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Abstract

Further developments of a stochastic rainfall model conditioned by weather types for the water resource region of Yorkshire,

UK, are presented. The model is extended to multi-site and a new technique is developed to allow the reproduction of historical

monthly rainfall cross-correlation statistics. Monte–Carlo simulation and sampling techniques are combined to preserve

monthly historical rainfall cross-correlation between two sub-regional Neyman–Scott Rectangular Pulses (NSRP) rainfall

models. These are conditioned seasonally with a semi-Markov weather generator and used to generate multiple long synthetic

series for climate impact assessment in Yorkshire, encompassing an area of some 15,000 km2. An example application of the

model in constructing a climate change scenario for 2021–2050 is detailed. Current UK climate change scenarios show change

in both airflow patterns and rainfall properties. In climate scenario development it is therefore desirable to be able to change the

frequency of weather state occurrence as well as the mean and variance statistics of rainfall. This methodology allows both the

impact of variation in the frequency or persistence of weather states and changes in internal weather state properties such as

increased intensity or proportion of dry days for example to be investigated. This methodology of simulating potential

atmospheric circulation changes may provide a valuable tool for the future management of water resource systems and many

other hydrological impact applications.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Significant shifts in the spatial and temporal

distribution of rainfall across northern Europe have

been suggested by both general circulation model

(GCM) future scenario data (Hulme and Jenkins, 1998)
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and observational evidence (Mayes, 1995). In the UK,

there has been a recent clustering of flood events, such

as during autumn 2000 (Marsh, 2001), and drought

episodes, such as the 1995 Yorkshire drought (Marsh

and Turton, 1996). The 1995–96 drought, with an

estimated rainfall return period of more than 200 years

(Marsh, 1996), caused severe water stress in the

Yorkshire region. The drought necessitated the

emergency measure of bringing in water by road

tanker from outside the region, and was caused by
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an unusual pattern of persistent easterly weather

systems, with rain falling predominantly to the east

of the region rather than the normally wetter west

(Fowler and Kilsby, 2002a). Linking rainfall properties

to atmospheric circulation may therefore provide a

valuable tool in predicting the hydrological impacts of

future climate change.

In climate change studies, the inaccuracies and

the coarse scale of GCM information has led many

researchers to adopt synoptic-scale approaches

(McGuffie et al., 1999). Statistical downscaling

approaches have been developed that assume a

close link between atmospheric circulation patterns

and local climate variables such as rainfall. These

linkages have been made for both large and small

regions by, for example, Bardossy and Plate (1992),

Corte-Real et al. (1998), Conway et al. (1996) and

Fowler et al. (2000).

In Fowler et al. (2000), three single-site rainfall

models were developed for the Yorkshire Water

resource region, UK, which covers an area of some

15,000 km2. Each single-site model represented a

climatological sub-region within Yorkshire deter-

mined from the analysis of 150 daily rainfall records.

This methodology coupled a semi-Markov based

weather generator to the Neyman Scott Rectangular

Pulses (NSRP) stochastic rainfall model (Cowpert-

wait et al., 1996a,b) and was conditioned on historical

daily rainfall data. Using the climatology of the

region, the Lamb weather types (Lamb, 1972;

Jenkinson and Collinson, 1977) were grouped into

three clusters or weather ‘states’: ‘anticyclonics’,

‘northerlies’ and ‘westerlies’ (see Table 1), using the

same grouping for each sub-region (site). These

were then split seasonally (October–April, May–

September); giving the winter-anticyclonic (WA),

winter-northerly (WN), winter-westerly (WW), sum-

mer-anticyclonic (SA), summer-northerly (SN) and

summer-westerly (SW) weather states. The weather
Table 1

Weather type groupings for the three weather states in both

‘summer’ and ‘winter’

Weather state Objective Lamb weather types

Anticyclonic (A) A, AE, ASE, AS, ASW

Northerly (N) AN, ANE, N, NE, CN, CNE, E, SE, CE, CSE

Westerly (W) AW, ANW, S, SW, W, NW, C, CS, CSW,

CW, CNW
generator was then calibrated using Lamb’s daily

weather-type data from 1961 to 1990 and a NSRP

model fitted for each weather state. If the weather type

for a particular day is unclassified by Lamb (1972),

then the weather type is considered to be the same as

the previous day. Each combined model produced

synthetic time series that reproduce key aspects of the

historic rainfall regime down to an hourly time-step at

a single site.

This paper presents the further development of this

modelling methodology to allow multi-site generation

of synthetic rainfall series for climate change impact

assessment. The modelling of spatial-temporal rain-

fall based on stochastic point processes goes as far

back as Le Cam (1961), with the approach developing

rapidly in the 1980s (e.g. Waymire et al., 1984; Cox

and Isham, 1988). More recently, multi-site rainfall

generation has been demonstrated by many authors

(Wilks, 1998, 1999; Wilks and Wilby, 1999;

Srikanthan and McMahon, 2001), with most using a

Markov chain process to simulate rainfall occurrence

as a function of observed or modelled synoptic scale

variables (e.g. Hughes and Guttorp, 1999; Bellone

et al., 2000; Palutikof et al., 2002; Charles et al., 1999,

2003). Downscaling techniques have since been

further developed for multi-site precipitation gener-

ation using broad atmospheric circulation patterns by

many authors (e.g. Corte-Real et al., 1999a,b; Bellone

et al., 2000; Bardossy et al., 2001; Qian et al., 2002;

Wilby et al., 2002, 2003).

