainfall events over parts of the UK

from 1961 to 2000, measured using peak-over-threshold analysis.

The decadal station frequency of one-day POT events in (a) Central

and East England and, (b) South Scotland.

Fig. 8. Comparison of 10-yr, one-day event rainfall magnitudes

(mm) for (a) observed, 1961–2000, (b) HadRM2 control and,

(c) HadRM3H control.

Fig. 9. Comparison of 50-year, one-day event rainfall magnitudes

(mm) for (a) observed, 1961–2000, (b) HadRM2 control and,

(c) HadRM3H control.

H.J. Fowler et al. / Journal of Hydrology 300 (2005) 212–233 223
HadRM2 and HadRM3H provide an underestimate

of event magnitude in southeast England, with

HadRM3H additionally overestimating these in both

north Scotland and southwest England. In these

regions, the HadRM2 model performs much better

than the HadRM3H model in replicating the observed

event magnitudes of extreme rainfall, largely as
Fig. 10. Comparison of 10-year, 10-day event rainfall magnitudes

(mm) for (a) observed, 1961–2000, (b) HadRM2 control and,

(c) HadRM3H control.



Fig. 11. Comparison of 50-year, 10-day event rainfall magnitudes

(mm) for (a) observed, 1961–2000, (b) HadRM2 control and,

(c) HadRM3H control.
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a result of the better representation of mean rainfall in

these regions by the HadRM2 model. However, for

both models, the differences between the estimated

event magnitude at a given return period for the

observed data and control integrations are surprisingly

small given the original difference in spatial resol-

ution between the two datasets.
Table 4

The Southeast England region (SEE)-comparison of observed (OBS), Ha

1-, 2-, 5- and 10-day duration events

Return

period

Dataset Estimated rainfall (mm)

One-day Two-day

Min Max Min M

5 yr OBS 42 44 51 54

HadRM2 39 40 50 52

HadRM3H 36 37 48 50

10 yr OBS 49 52 60 65

HadRM2 43 46 57 60

HadRM3H 42 44 56 59

25 yr OBS 60 66 74 81

HadRM2 51 54 65 70

HadRM3H 50 53 67 72

50 yr OBS 68 78 85 96

HadRM2 56 61 71 77

HadRM3H 56 60 76 83

The observed estimates are adjusted by an areal reduction factor taken from

using the bootstrap simulation method detailed in Section 3.4.
For the three regions of southeast and southwest

England and north Scotland more detail is given in

Tables 4–6. These show a comparison of the 5-, 10-,

25- and 50-year return period magnitudes for 1-, 2-, 5-

and 10-day extreme rainfall events for the observed,

and the HadRM2 and HadRM3H control climates.

The uncertainty bounds given are taken from the

bootstrap simulation method outlined in Section 3.4.

Table 4 clearly shows the underestimation of SEE

one- and two-day event magnitudes by the HadRM3H

and HadRM2 models for higher return period events.

This is a consequence of the lack of curvature at the

upper end of the growth curve detailed in Section 4.2.

In Tables 5 and 6, the event magnitudes for given

return periods are shown for the regions of southwest

England and north Scotland, respectively. It is likely

that the overestimation of event magnitudes in these

regions by the HadRM3H model is a direct con-

sequence of the overestimation of mean annual

rainfall over high elevation areas (see Section 4.1).

This provides a particularly high overestimate over

north Scotland.

Differences between the HadRM3H control and the

observed event magnitude for a given return period

can be better seen using the GBA approach (Fig. 12).

There are clear spatial patterns in the HadRM3H

estimates, with the largest event magnitudes found
dRM2 and HadRM3H control scenario return period estimates for

Five-day Ten-day

ax Min Max Min Max

71 74 98 102

71 74 101 104

67 69 88 91

80 85 111 117

80 84 112 117

79 83 101 106

93 101 127 136

91 96 123 130

95 103 119 127

102 113 139 152

98 107 132 142

109 122 134 145

FSR (see Table 3). The uncertainty bounds given here are estimated



Table 5

The Southwest England region (SWE)-comparison of observed (OBS), HadRM2 and HadRM3H control scenario return period estimates for

1-, 2-, 5- and 10-day duration events

Return

period

Dataset Estimated rainfall (mm)

