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Abstract Regional or local scale hydrological impact studies require high resolution
climate change scenarios which should incorporate some assessment of uncertainties
in future climate projections. This paper describes a method used to produce a multi-
model ensemble of multivariate weather simulations including spatial–temporal rain-
fall scenarios and single-site temperature and potential evapotranspiration scenarios
for hydrological impact assessment in the Dommel catchment (1,350 km2) in The
Netherlands and Belgium. A multi-site stochastic rainfall model combined with
a rainfall conditioned weather generator have been used for the first time with
the change factor approach to downscale projections of change derived from eight
Regional Climate Model (RCM) experiments for the SRES A2 emission scenario
for the period 2071–2100. For winter, all downscaled scenarios show an increase in
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mean daily precipitation (catchment average change of +9% to +40%) and typically
an increase in the proportion of wet days, while for summer a decrease in mean daily
precipitation (−16% to −57%) and proportion of wet days is projected. The range
of projected mean temperature is 7.7◦C to 9.1◦C for winter and 19.9◦C to 23.3◦C for
summer, relative to means for the control period (1961–1990) of 3.8◦C and 16.8◦C,
respectively. Mean annual potential evapotranspiration is projected to increase by
between +17% and +36%. The magnitude and seasonal distribution of changes in
the downscaled climate change projections are strongly influenced by the General
Circulation Model (GCM) providing boundary conditions for the RCM experiments.
Therefore, a multi-model ensemble of climate change scenarios based on different
RCMs and GCMs provides more robust estimates of precipitation, temperature and
evapotranspiration for hydrological impact assessments, at both regional and local
scale.

1 Introduction

There is increasing demand from strategic planners and managers of hydrological
systems for detailed information on future climate change and its impacts on water
resources. Consequently, there is a need for high resolution climate change scenarios
of precipitation, temperature and evapotranspiration to drive hydrological models
applied at the local (catchment) or regional (river basin) scale. However, General
Circulation Models (GCMs) provide only coarse resolution projections of future
climate and so downscaling is required to provide scenarios relevant to hydrological
impacts assessments at these scales. Reviews of downscaling methods are provided by
Wilby and Wigley (1997), Prudhomme et al. (2002) and, with particular reference to
hydrological applications, by Fowler et al. (2007a). In general, downscaling is divided
into two approaches: dynamical and statistical downscaling.

Dynamical downscaling uses physically-based Regional Climate Models (RCMs)
with boundary conditions provided by a GCM to produce finer spatial scale gridded
output and has been used to assess the impact of climate change on hydrological
conditions on a European (e.g. Blenkinsop and Fowler 2007; Dankers and Feyen
2009) and regional (e.g. De Wit et al. 2007) scale. Uncertainties in climate model
projections (from both GCMs and RCMs) arise not only from alternative scenarios
of greenhouse gas emissions, but also due to different representations of large-scale
climate processes and the incorporation of the effects of small-scale physics through
the parameterization of unresolved processes in climate models. Hence, any climate
model simulation may be biased and a given projection represents only one of many
possible future climate states. To obtain a representation of alternative possible
future climates arising from structural and parameterisation differences between
climate models, a multi-model approach (Tebaldi and Knutti 2007) may be used in
which a range of different RCMs are considered equally likely (see Fowler et al.
2007a).

Even RCMs are however too coarse for robust hydrological modelling (Fowler
et al. 2007a). Therefore, the alternative or additional statistical downscaling approach
is generally undertaken. This process encompasses a wide range of different method-
ologies from relatively simple bias-correction methods to more complex regression-
based techniques and weather typing schemes (Wilby and Wigley 1997; Conway and



Climatic Change (2012) 111:249–277 251

Jones 1998; Fowler et al. 2007a). Alternatively, stochastic weather generators (Wilby
1999) can be used to produce long time series of simulated weather variables and
may be conditioned to simulate future climate by perturbing their parameters or by
fitting to perturbed statistics. For example, Semenov and Barrow (1997) perturbed
the parameters of a single-site weather generator (LARS-WG) either according to
change factors (CFs) derived from GCMs or regressions based on the relationships
between coarse resolution GCM grid cell simulations and local-scale observed
climate data. Similarly the single-site SDSM model (Wilby et al. 2002) involves
applying similar regression relationships to a stochastic weather model. Multi-site
downscaling approaches using weather generators are rarer, typically conditioned on
weather types and only downscale rainfall (e.g. Charles et al. 2004; Fowler et al. 2005;
Cannon 2008). Exceptionally Palutikof et al. (2002) simultaneously downscaled both
rainfall and temperature to multi-site locations: a Markov-chain model of wet–dry
day state was conditioned on GCM weather types (WTs) for a master site; multi-
site rainfall amounts were resampled from observations conditioned on season, WT
and wet–dry state; multi-variate estimates of temperature minimum and maximum
were predicted from the GCM atmospheric state, conditional on wet/dry state and
season.