In the current study, Monte–Carlo simulation and

sampling techniques are combined to produce long

synthetic rainfall series at multiple sites within sub-

regions with very different rainfall properties arising

from the same weather state. The coupling of a

weather generator to a multi-site stochastic rainfall

model is extremely powerful as it permits investi-

gation into the impacts of both variations in weather

type persistence or frequency and internal weather

type properties such as rainfall intensity changes (e.g.

Osborn, 2000; Fowler and Kilsby, 2003a,b). Here, the

model is calibrated to simulate rainfall for the

UKCIP98 2021–2050 climate change scenario

(Hulme and Jenkins, 1998) using variations in both

weather type occurrence and rainfall properties. Using

this, and other climatic variability and change

scenarios based on UKCIP98, the impact of future

climate change upon the Yorkshire water resource
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system was investigated by Fowler et al. (2003).

However, it is possible to use the same methodology

to examine the impacts of the newer UKCIP02

scenarios (Hulme et al., 2002) or indeed any other

climate change scenario. This technique may provide

a valuable tool for future water resource management,

as well as other hydrological applications, as climatic

trends, both observed and modelled, can be readily

translated into hydrological impacts.
2. Background

In Yorkshire, annual rainfall varies from just

600 mm in the eastern lowlands (Vale of York), to

over 2000 mm at high western sites (Pennines). The

main rainfall source is weather systems from the

westerly quadrant, and this has resulted in

the installation of supply reservoirs, predominantly

in the Pennine west of the region. These fill during

winter months and are drawn down in summer

months, with relatively little carry-over from 1 year

to the next. The 1995–1996 drought was caused by an

unusually high number of easterly weather systems

during the summer and autumn months of 1995,

followed by a highly anticyclonic winter through to

1996 (Fowler and Kilsby, 2002a). This resulted in a

water deficit in the west of the water resource region,

the normal source of the majority of the population’s

water supplies. The current climatic trends in York-

shire (Fowler and Kilsby, 2002b) and the future

projection of climate change in the UK in general

(Hulme and Jenkins, 1998) suggest that winters will

become wetter and summers drier on average. The

relative changes in rainfall will be largest in the south

and east of the UK, with summer reductions and

winter increases as high as 50 and 30%, respectively,

by the 2080s under the highest emissions scenarios

(Hulme and Jenkins, 1998).

This exacerbation of seasonal rainfall contrasts in a

changing climate may have a profound effect on water

resource systems in already vulnerable areas, such as

Yorkshire. In much of the north of England, short-

term summer drought can have an extremely detri-

mental effect on water supplies. The geology of many

areas results in little, if any, groundwater storage

potential, with a resulting reliance upon surface water

resources. These resources, particularly single-season
reservoirs, can be depleted rapidly during a dry

period, initiating a water resource ‘drought’. Northern

regions are therefore much more likely to suffer

single-season droughts, whereas groundwater domi-

nated catchments in the south require multi-season

droughts to seriously affect water supplies. The

projected climate changes may therefore impact

water supplies in northern regions such as Yorkshire

more dramatically than in southern regions of the UK

which have more groundwater resources. Establishing

the likely effect of such climate changes upon the

reliability, resilience and vulnerability of water

resource systems (e.g. Hashimoto et al., 1982a,b;

Fowler et al., 2003) has become a priority for the

successful future management of such resources.

In England and Wales, water companies have

generally used the ‘factor’ approach to produce

estimates of the reliability of their water supplies

under a climate change scenario. This method simply

uses a factor taken from the results of a GCM

experiment to perturb the mean of a historical rainfall

series which is then inputted into a water resource

model. This results in no change to the temporal and

spatial structure of rainfall fields and is, as such, an

unrealistic simulation of climate change. In Fowler

et al. (2000), a stochastic single-site weather-con-

ditioned NSRP rainfall model was developed for each

of three sub-regions within Yorkshire, the split based

on the climatology of the region (Fig. 1). Each model

allowed the generation of long synthetic daily rainfall

series, preserving the statistical properties of the

calibration series but also enabling the user to change

both the rainfall statistics of a weather type and its

frequency of occurrence. Unfortunately, however,

each model generated rainfall only at a single-site

level. The further development of this methodology to

allow multi-site modelling will allow its use in

climate change impact studies and answer basic

questions such as that of water resource reliability.
3. Model development

3.1. The spatial NSRP model

The NSRP model is a clustered point-process

stochastic rainfall model, and is fully described by

Cowpertwait (1991, 1994, 1995) and Cowpertwait



Fig. 1. The three Yorkshire precipitation sub-regions developed in

Fowler et al. (2000). Here, sub-regions 2 and 3 are amalgamated to

form an ‘eastern’ sub-region but sub-region 1 is kept intact to form a

‘western’ sub-region. Rain gauges used in the study are indicated by

black circles and the two representative sites, Moorland Cottage and

Lockwood Reservoir, are indicated by black squares.