One-day Two-day Five-day Ten-day

Min Max Min Max Min Max Min Max

5 yr OBS 46 48 59 62 85 88 120 124

HadRM2 46 48 61 63 88 90 123 126

HadRM3H 46 47 65 66 94 97 132 135

10 yr OBS 54 57 68 72 95 99 133 138

HadRM2 51 53 70 72 100 104 135 140

HadRM3H 52 54 75 77 107 112 148 153

25 yr OBS 63 70 80 86 106 113 147 156

HadRM2 56 59 80 85 118 125 152 160

HadRM3H 61 64 88 93 125 135 171 179

50 yr OBS 71 81 89 98 115 124 157 170

HadRM2 59 64 87 95 133 142 165 176

HadRM3H 68 73 99 107 140 156 189 201

The observed estimates are adjusted by an areal reduction factor taken from FSR (see Table 3). The uncertainty bounds given here are estimated

using the bootstrap simulation method detailed in Section 3.4.
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in regions of high elevation, e.g. western Scotland

and Wales (not shown). The estimates then decrease

eastwards, with the smallest magnitudes found in

central England and East Anglia (not shown). This

replicates the large observed spatial variation found in

regions with complex orography. At longer durations,

the spatial variability becomes more pronounced, with
Table 6

The North Scotland region (NS)-comparison of observed (OBS), HadRM2

and 10-day duration events

Return

period

Dataset Estimated rainfall (mm)

One-day Two-day

Min Max Min

5 yr OBS 53 54 73

HadRM2 53 55 79

HadRM3H 59 60 87

10 yr OBS 60 63 83

HadRM2 60 62 92

HadRM3H 66 68 98

25 yr OBS 69 74 94

HadRM2 69 73 111

HadRM3H 73 77 110

50 yr OBS 76 82 103

HadRM2 76 81 126

HadRM3H 79 84 119

The observed estimates are adjusted by an areal reduction factor taken from

using the bootstrap simulation method detailed in Section 3.4.
the largest spatial variability being found in Scotland

which exhibits a pronounced west–east gradient in

estimated event magnitude at a given return period

between high values in western Scotland and lower

values in central and eastern Scotland (not shown).

On average, the HadRM3H model is found to

underestimate the event magnitude for a given return
and HadRM3H control scenario return period estimates for 1-, 2-, 5-

Five-day Ten-day

Max Min Max Min Max

76 112 116 164 169

82 114 117 158 162

90 131 135 184 188

87 125 132 181 188

95 131 136 175 180

101 146 152 202 207

101 142 152 202 214

116 156 163 196 204

115 165 173 222 230

113 154 169 217 234

132 178 186 214 224

126 178 189 235 247

FSR (see Table 3). The uncertainty bounds given here are estimated



Fig. 12. Difference in return period estimates (%) between the HadRM3H model and the scaled UKMO (HadRM3H/UKMO) data for the one-

day event (a) 10-year return period and (b) 50-year return period and the 10-day event (c) 10-year return period and (d) 50-year return period.
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period by about 10% for the one-day totals (Fig. 12a

and b). However, this is highly spatially variable with

anomalies ranging from K50 to C40%. The

anomalies between observed and HadRM3H model

estimates closely follow the differences in mean

rainfall highlighted in Section 4.1. Overall, positive

anomalies tend to be associated with increased

orography, with the largest model overestimations

being found along the west coast of Scotland. The

largest underestimations (30–50%) are similarly

found in central and eastern Scotland. This suggests

that the HadRM3H model largely exaggerates the

observed west–east rainfall gradient. For longer

duration events, these model differences increase

with a range of K80 to C40% for 10-day totals, and

significant model underestimation is also found in

southeast England (Fig. 12d). This is similar to that

found in the regional analysis above and by Jones and

Reid (2001) for HadRM2. For the UK as a whole,

larger model-observed differences are generally found

for higher return period and longer duration events

(Fig. 12).
From the range of estimates that are obtained when

using the GBA it is clear that some regions exhibit very

large variability and the choice of grid box to represent

a particular region or case-study within a region may

be critical. Table 7 shows, for each region and rainfall

duration, the minimum and maximum estimated

magnitude of the 5-, 10-, 25- and 50-year return

period event. The largest range is found in north and

south Scotland (NS and SS). This is closely followed

by the west coast of England (SWE and NWE). The

smallest regional variability occurs in central England

and southeast England (CEE and SEE).

4.3.2. Uncertainty in estimations

In this section, we address two kinds of

uncertainty. The first relates to HadRM3H, where

the three ensemble members provide a measure of

the uncertainty in model output or intra-ensemble

variability. Secondly, we address the uncertainty in

return period estimates using the bootstrap resam-

pling methodology described in Section 3.4.