Haylock et al. (2006) have demonstrated for the UK that the choice of downscal-
ing method introduces a significant source of uncertainty into future projections and
that this may vary depending upon the variable and time of year. It is likely therefore
that there is no single best downscaling methodology. However, stochastic weather
models offer the versatility of being able to generate point, multi-site or spatial
weather, including weather that has been previously unseen but that is stochastically
similar to the expected control or future climate properties. Additionally, realizations
of arbitrary length can be produced, which may be useful for risk analysis related to
extreme events.

The catchment of the River Dommel in The Netherlands and Belgium is illustra-
tive of the challenges faced by river basin managers as a consequence of climate
change. Previous studies for the River Meuse whose basin includes the Dommel
catchment, have indicated that this region may experience an increase in the
frequency of short-duration droughts (Blenkinsop and Fowler 2007) and potential
decrease in river discharge during the low-flow season (De Wit et al. 2007; van Pelt
et al. 2009) whilst extreme discharge in winter may increase (Leander et al. 2008;
van Pelt et al. 2009). A number of previous studies have applied the downscaling of
climate model projections for hydrological impact assessments of the Meuse. Gellens
and Roulin (1998) applied a relatively simple perturbation of baseline climate
observations to sub-basins of the Meuse using changes derived from several GCMs.
Leander et al. (2008) developed a more sophisticated method using projections from
three RCM–GCM configurations, downscaled using a non-linear bias correction
method (Leander and Buishand 2007) and a weather generator based on nearest
neighbour resampling of climate model output (Leander et al. 2005) to estimate
flood quantiles. Booij (2005) assessed the impact of climate change on flooding in
the Meuse on a daily basis using generations of a stochastic precipitation model
under current and future climate conditions for three GCMs and two RCMs. Output
from different GCMs and RCMs in combination with observed precipitation and
air temperature series were also used to construct four climate change scenarios
(KNMI’06 scenarios) for The Netherlands for the 2050s (2036–2065; Lenderink et al.
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2007; van den Hurk et al. 2006). These scenarios project winter (summer) warming of
0.9◦C to 2.3◦C (0.9◦C to 2.8◦C) for the 2050s relative to the 1990s (1976–2005), whilst
average winter (summer) precipitation amount is projected to change by between
+4% to +14% (−19% to +3%) for the whole of The Netherlands.

In this study, a combined stochastic–dynamic downscaling methodology is pre-
sented to generate a multi-model ensemble of spatial–temporal rainfall scenarios for
the end of the 21st century with consistent temperature and potential evapotranspi-
ration scenarios for hydrological impact assessment in the Dommel catchment. A
multi-model approach is followed whereby dynamically-downscaled projections of a
future stationary climate time-slice (2071–2100) and control clime time-slice (1961–
1990) are provided by eight RCM experiments. Such ensembles are necessary to
reflect the uncertainty arising from different climate model structures and parame-
terization. For hydrological impact assessment of the Dommel catchment, multi-site
or spatial rainfall scenarios are required. Therefore the RCM outputs are statistically
downscaled using the widely used change factor (CF) approach (Diaz-Nieto and
Wilby 2005; Prudhomme et al. 2002) applied to a spatial–temporal stochastic rainfall
model (Burton et al. 2008). The traditional application of CFs to observed time
series has limitations: future rainfall scenarios can only follow patterns of rainfall
previously seen in the observed record; only the rainfall means are changed; changes
in the proportion of wet days cannot easily be applied to future projections. However,
application of CFs to the proportion of dry days and second or higher moments of the
statistics, and use of the projected weather statistics as the basis of parameterising a
rainfall model surmounts these problems (see Kilsby et al. 2007; Burton et al. 2010a).
This allows the conditional simulation of future spatial–temporal rainfall fields and
is the first time that the CF downscaling approach has been applied with a spatial
rainfall model. A rainfall conditioned weather generator (Jones and Salmon 1995;
Kilsby et al. 2007), perturbed by CFs, is then applied to generate single-site weather
time series consistent with the rainfall fields. Stochastic rainfall downscaling to a
single site using CFs has recently been applied in the EARWIG (Kilsby et al. 2007),
UKCP09 (Jones et al. 2009) and Burton et al. (2010a) approaches. Here, we extend
these approaches by applying the CFs derived from RCM experiments to a spatial
rainfall model and then using a weather generator to simulate meteorological data
consistent with simulated rainfall.