Table 2

The parameters of a single-cell type spatial NSRP model

Parameter Explanation

l (lambda) Storm origin arrival rate (h–1)

b (beta) 1/(mean waiting time for cell origins after the

storm origin) (h–1)

r (rho) Mean cell density associated with a storm origin

(km–2)

h (eta) 1/(mean duration of a cell) (h–1)

x (xi) 1/(mean cell intensity) (h mm–1)

g (gamma) 1/(mean cell radius) (km–1)
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et al. (1996a,b). The spatial NSRP model was

originally developed from a single site rainfall

model and was intended to accurately represent the

statistics of several sites simultaneously and with

spatial consistency. The multi-site model first gen-

erates a uniform spatial-temporal NSRP model

(following Cowpertwait, 1995) with uniform

expected mean and variance of daily rainfall (or

other chosen time period), probability of a dry period,

spatial cross-correlation with distance, and autocorre-

lation properties. A scale factor is then applied to the

time series of each site (here on a weather state basis).

Whilst this procedure allows for a spatially varying

mean and variance, albeit with a uniform standard

error, the autocorrelation and dry period probabilities

remain uniform.

The six parameters of the spatial NSRP model can

be found in Table 2. These are the same as the single-

site model, with the exception that n (the mean

number of rain cells associated with a storm origin) in

the point model is replaced by r (the mean cell density

associated with a storm origin) and g (the cell radius

parameter). The stochastic process at a point within

the spatial model is equivalent to a single-site model
at that point, provided these parameters are related by:

n Z
2pr

g2
(1)

In the spatial model, mm(1) (mean hourly rainfall) is

used to estimate the scaling factor, jm, for each site m.

This is equivalent to dividing each hourly series by its

mean to produce n transformed series. Each series

then has the same mean and approximately the same

variance (i.e. approximate uniformity in space). The

model parameters are estimated by using a simplex

algorithm to minimise the following sum of squares:

Xn

mZ1

X

fm2F

uðf̂ mÞf1 K fm=f̂ mg
2 (2)

subject to: l, b, n, h, x, gO0, where fm is the estimated

statistic calculated to result from a chosen set of

parameters for site m, f̂ m is a sample estimate of the

statistics taken from the hourly data for the mth site,

and F denotes a set of aggregated single-site proper-

ties. The uðf̂ mÞ are weights that can be applied if some

of the properties are to be given greater importance in

the fitting procedure (Cowpertwait, 1995).
3.2. Model limitations and regionalisation

As mentioned above, a limitation of the NSRP

spatial model is that the dry period probability is

uniform in space. However, the assumption of

uniformity is only a reasonable approximation in

small regions and is certainly not valid where

rainfall varies significantly with orography. The dry

day probability (or proportion of dry days (PD)) is

highly variable between the western and eastern

sub-regions for the same weather state (see Fowler



Table 3

Historical spatial cross-correlation of annual and monthly

(bracketed) rainfall totals from 1961–1990 between the three

index sites prior to the amalgamation of the two easterly sub-regions

Annual Moorland

Cottage

Lockwood

reservoir

Kirk Bram-

with

Moorland

Cottage

– 0.24 (0.21) 0.21 (0.20)

Lockwood

reservoir

0.24 (0.21) – 0.69 (0.68)

Kirk Bram-

with

0.21 (0.20) 0.69 (0.68) –
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et al., 2000). This means that separate NSRP

models must be calibrated for each sub-region and

a technique developed to preserve spatial cross-

correlation properties between the separate sub-

regional models.

The historical spatial cross-correlation for annual

and monthly rainfall totals from 1961–1990 in the

three sub-regions (represented by indicative sites at

Moorland Cottage, Lockwood Reservoir and Kirk

Bramwith) are shown in Table 3. Since weather states

in the south-eastern and north-eastern sub-regions

share similar spatial cross-correlation and PD proper-

ties it was decided to simplify the modelling

procedure by amalgamating the two areas into a

new ‘eastern’ sub-region. Weather states in the

‘eastern’ sub-region therefore derive their seasonality

from the model previously fitted to Lockwood

Reservoir in Fowler et al. (2000), splitting the

climatological year into two intervals, January to

June (season 1) and July to December (season 2).

Season 1 and season 2 are arbitrarily titled ‘summer’

and ‘winter’ in this case. In the ‘western’ model, the

weather state seasonality is taken from the Moorland

Cottage model detailed in Fowler et al. (2000), with

‘summer’ from April to August and ‘winter’ from

September to March. In both cases, the choice of

seasons was derived objectively by k-means cluster-

ing, a technique to group data into minimum variance

groups. A series of Monte–Carlo simulations

additionally showed that parameterisation by month

was unnecessary, and that the use of all of Lamb’s 27

weather types (Lamb, 1972) separately provided no

additional benefit for this case.

To determine whether accurate spatial cross-

correlation properties can be retained between the
two sub-regional models, Monte–Carlo simulation

was used to produce an ensemble of fifty realizations

of the 1961–1990 period for each sub-region using the

models developed by Fowler et al. (2000). The results

suggested that the annual and monthly historical

spatial cross-correlation between sub-regions can be

synthetically reproduced by the model within the fifty

sequences. This is developed in more depth later in the

paper.

3.3. Model calibration

Concatenated rainfall series were produced for

each ‘summer’ and ‘winter’ weather state for each

site in the eastern and western models, respectively.

A spatial NSRP model was then fitted for each

weather state for each of the western and eastern

sub-regions using 28 daily rainfall records from

1961–1990. This involved the fitting of 19 sites

within the western region and nine sites within the

eastern region (see Fig. 1). These particular rainfall

series were chosen as they provide the necessary

input data for reservoir and river resources within

the Yorkshire water resource model (see Fowler et

al., 2003).