Although limited to the climate variability produced



Table 7

Minimum and maximum HadRM3H return periods estimated using individual GBA per rainfall region

Period

(year)

Region One-day total Two-day total Five-day total Ten-day total

Min (mm) Max (mm) Min (mm) Max (mm) Min (mm) Max (mm) Min (mm) Max (mm)

5 NS 33 114 45 174 58 273 74 387

5 SS 35 102 46 154 66 238 88 336

5 ES 35 59 44 85 60 127 75 170

5 NI 33 49 43 66 58 94 78 130

5 NWE 30 60 39 87 51 126 64 181

5 NEE 31 51 41 70 51 94 63 124

5 CEE 31 41 41 58 57 81 75 109

5 SEE 33 40 44 52 57 76 72 102

5 SWE 33 71 45 104 63 157 85 220

10 NS 38 124 52 192 66 300 82 430

10 SS 40 110 53 168 76 260 100 370

10 ES 40 65 51 96 69 144 85 191

10 NI 38 55 50 74 64 104 86 143

10 NWE 35 67 46 99 61 140 74 200

10 NEE 37 59 49 79 59 106 74 138

10 CEE 36 46 48 66 67 93 88 125

10 SEE 39 46 52 61 68 88 84 115

10 SWE 39 78 53 118 74 178 97 244

25 NS 45 134 61 213 76 330 92 480

25 SS 47 119 61 182 87 284 115 410

25 ES 47 72 59 111 80 164 97 215

25 NI 45 63 58 85 72 118 95 159

25 NWE 42 75 56 113 73 158 88 224

25 NEE 47 71 59 92 72 121 88 154

25 CEE 44 54 57 77 80 112 104 147

25 SEE 48 56 60 73 80 106 101 136

25 SWE 49 86 65 137 91 208 114 274

50 NS 49 141 67 228 83 349 99 515

50 SS 53 124 68 192 95 299 126 437

50 ES 52 77 65 121 89 179 106 233

50 NI 51 68 64 93 77 128 101 171

50 NWE 47 81 64 123 83 172 99 241

50 NEE 52 80 68 100 83 132 100 165

50 CEE 50 60 64 86 92 129 116 165

50 SEE 54 65 67 83 91 125 113 156

50 SWE 57 93 76 152 105 232 126 297
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by the three HadRM3H ensemble runs, the resam-

pling of the three sets of AMs in order to calculate

multiple sets of return period estimates makes it

possible to estimate a confidence interval for the

event magnitudes for given return periods that are

presented in this study.

Intra-ensemble variability is calculated here as the

difference between the lowest and highest ensemble

return period estimate (of the three HadRM3H

31-year control ensembles) for each grid box divided

by the corresponding return period estimate (using all
three ensemble members, i.e. using 93 years). The

result may be seen as the proportion of uncertainty in

return period estimation relative to the absolute event

magnitude at a given return period for each grid box.

Since both terms have unit mm the uncertainty

measure becomes dimensionless.

Maps of intra-ensemble variability were pro-

duced for the daily and all multi-day AM. Here we

show maps for only the 1- and 10-day events

(Figs. 13 and 14, respectively) to illustrate the

spatial differences between HadRM3H model



Fig. 13. Proportion of uncertainty range relative to magnitude of the HadRM3H return period estimates for the one-day event, where (a) 5-year

return period, (b) 10-year return period, (c) 25-year return period and (d) 50-year return period.
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ensemble members. For all rainfall durations (some

not shown here) the intra-ensemble variability in

event magnitude estimated for a given return period

varies from 1 to 50% for the different grid boxes

where, generally, higher values are associated with

longer return periods. For one-day duration events,

at lower return periods the largest variability in

estimate is found in eastern regions, particularly

southeast England and eastern Scotland (Fig. 13).

At longer return periods, most regions show

increases in intra-ensemble variability. However,

in western Scotland, Northern Ireland and northern

England, the intra-ensemble variability appears

small. For most grid boxes intra-ensemble varia-

bility decreases for longer duration events, the

exception being grid boxes over much of Scotland

and northern England (Fig. 14).

The uncertainties associated with event magnitude

estimates for a given return period are presented as the

ratio of the uncertainty range (using the 5th and 95th

percentile, as estimated from the bootstrap procedure)

to the actual return period estimate. These ratios give
an indication of how large the uncertainty is relative to

the estimate itself. Results are presented here for the

10- and 50-year return period magnitudes using the 1-

and 10-day event (Fig. 15). As for the intra-ensemble

uncertainty this measure is also dimensionless.