In particular it should be noted that this work improves on the downscaling
methodology of Palutikof et al. (2002) in four ways: (1) the single-site discrete-
time Markov-chain rainfall occurrence model with multi-site resampling of amounts
is replaced with a fully continuous space–time rainfall model which can generate
rainfall patterns not previously observed, at locations not used in the calibration and
at sub-daily time steps; (2) weather variables in addition to rainfall and temperature
(min and max) are generated, making the weather series usable in hydrological
studies; (3) a multi-climate-model approach is used; (4) RCMs are used to provide a
first step dynamic downscaling of the GCM projections.

This provides the first application of a combined spatial stochastic rainfall model,
a rainfall conditioned weather generator and the CF approach to downscale a multi-
model ensemble of future climate change scenarios. The provision of an ensemble of
downscaled future weather series, including spatially distributed rainfall, will enable
concerns over the effect of climate change on local hydrology, the leaching of heavy
metals and surface water quality to be investigated in this region (Visser et al. 2011).
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2 The Dommel catchment: meteorological data and climate models

2.1 Geographical context and meteorological data of the Dommel catchment

The study area comprises the catchment of the River Dommel, a tributary of the
Meuse (Fig. 1) on the Belgium–Dutch border. It has a total area of 1,350 km2 with a
low lying elevation ranging from 5 m to 76 m above sea level. The Dommel drains an
intensive agricultural and densely populated area of approximately 593,000 people.
The soils, riverbed and water of the Dommel are heavily contaminated with zinc and
cadmium as a result of the historical pollution of the area by a nearby zinc smelter
(De Jonge et al. 2008) making this catchment an important hydrological case study
in terms of future water supply and quality.

Fig. 1 The Dommel catchment (based on Pieterse et al. (2003) with permission from Elsevier),
location of precipitation stations and annual precipitation averaged over the period 1961–1990.
Abbreviated meteorological station names are used (for details see Table 1)
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The climate of the Dommel region is temperate, with relatively cool summers and
mild winters. A total of 22 meteorological stations are located within the study area
of the Dommel catchment (Fig. 1). For this study, daily precipitation data for the
period 1961–1990 for the 11 gauges located in Belgium were provided by the Royal
Meteorological Institute of Belgium (KMI-RMI), whilst the precipitation series of
the 11 Dutch gauges were obtained from the Royal Netherlands Meteorological
Institute (KNMI). Additional time series of daily minimum and maximum tem-
perature, sunshine duration, vapour pressure and wind speed were obtained from
KNMI for the station at Eindhoven. This station was selected because it offers a
longer continuous series of homogeneous climate data (1985–2006) than is available
elsewhere.

Average mean annual precipitation across all gauges is 792 mm (over the period
1961–1990) and ranges from 747 mm (Maarheze) to 838 mm (Leopoldsburg and
Meeuwen), generally increasing from north-east to south-west (Fig. 1; Table 1). The
annual cycles of temperature and precipitation are shown in Fig. 2. This indicates
that daily mean precipitation at Eindhoven, located in the centre of the study area
(Fig. 1), is comparable with the overall average of all 22 stations.

Potential evapotranspiration (PET) is estimated using the Penman–Monteith
method (FAO 1986) by applying the daily series of air temperature (minima and
maxima), wind speed, vapour pressure and sunshine hours for Eindhoven. The
annual mean PET is estimated at 673 mm (over the period 1985–2006) with a strong
seasonal cycle with highest values during July (3.6 mm/day; Fig. 2).