The model was fitted using the following sample

statistics (see Table 4), where i denotes an index site

representative of the sub-region, for the western

model, Moorland Cottage, and for the eastern

model, Osmotherly Filters, and k denotes a spatial

average: mi(24) (24-h mean rainfall), fk(24) (24-h dry

period probability) where a dry day is defined as

having less than 0.2 mm rainfall, Vi(24) (variance of

24-h rainfall amounts), Vi(48) and all possible 24-h

cross-correlations, where cross-correlation denotes a

correlation between two different sites. Auto-corre-

lation, a lagged correlation in time at the same site,

was not used in fitting as this is reproduced by the

weather state generator by the preservation of

historical weather state persistence probabilities (as

shown in Fowler et al., 2000). The PD statistic used is

a spatial average across the sub-region for a particular

weather state, as the NSRP model is unable to produce

spatially varying PD. Weights were assigned to sample

moments during the fitting procedure to improve the

model fit; mi(24) was given a weighting of 10, fk(24) a

weighting of 3, Vi(24) and Vi(48) were assigned a default

unit weight. The 24-h cross-correlations were given



Table 4

Observed, fitted and simulated statistics for (a) Moorland Cottage, the index site for the western model and, (b) osmotherly filters, the index

site for the eastern model: m(24) (mean 24-h rainfall), f(24) (proportion dry days), V(24) (variance of 24-h rainfall amounts), V(48) (variance of

48-hr rainfall amounts)

Weather

state

Parameter

m(24)

obs

m(24)

fitted

m(24)

sim

f(24)

obs

f(24)

fitted

f(24)

sim

V(24)

obs

V(24)

fitted

V(24)

sim

V(48)

obs

V(48)

fitted

V(48)

sim

(a)

SA 1.29 1.29 1.30 0.77 0.73 0.81 20.20 13.48 15.91 43.79 43.30 35.23

SN 2.76 2.76 2.77 0.44 0.38 0.41 33.70 21.17 20.04 77.41 60.08 56.65

SW 5.74 5.73 5.92 0.31 0.31 0.26 80.60 76.70 65.47 169.96 177.14 165.46

WA 2.43 2.44 2.54 0.57 0.58 0.56 39.20 29.54 24.70 91.15 88.81 56.97

WN 2.64 2.65 2.68 0.36 0.32 0.33 30.40 18.17 15.81 64.68 52.99 40.52

WW 8.79 8.80 8.97 0.23 0.21 0.16 152.70 124.10 106.05 362.06 355.51 314.82

(b)

SA 0.62 0.64 0.64 0.81 0.80 0.82 5.70 4.34 4.37 13.19 14.08 14.10

SN 2.39 2.40 2.41 0.42 0.39 0.44 25.60 19.93 20.01 63.46 49.07 49.19

SW 2.61 2.62 2.64 0.44 0.41 0.46 29.10 22.74 22.85 62.36 57.88 57.77

WA 0.92 0.93 0.93 0.63 0.60 0.66 4.90 4.10 4.10 10.76 11.85 11.92

WN 2.73 2.76 2.73 0.41 0.39 0.44 22.80 21.34 21.23 93.16 67.20 66.94

WW 2.36 2.38 2.37 0.38 0.36 0.41 18.10 15.31 15.24 39.85 42.44 42.34
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a weighting of 5. The fitted parameters for the six

weather states in the eastern and western model can be

found in Table 5.

After fitting, the parameters were validated using a

Monte–Carlo process. An ensemble of 50 simulations

of the same length as the concatenated series was

generated for each weather state. This gave uncer-

tainty bounds (the fifth and 95th percentiles from the

50 simulations) about the simulated daily spatial

cross-correlation, the most important aspect of a

spatial rainfall model, and a measure of fit of the other

simulated statistics.
Table 5

Fitted parameters for the eastern and western spatial NSRP models

Weather State Model Parameter

l (hK1) b (hK1) r

SA Western 0.0010 0.0101 0.

Eastern 0.0006 0.0100 0.

SN Western 0.0035 0.0100 0.

Eastern 0.0110 0.0276 0.

SW Western 0.0234 0.0630 0.

Eastern 0.0125 0.0420 0.

WA Western 0.0018 0.0101 0.

Eastern 0.0031 0.0216 0.

WN Western 0.0039 0.0100 0.

Eastern 0.0028 0.0101 0.

WW Western 0.0206 0.0534 0.

Eastern 0.0044 0.0100 0.
The observed, fitted and simulated statistics at the

western model index site of Moorland Cottage are in

Table 4(a). The model fitted values and simulated

values provide a good match to observed statistics,

although variance is generally slightly underestimated.

In the main, site statistics are reproduced for each of

the six weather states within the western model. The

m(24) statistic is accurately simulated. The f(24)

statistic is also well simulated, for most weather states

within two percent of the areal average historical

f(24). However, the daily variance is underestimated

by the model for all weather states. This may be
(kmK2) h (hK1) x (h mmK1) g (kmK1)