Because of the relatively smaller event magnitudes in

east and southeast England, the uncertainty range has a

larger effect in these regions than west and northwest

regions of the UK. Hence, the spatial pattern shows

increasing uncertainty from west to east, and from

north to south. The uncertainty ratios are generally of

similar magnitude at all durations for the lower return

period events. However, uncertainty ratios increase

with higher return periods, the increase being some-

what larger for the longer duration events (compare

Fig. 15b and d).
5. Discussion and conclusions

We have assessed the performance of a RCM in the

simulation of UK extreme rainfall on an annual basis



Fig. 14. Proportion of uncertainty range relative to magnitude of return period estimates from HadRM3H for the 10-day event, where (a) 5-year

return period, (b) 10-year return period, (c) 25-year return period and (d) 50-year return period.

Fig. 15. Uncertainty in return period estimates for the HadRM3H model using the bootstrap simulation method for the one-day event (a) 10-year

return period and (b) 50-year return period and the10-day event (c) 10 year-return period and (d) 50-year return period.

H.J. Fowler et al. / Journal of Hydrology 300 (2005) 212–233 229



H.J. Fowler et al. / Journal of Hydrology 300 (2005) 212–233230
using both regional frequency analysis and individual

GBA. The major conclusions of this study are:
†
 HadRM3H overestimates mean annual rainfall in

areas of high elevation but in leeward areas there is a

classic ‘rain shadow’ effect with very low simulated

mean annual rainfall. This is thought to be a result of

an over-strong orographic control within the model,

leading to an exaggeration of the observed west–

east rainfall gradient.
†
 However, despite the original differences in spatial

resolution between the modelled and observed data,

HadRM3H provides a good representation of

extreme rainfall at various return periods and

durations across most of the UK. Additionally, the

GBA shows that HadRM3H is able to replicate the

large observed spatial variation in extreme rainfall

found in regions with complex orography, particu-

larly for shorter durations.
†
 In certain regions, particularly north Scotland, there

is a large overestimation of extremes. This is

thought to be a direct consequence of the estimation

of mean rainfall in these regions by HadRM3H,

with the largest model overestimations found along

the west coast of Scotland.
†
 Similarly, in eastern ‘rain shadowed’ regions there

is some underestimation of extremes, highlighted

particularly by the GBA. The largest underestima-

tions (30–50%) are found in central and east

Scotland for one-day rainfall, increasing to about

80% for 10-day rainfalls.
†
 Significant model underestimation is also found in

southern regions of the UK, particularly SEE

and SWE. Jones and Reid (2001) attribute this to

the lack of model representation of transitory or

migratory storm activity from the continent. Here,

we attribute this anomaly to the poor representation

of convective processes within the model, causing

the growth curves to be too flat and underestimating

the magnitude of long return period events.

Although there are some problems with the

representation of extreme rainfall by the HadRM3H

model, almost all are related to the orographic

enhancement of mean rainfall. Durman et al. (2001)

overcame this for the HadRM2 model by scaling

the simulated values to have the same mean as the

observations. This allowed the RCM to capture the

upper-tail of the rainfall distribution more realistically.
However, this methodology relies on the assumption

that the scaling will be the same in the future.

It is, therefore, worthwhile considering how best to

use the information from this study in informing

hydrological design. Whilst it may be desirable to use

RCM grid-based data directly and with no modifi-

cation, it is clear that inaccuracies in the mean

climatology and extremes preclude their use in this

way. Standard practice for dealing with corrections to

a number of climate variables has been to apply

factors based on the ratio of the control climatology to

observed values on a grid box basis (as Durman et al.,

2001). Inspection of the relatively large errors in a

number of grid box mean rainfall estimates make this

option unattractive even for estimates of mean

rainfall, and we would suggest that recourse is made

to RFA as demonstrated here. RFA benefits in both

the use of more data in extremes estimation, and in

averaging to avoid errors from individual grid boxes.

Care must, of course, be exercised in cases where the

model appears to represent extreme distributions

better than the mean. In cases where the spatial

pattern is important, then outputs from a grid based

analysis will be more appropriate.