Table 1 Characteristics of selected precipitation stations in the study area where country is indicated
as either BE (Belgium) or NL (the Netherlands)

Identifier Station name Latitude Longitude Altitude Annual precipitation Country
(degrees) (degrees) (m) (mm; 1961–1990)

Ache Achel 51.30 5.48 26 781 BE
Dess Dessel 51.23 5.16 28 800 BE
Deur Deurne 51.27 5.46 22 750 NL
Eers Eersel 51.21 5.15 29 820 NL
Ein Eindhoven 51.25 5.29 18 773 NL
EinA Eindhoven Airport 51.28 5.22 20 754 NL
Esbe Esbeek 51.28 5.08 21 826 NL
Geel Geel 51.16 4.96 18 816 BE
Geme Gemert 51.33 5.41 17 754 NL
Helm Helmond 51.29 5.37 20 773 NL
KlBr Kleine Brogel 51.17 5.46 64 836 BE
Kwme Kwaadmechelen 51.10 5.11 29 815 BE
Leen Leende 51.20 5.32 26 779 NL
Leop Leopoldsburg 51.11 5.26 48 838 BE
Lomm Lommel 51.24 5.36 44 826 BE
Loze Lozen 51.21 5.56 36 772 BE
Maar Maarheeze 51.18 5.35 28 747 NL
Meeu Meeuwen 51.11 5.52 71 838 BE
Mol Mol 51.21 5.10 23 812 BE
Neoe Neeroeteren 51.10 5.69 44 786 BE
Oirs Oirschot 51.30 5.20 15 770 NL
Some Someren 51.23 5.42 29 761 NL
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Fig. 2 Average (P_cat_avg)
and range (P_cat_range) of
mean daily precipitation for
the Dommel catchment and
mean daily precipitation
(P_Ein), potential
evapotranspiration (PET_Ein)
and air temperature (T_Ein)
for station Eindhoven for each
month over the period
1985–2006
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2.2 Climate models

One way of addressing the uncertainties in climate model simulations noted in
Section 1 is through the use of multi-model ensembles. Therefore, projections of
future changes in climate over the Dommel were derived using Regional Climate
Model (RCM) output from the European Union Fifth Framework Programme (FP5)
PRUDENCE project (Christensen et al. 2007). This project used RCMs to provide
a series of high-resolution simulations of European climate through “time-slice”
experiments, generating stationary climate simulations for control (1961–1990) and
future (2071–2100) time periods. Each RCM derives its boundary conditions from,
and so dynamically downscales, a GCM. Here, the output of eight PRUDENCE
RCM experiments was utilized (Table 2) using six different RCMs (for further
details on RCM formulations see Jacob et al. (2007)) and two groups of GCMs. The

Table 2 The eight Regional Climate Model (RCM) experiments used from the FP5 PRUDENCE
project

Aquaterra RCM Driving GCM Prudence acronym
acronym (control/future)

HIRHAM_H HIRHAM HadAM3H A2 HC1 / HS1a

HIRHAM_E HIRHAM ECHAM4/OPYC A2 Ecctrl / ecscA2
RCAO_H RCAO HadAM3H A2 HCCTL / HCA2
RCAO_E RCAO ECHAM4/OPYC A2 MPICTL / MPIA2
HAD_P_H HadRM3P HadAM3P A2 adeha / adhfa
ARPEGE_H Arpège HadCM3 A2 DA9 / DE6
RACMO_H RACMO HadAM3H A2 HC1 / HA2
REMO_H REMO HadAM3H A2 3003 / 3006

The acronyms from the FP6 AquaTerra (integrated modeling of river-sediment-soil-groundwater
system for management of catchments in the context of global change) project (Barth et al. 2009)
are used throughout this paper. The suffix of each denotes the driving General Circulation Model
(GCM). The equivalent PRUDENCE acronyms are provided for information
aOne member from a 3-member ensemble has been used for these RCMs
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selected experiments duplicate the choice of RCM with different GCMs, allowing
some comparison of the influence of the choice of GCM and RCM. However, the
full range of uncertainty generated by the choice of GCM boundary conditions is
necessarily constrained by the experimental structure provided by the PRUDENCE
project (Déqué et al. 2007). Boundary conditions in this ensemble are thus derived
primarily from HadAM3H (Pope et al. 2000) and ECHAM4/OPYC (Roeckner et al.
1996). The HadRM3P and ARPEGE RCM simulations derive boundary conditions
from HadAM3P and HadCM3 respectively. Both HadAM3H and HadAM3P are
dynamically downscaled to an intermediate resolution from HadCM3 and are thus
closely related and may be considered as the same GCM.