0388 0.1485 4.9862 0.0760

1462 11.9418 0.1814 0.0975

0260 7.9029 0.1369 0.0672

0020 1.0843 0.6754 0.0424

0020 11.9636 0.0395 0.0511

0020 0.2889 2.3424 0.0455

0246 0.6386 1.1660 0.0590

0134 7.2232 0.3266 0.0536

0200 0.9204 1.3531 0.0578

0291 0.2461 4.7707 0.0609

0041 0.1000 3.5412 0.0627

0020 0.3021 2.9205 0.0250
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a consequence of the assumption of a uniform standard

error inherent in the spatial NSRP model. The under-

estimation of variability by stochastic rainfall models

is further discussed in Katz and Parlange (1998). Daily

cross-correlations are well preserved by the western

NSRP model (Fig. 2). It can be seen that many of the

observed daily cross-correlations for the winter

weather states, particularly the westerly state, lie
Fig. 2. Spatial cross-correlations: observed, fitted, simulated with 95 and 5 p
outside the five and 95 percentiles of the simulated

series. This can be explained by the high rainfall

variability of the winter westerly weather state, which

is greatly dependent upon altitude and westerliness in

the Pennines. This highlights a deficiency in the spatial

NSRP model, in that the model fits a single curve to

spatial correlation with distance, and does not address

variability in this parameter.
ercentiles from 50 simulations for the western model weather states.
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The observed, fitted and simulated statistics for the

eastern model index site at Osmotherly Filters are in

Table 4(b). The simulated statistics are very similar to

the observed statistics, excepting a slight reduction in

variance and increase in PD within the simulated

series. The daily cross-correlations fitted by the model

can be seen in Fig. 3. The daily cross-correlations
Fig. 3. Spatial cross-correlations: observed, fitted, simulated with 95 and 5
between sites are well matched by the model

simulations for all six weather states.

3.4. Model validation

For model validation, a 1000-yr weather state series

was generated using the semi-Markov chain model
percentiles from 50 simulations for the eastern model weather states.
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described in Fowler et al. (2000), based on observed

data from the period 1961–1990. This weather state

series (adjusted for site seasonality using the same

seasons as described in Section 3.2) was then used as

input to the eastern and western spatial NSRP models,

producing 28 rainfall series. These simulated daily
Fig. 4. Comparison of expected and simulated monthly mean

precipitation (mm) at Lockwood Reservoir, Wykeham Nursery and

Birdsall House (eastern spatial NSRP model). Standard errors of the

means are illustrated to show significance of differences.
rainfall series from the NSRP models were then

aggregated to monthly and compared with monthly

rainfall values that would be expected, given that

particular sequence of weather states.

Fig. 4 shows that, for the eastern model, simulated

statistics at three example sites of Lockwood

Reservoir, Wykeham Nursery and Birdsall House

provide a good match to expected mean monthly

rainfall amounts. The remaining six sites simulated

using the eastern model also show a close correspon-

dence to the expected mean monthly rainfall (not

shown). The mean annual expected and simulated

rainfall totals are also closely matched.

In the western spatial NSRP model, simulated

annual rainfall is overestimated at some sites. This is

due to a large disparity in the average rainfall

production of different weather states within the

model. In particular, the winter westerly weather

state produces twice as much rainfall as any other

weather state. This can cause increased winter rainfall

at sites with a low annual rainfall total such as Brignall

(Fig. 5). Switching between weather types on a daily

basis introduces a time lag between weather state

initiation and generation of rain cells associated with

that weather state. This occurs due to the disparity in

scale between the effective length of storms (several

days) and the applied scale factors (a single day). This

may normally cause small anomalies in the rainfall

rescaling process. However, in the case of the western

NSRP model, due to the very wet nature of the winter

westerly weather state when compared to other

weather states, a significant discrepancy occurs. This

produces a bias during the winter season that increases

the rainfall and requires a consequent correction to

ensure that the expected annual rainfall amounts are

obtained at each site. This is further explained in

Fowler et al. (2000).
3.5. Preserving spatial cross-correlation properties

between sub-regional models

For the model to be used in a water resource study it

is necessary to reproduce the spatial cross-correlation

properties between the two sub-regions. If the same

weather state series is used as input to the two,

otherwise independent, models it would be expected

that this would result in a degree of spatial



Fig. 5. Comparison of expected and simulated monthly mean

precipitation (mm) at Moorland Cottage, Brignall and Great Walden

Edge (western spatial NSRP model). Standard errors of the means

are illustrated to show significance of differences.
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cross-correlation. However, this is limited by the

stochastic nature of the NSRP model where a wide

range of rainfall amounts are equally likely to be

associated with the same weather state. This is shown

in Fig. 6 for Moorland Cottage and Lockwood

Reservoir and means that the stochastic model series

cannot be expected to reproduce one-to-one corre-
spondence of rainfall amounts to observed weather

states. Rather, the average statistical properties of the

weather states are reproduced, with a limited corre-

spondence due to the use of the same weather state

series.

A sampling methodology was therefore considered

necessary to match the pair of simulated time series

that best reproduce the observed spatial cross-

correlation. As before, a single 1000-yr weather

state series was generated using the semi-Markov

chain model detailed in Fowler et al. (2000), based on

observed data from the period 1961–1990. The

weather state series was adjusted by site seasonality

for the eastern and western NSRP models. Fifty

1000-yr daily simulations of rainfall were then

generated for each of the eastern and western sites,

using the same weather state series as input for each.

These were totalled to give monthly rainfall series.

The spatial cross-correlation between the eastern and

western monthly rainfall series was then determined

for each pairing of the fifty simulated series, giving

2500 possible cross-correlations between Moorland

Cottage and Lockwood Reservoir.