Using RFA, the HadRM3H model may be used

with some confidence to estimate present extreme

rainfall distributions, showing good predictive skill in

estimating the statistical properties of extreme rainfall

during the baseline period, 1961–1990. This implies

that the RCM will also have skill in predicting how

these extremes might change under enhanced green-

house conditions.
Acknowledgements

We thank Tim Osborn (Climatic Research Unit,

University of East Anglia, UK) for the use of the daily

rainfall data set and the British Atmospheric Data

Centre (BADC) for the most recent rainfall data. The

HadRM2 and HadRM3H data has been supplied by

the Climate Impacts LINK project (DEFRA Contract

EPG 1/1/154) on behalf of the Hadley Centre and UK

Meteorological Office. The UKMO 5 km datasets

were created with financial support from the Depart-

ment of Environment, Food and Rural Affairs and are

being promoted through the UK Climate Impacts

Programme (UKCIP). They form part of



H.J. Fowler et al. / Journal of Hydrology 300 (2005) 212–233 231
the UKCIP02 national climate scenarios prepared for

UKCIP by the Tyndall and Hadley Centres. This work

is part of the SWURVE (Sustainable Water: Uncer-

tainty, Risk and Vulnerability Estimation in Europe)

project, funded under the EU Environment and

Sustainable Development programme, grant number

EVK1-2000-00075. Richard Jones of the UK Met.

Office (Hadley Centre) is thanked for comments on

the final draft of this paper. The authors would also

like to thank the two anonymous reviewers whose

comments helped to improve the paper.
Appendix A. Regional frequency analysis

RFA usually follows a two part index-flood

procedure, which is a convenient way of pooling

statistics from different sample data (Hosking and

Wallis, 1997) and can be used for any type of data. If

the data are available at N sites, with site i having

sample size ni and observed data Xij, jZ1,.,n. Then

Xi(F), 0!F!1, forms the frequency distribution’s

quantile function at site i. In an index-flood procedure,

the sites must form a homogeneous region, with

identical frequency distributions at the N sites apart

from the site-specific scaling factor, the index-flood

(Hosking and Wallis, 1997).

The index-flood procedure may then be defined as

(from Hosking and Wallis, 1997) (Eq. (A1))

XiðFÞ Z RmedixðFÞ; i Z 1;.;N (A1)

where Rmedi is the index-flood (here it is the median

of the at-site AM frequency distribution, as in the FEH

(IH, 1999)), and x(F) is the regional growth curve, a

quantile function identical at every site within that

region.

The site-specific index-flood variable, Rmedi, is

naturally estimated for each site as the median of the

annual maximum dataset at site i.

Secondly, the regional growth curve, x(F), 0!
F!1 is derived, using a pooled analysis of the

dimensionless rescaled data, xijZXij/Rmedi,

jZ1,.,ni, IZ1,.,N. Here, L-moments are used

to derive the regional growth curve. The L-moment

ratios of L-CV, L-Skewness and L-Kurtosis are

derived for each site within a region and then

combined by regional averaging, weighted accord-

ing to record length (as Hosking and Wallis, 1997).
Thus, giving an example formula for L-CV (Eq.

(A3))

LCVpooled Z
XN

iZ1

wiLCVi (A2)

where N is the number of sites in the pooling

group and the weight wi is an effective record

length at the ith site defined by (Eq. (A3)):

wi Z
niPN
iZ1 ni

(A3)

The denominator is the total number of station-

years of record in the pooling group, while the

numerator is the number of station-years at the ith

site. The weighted average L-Skewness and L-

Kurtosis moment ratios are derived in the same

way.

The usual L-moments approach is then used to fit

the GEV (Generalised Extreme Value) distribution for

each AM series by matching the sample L-moments to

the distribution L-moments.

The GEV distribution has three parameters and is

described by (Eq. (A4))

xðFÞ Z x C
a

k
ð1 K ðKln FÞkÞ ðk s0Þ (A4)

where x is the location parameter, a the scale

parameter, k the shape parameter and F refers to a

given quantile.

A regional growth curve was fitted for each region

using the regionally averaged site L-moment ratios.

The fitted growth curve is given by (Eq. (A5))

xðFÞ Z 1 C
b

k
fðln 2Þk K ðKln FÞkg

where

b Z
a

x C a
k
f1 K ðln 2Þkg

(A5)

The parameter k is estimated from the L-skewness

(Hosking et al., 1985) (Eq. (A6)):

k z7:8590c C2:9554c2

where

c Z
2

3 C t3

K
ln 2

ln 3
(A6)
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The parameter b is estimated using L-CV (Hosking

and Wallis, 1997) as (Eq. (A7)):

b Z
kt2

t2fGð1 CkÞK ðln2ÞkgCGð1 CkÞð1 K2KkÞ

(A7)

where G denotes the gamma function, t2 is the L-CV

L-moment ratio and t3 is the L-Skewness L-moment

ratio.

Quantile estimates at site i can then be obtained

by combining the estimates of Rmedi and x(F) as

(Eq. (A8)):

XiðFÞ Z RmedixðFÞ (A8)
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