To reproduce the historical spatial cross-correlation

between the simulated series it proved necessary to

divide them into shorter sections. In this procedure,

there is a trade-off between the preservation of

monthly spatial cross-correlation properties and the

reproduction of accurate daily rainfall statistics over

the 1000-yr series. This is illustrated by Fig. 7 where a

10-yr section enables the reproduction of a higher

monthly spatial cross-correlation statistic than a 50-yr

section for example. To ensure coherence with

historical records however, a section length must be

chosen that does not compromise the model’s

reproduction of average observed daily rainfall

statistics, therefore maximising the length of section

while still preserving the historical monthly rainfall

cross-correlation between Moorland Cottage and

Lockwood Reservoir (see Table 3). A section length

of 50-years was found able to produce a spatial cross-

correlation statistic of 0.2 between Moorland Cottage

and Lockwood Reservoir without biasing the average

daily rainfall statistics. This was checked by the

evaluation of mean statistics for each paired 50-year

section of the 1000-year series at each of the two sites,

although a bootstrap procedure could also have been

used to establish confidence intervals. The use of



Fig. 6. Rainfall amount frequency relationships for each of the six weather states at Moorland Cottage and Lockwood Reservoir. The maximum

rainfall amounts far exceed the range of the graphs, e.g. WW at Moorland Cottage (maximum over 200 mm) and WN at Lockwood Reservoir

(maximum over 100 mm).
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shorter time-periods, particularly less than that of the

30-year calibration period, may compromise the

model, as years with a greater proportion of dry days

may show a higher spatial cross-correlation.

Therefore, for each 50-yr section, eastern and

western model simulations were paired from the 2500

possible combinations. These were chosen objectively

to best preserve the historical monthly cross-corre-

lation statistic between the two sites. These 20 50-yr

sections were then reconnected to produce a single

1000-yrdaily rainfall series for each of the19 sites in the

western model and the nine sites in the eastern model.

The benefit of using this modelling methodology
rather than a simple re-sampling approach was

investigated. For each of Moorland Cottage and

Lockwood Reservoir the historical daily rainfall series

from 1961–1990 was concatenated into bins accord-

ing to the observed daily weather states of SA, SN,

SW, WA, WN and WW. A rainfall amount frequency

relationship was determined for each of the six

weather states (see Fig. 6). A re-sampling approach

with replacement was then used to generate 100

30-year synthetic daily rainfall series for each site by

using the historical 1961–1990 weather state series as

a template. On a WW day for example, a particular

rainfall amount is randomly selected from the WW



Fig. 7. Comparison of distribution of simulated monthly spatial cross-correlations between Moorland Cottage and Lockwood Reservoir for

10-yr and 50-yr sections. Dashed line shows observed monthly spatial cross-correlation between the two sites using a 30-yr data-set from

1961–1990.

Table 6

Simulated mean, minimum and maximum monthly correlation

statistics between each of 100 simulations of the 1961–1990 period

at Moorland Cottage and Lockwood Reservoir using the NSRP

modelCsampling and re-sampling approaches

Model Mean

correlation

Maximum

correlation

Minimum

correlation

Re-sampling 0.02 0.21 K0.14

NSRPC

sampling

0.09 0.28 K0.10
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bin. This methodology was used to construct a daily

rainfall series, giving 100 realisations for each site of

the 1961–1990 period. These synthetic daily series

were then totalled to give monthly values and the

spatial cross-correlation properties analysed.

Results indicate that the methodology of using the

NSRP models and then sampling the daily rainfall data

in sections to produce 1000-year rainfall series (hereafter

called NSRP C sampling) offers some improvement on

the simple re-sampling approach (Table 6). The mean

cross-correlation of a 30-year section using NSRPC
sampling is increased significantly when compared to

the re-sampling approach. The maximum and minimum

cross-correlation is also increased. The historical spatial

cross-correlation of 0.21 can be reproduced by this

approach within the 100 test simulations.

The use of the NSRP C sampling methodology is

justified by the improvement in correlation statistics as

well as by two additional factors. The first of these is

the ability to produce rainfall amounts and structures

using statistical distributions. This allows the gener-

ation of synthetic rainfall series with a different

temporal and spatial structure to existing historical

data. The second is the capability to modify the model
for future climate cases by changing the statistical

properties of a weather state rather than relying on

a ‘factor’ modification that results in no change to the

temporal and spatial structure of rainfall fields. As this

procedure preserves the cross-correlation properties

and average rainfall statistics for the whole of the

Yorkshire region it will be suitable for a wide range of

hydrological impact studies.

4. Using the model to construct a climate

change scenario

This section is used to illustrate how the modelling

methodology described above can be used to generate
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synthetic rainfall time series for climate change

impact studies.

The UKCIP98 climate change scenarios (Hulme

and Jenkins, 1998) were constructed using the

HadCM2 GCM output. These scenarios are based

upon the HadCM2 experiments that use a one percent

rise per annum in greenhouse gas concentrations over

the next century; similar to the IS92a emissions

scenario (Leggett et al., 1992). Four scenarios are

presented: Low, Medium-Low, Medium-High and

High. The Medium-High scenario provides detail on

more climatic variables than the other three scenarios,

and for this reason has generally been used for climate

change impact assessments. In this analysis, a climate

change scenario from 2021–2050 will be considered.

Four grid-cells cover the UK. The Yorkshire region

lies equally in the northern England grid-square and

the south-eastern England grid-square. It is assumed,

therefore, that rainfall change in Yorkshire will be the

mean of the two grid-squares for each scenario.

Changes to mean rainfall amount and rainfall

variability for summer and winter, defined as April to

September and October to March respectively, for the

2021–2050 climate change scenario (Hulme and

Jenkins, 1998) are shown in Table 7.

Seasonal change in airflow characteristics over the

British Isles under the UKCIP98 Medium-High

scenario are also assessed by Hulme and Jenkins

(1998). Their analysis suggests a reduction of north-

erly and easterly flow in autumn, decreased westerly

and north-westerly flows and increased anticycloni-

city in summer, and decreased anticyclonicity in

winter and spring. This suggests that any increase in

winter rainfall will come from an increase in westerly

flows combined with an increase in mean daily

rainfall on a westerly day. In summer months, the

reduction in rainfall may be an outcome of an increase
Table 7

UKCIP98 climate change scenario for 2021–2050: rainfall amount

and variability change

Season 2021–2050

Rainfall amount

change (%)

Rainfall variability

change (%)

Summer K5 C10

Winter C9 C5

Annual C3 to C5 –
in anticyclonic conditions combined with a reduction

in westerly mean daily rainfall.

These changes in airflow characteristics are similar

to those of the high-phase North Atlantic Oscillation

(NAO). The NAO index (Jones et al., 1997) is the

difference in the normalised sea level pressure over the

Azores and Iceland and is a measure of the strength of

westerlies across the UK. A useful winter index is given

by the December to March average of the pressure

difference. In Fowler and Kilsby (2002b), it was shown

that rainfall in Yorkshire is affected by the phase of the

NAO. During a positive or high-phase winter-NAO

period, such as from 1980–1990, there is an increased

frequency of the WW and SA weather states, to the

detriment of the SW and WA weather states. This

causes increased winter rainfall and decreased summer

rainfall simply as a function of change in weather type

frequencies (Fowler et al., 2000).

This can be quantified by a very simple example. A

1000-yr daily weather state series was fitted on the

period from 1980–1990 (mean NAO of 0.84) and

again for 1961–1990 (mean NAO of 0.27) simulating

a high-phase NAO and the baseline respectively,

although it must be noted that the differences in the

mean NAO between the two periods are not

statistically significant. A 1000-yr daily rainfall series

was then produced for every site for each of the high-

phase NAO and baseline simulations. During a high-

phase NAO there is an increase in winter rainfall of

two percent in the west and one percent in the east.

This is offset by a slight reduction of one percent in

summer rainfall in the west, but no change is observed

in the east. These changes can be seen in Table 8.

Therefore a historic analogue, the high-phase NAO

weather state series, was used to simulate realistic

change in airflow characteristics for the 2021–2050

climate change scenario. This uses NAO conditioning
Table 8

Changes in winter and summer rainfall receipt resulting from a

high-phase NAO when compared to the baseline 1961–1990

High-phase NAO %

change from baseline

East Summer C0.0

Winter C1.0

West Summer K1.0

Winter C2.0



Table 9

UKCIP98 climate change scenario for 2021–50: changes to mean

daily rainfall and variability statistics

2021–2050

m(24) V(24)

Eastern SW 2.40 32.0

WW 2.68 19.0

Western SW 5.37 88.7

WW 9.52 160.3
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to create an analogue of the UKCIP98 scenarios rather

than using GCM output directly to drive the Markov

model. Further change in mean rainfall amount and

variability necessary to match the changes projected

under the UKCIP98 Medium-High scenario was

applied by the refitting of the SW and WW weather

states for the eastern and western NSRP model, taking

into account the changes to mean rainfall already

achieved by the use of the high-phase NAO scenario

rather than the baseline (see Table 8). These precipi-

tation changes will only reflect changes in atmospheric

circulation, and forcing by atmospheric humidity may

not be captured. The new statistics for m(24) and V(24)

for the SW and WW weather states are presented in

Table 9. The model was then recalibrated using these

statistics. The new fitted parameters for the 2021–50

climate change scenario are in Table 10. These

parameters provide accurate statistics at sites within

the eastern and western NSRP models, simulating the

rainfall changes of the UKCIP 2021–2050 climate

change scenario. The methodology using Monte–

Carlo simulation and sampling techniques detailed in

Section 3.5 must then be followed to produce a

synthetic daily rainfall series for each of the 28 sites

using the new parameter set. When inputted to a model

of the Yorkshire Grid, this will then allow the impacts

of the UKCIP98 2021–2050 climate change scenario

on water resources in Yorkshire to be reliably assessed.

This modelling approach was used by Fowler et al.
Table 10

Fitted parameters for 2021–50 climate change scenario

Weather State Model Parameter

l (hK1) b (hK1) r

SW Western 0.005 0.010 0.

Eastern 0.002 0.011 0.

WW Western 0.031 0.245 0.

Eastern 0.017 0.079 0.
(2003) to examine the effects of climatic change,

including the scenario detailed here, and variability

upon the reliability, resilience and vulnerability of

water resources in Yorkshire, UK.
5. Discussion and conclusions

This paper presents the further development of a

multi-site stochastic rainfall model for climate impact

assessment in the Yorkshire region, UK, in response

to recent concern about the estimation of reliability of

regional water resource systems under future climate

change scenarios. This model improves upon the

‘factor’ approach previously adopted in the UK water

industry where observed rainfall records are simply

modified by a factor change to the mean derived from

GCM simulations, resulting in no change to the

temporal structure of rainfall fields. The approach

described here uses series of weather types to provide

the temporal sequence and high time-aggregation

behaviour, and the NSRP model to reproduce hourly

and daily statistics of rainfall. This offers considerable

improvement upon the simple re-sampling of histori-

cal data and thus demonstrates that the additional

complexity of the methodology is warranted. The

methodology allows the results of GCMs to be used

directly, via analyzed GCM Lamb weather types, or

indirectly, as trends in both weather-state and rainfall

characteristics can be extracted and interpreted within

the model.

The methodology is also easily transferable to other

regions, particularly within the UK, and can provide

synthetic rainfall data down to the hourly level, making

it suitable for more detailed impact studies such as

variation in river flows and flood risk estimation.

Within other regions of the UK it would be necessary

to repeat the identification of homogenous sub-regions
(kmK2) h (hK1) x (h mmK1) g (kmK1)

007 0.131 2.682 0.052

028 2.171 0.418 0.067

002 0.100 3.146 0.062

003 6.227 0.240 0.041
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and to identify suitable groupings of Lamb weather

types. Outside the UK, other objective circulation

classification schemes would be needed to identify

weather states. It should also be noted that outside the

North Atlantic region the NAO should not be used as a

historic analogue for future climate change.

To use the modelling methodology for climate

impact studies, it was necessary to make a number of

implicit assumptions about future rainfall and it is

useful to summarize these here. It is assumed that

change in future rainfall properties may be represented

by a combination of change in future circulation

patterns and change in the daily rainfall statistics of

these circulation types. Here, a historic analogue is

used to represent change in future circulation patterns,

provided by an observed high-phase NAO time series,

and change in daily rainfall statistics is provided by the

refitting of the mean and variance statistics of the SW

and WW weather states only. For other weather states,

the modelling approach implicitly assumes that the

statistical properties of the observed 1961–1990 data

will remain valid for the future climate scenario:

similar weather types imply similar rainfall in the

future. This assumption includes spatial cross corre-

lation properties within the sub-regions, and the

continued homogeneity of sub-regions under future

climate. Additionally, the spatial cross correlation of

monthly rainfall between the sub-regions, which is not

dependent on weather types, is assumed to remain

constant under future climate change.

There are a few caveats to the approach of using

weather types in model conditioning, as detailed by

Wilby (1997). Firstly, as atmospheric circulation is

essentially dynamic, it is arbitrary to define daily

weather types, even when very clearly defined criteria

are applied. Moreover, on some days regional airflows

are apparent that make the assignment of a single

weather type for the whole of the UK infeasible

(Mayes, 1991). However, perhaps the most serious

hindrance to using weather types in a downscaling

methodology is that the relationship between a

weather type and rainfall properties is itself constantly

changing. This is shown in Fowler and Kilsby (2002b)

for the case of the high- and low-phase winter North

Atlantic Oscillation index, for example.

A number of other important issues are raised in

this paper about constraints upon the stochastic

representation of distributed rainfall imposed by
the NSRP multi-site stochastic rainfall model. The

model was originally developed from a single site

rainfall model and intended to accurately represent the

statistics of several sites simultaneously with spatial

consistency. To achieve this the multi-site stochastic

model first generates a uniform spatial-temporal

NSRP model (following Cowpertwait, 1995) with

uniform expected mean and variance of daily rainfall

(or other time interval), probability of a dry period,

spatial cross-correlation with distance, and autocorre-

lation properties. A scale factor is then applied to the

time series of each site, here on a weather state basis.

Whilst this procedure allows for a spatially varying

mean and variance, albeit with a uniform standard

error, the correlation and dry period probabilities

remain uniform. However, the assumption of uni-

formity of dry period probabilities is only a reasonable

approximation in small regions and certainly not valid

where rainfall varies significantly with orography

such as in the Yorkshire region. A methodology such

as that described in this paper is therefore necessary to

ensure spatial consistency until the multi-site NSRP

model is further developed to allow physically

realistic simulations of spatially varying PD. Such

development should also assess the assumptions of

uniform spatial- and autocorrelations.

From a time scale perspective, it is important to

consider how well the methodology would be

expected to perform in terms of variability across

the hydrologically useful time aggregation scales

when fitted to daily and 48-h statistics. The multi-site

NSRP model contains representations of rain cells

(tens of minutes duration), storms (tens of hours

duration), weather type persistence (days duration)

and seasonality (of 6 months duration). For aggrega-

tion periods of less than 1 day we would not expect a

good representation of observed variability. However,

at daily or weekly aggregations we would expect a

better representation of variability as these periods

reflect the structure of the stochastic model and the

calibration statistics. At a monthly aggregation period

and upwards, we would expect to find a significant

underestimate in the variability, although this is

mitigated slightly at the 6-month aggregation level

by the representation of seasonality. These issues go

far beyond the scope of this paper, however, in which

statistics of a daily resolution are mainly considered.

At the longer end of the time spectrum, representation
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of seasonal, inter-annual or inter-decadal climatic

variability within synthetic rainfall models remains

the subject of ongoing research. Such issues become

relevant to the scope of this paper when it is

considered that a water resources model may

effectively accumulate rainfall totals over periods

exceeding a week. In such cases it is considered that

the observed variability of the water resource system

under study may exceed that estimated by simulation.

The methodology presented here constitutes an

improvement upon current RCM generated rainfall as

it can produce unlimited synthetic sequences of rainfall

at an hourly level and provide realistic variation in both

weather type occurrence and associated rainfall

amount. It is recognised, however, that alternative

approaches are necessary to accurately represent inter-

annual and decadal scale climate variability and that

this approach may therefore be more suited to other

climate change impact applications such as urban

drainage, flash flooding and catchment-scale studies.
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