3 Methodology

3.1 Multi-site daily precipitation timeseries: the Spatial–Temporal Neyman–Scott
Rectangular Pulses model

Poisson cluster models were first described for rainfall modelling by Le Cam (1961)
and have the useful property that they can generate continuous spatial–temporal
random fields (e.g. Gupta and Waymire 1979) which is increasingly relevant for
distributed hydrological modelling applications. The Neyman–Scott Rectangular
Pulses model (NSRP; Rodriguez-Iturbe et al. 1987) is a single-site rainfall time series
model based on the Poisson cluster approach whereby storms occur with a Poisson
process in time. Each storm origin creates a random cluster of raincells each of
which provides a ‘rectangular pulse’ of rainfall with an intensity and a duration.
A spatial version of this model, the Spatial–Temporal Neyman–Scott Rectangular
Pulses (STNSRP) model (Fig. 3), which is suitable for simulations of up to ∼200 km
in diameter, was formulated by Cowpertwait (1995). A recent implementation of the
STNSRP model is provided by Rainsim V3 (Burton et al. 2008), which is capable
of simulating rainfall either spatially or for a single location at hourly or daily time
steps and which has been used in a broad range of climates and end-user applications.
The spatial, rather than the simpler multi-site, simulation properties of this model
were recently demonstrated by Burton et al. (2010b) by validating simulations of
rain gauges at locations that were not used in model calibration. Here, however, only
the model’s multi-site properties are utilised.

In the STNSRP stochastic conceptualization of rainfall (Fig. 3; Cowpertwait
1995; Burton et al. 2008) a temporal sequence of storm origins each gives rise to
a set of raincell events that occur as a stationary Poisson process in space. The
raincells are clustered in time following the storm origin, and each has intensity
and duration properties. Time series of rainfall accumulations may be sampled from
the process by aggregating the contributions of all active raincells over each time
interval at any location. The sum of the intensities of all active raincells is scaled
by a nonhomogeneous spatial intensity field which is calculated in proportion to the
mean daily rainfall amount (further details may be found in Burton et al. 2010b).
The stochastic model structure is shown in Fig. 3 and Table 3 summarises the model
parameters. An annual cycle of rainfall properties is obtained by using different
parameterizations for each calendar month.
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Fig. 3 Schematic of the Spatial–Temporal Neyman–Scott Rectangular Pulses (STNSRP) stochastic
rainfall model’s process. (1) Storm origins occur as a Poisson process in time. (2) Each storm origin
generates a set of circular raincells whose centres occur as a spatial Poisson process and each with an
exponentially distributed radius. The subsequent temporal development of the model is then shown
as if sampled at the locations of two raingauges m1 and m2. (3) Each raincell starts at a time-origin
which follows the storm origin after an exponentially distributed time interval. (4) Each raincell
produces rainfall with a uniform intensity across its disc and throughout its lifetime. The duration
and the intensity of each raincell is exponentially distributed. (5) The spatial rainfall intensity field
is the sum of the intensities of all the active raincells scaled by a non-uniform spatial intensity field.
Parameters of the process are given in Table 3

Table 3 Monthly varying parameters of the Spatial–Temporal Neyman–Scott Rectangular Pulses
(STNSRP) model and the associated procedure for sampling each corresponding random variable
(RV)

Parameter Description Unit Sampling

λ−1 Mean waiting time between (h) Exponential RV
adjacent storm origins

β−1 Mean waiting time for raincell (h) Exponential RV
origins after storm origin

η−1 Mean duration of raincell (h) Exponential RV
ξ−1 Mean intensity of a raincell (mm/h) Exponential RV
γ −1 Mean radius of raincell (km) Exponential RV
ρ Spatial density of raincell centres (km−2) Spatial Poisson

process
ψ(x) Non homogeneous intensity scaling field (–) –

for all points, x, in the simulation region
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Properties of the simulated rainfall exhibit high sample variability and so would
require excessive computation to determine with precision. Instead expected proper-
ties of the model, calculated from analytical expressions, are used in the fitting. Thus
the model is fitted using a numerical optimization scheme to identify the parameters
that minimize an objective function which compares the expected properties of the
stochastic simulation process to a selected set of observed rainfall statistics. This com-
parison depends on the availability of analytical expressions that estimate expected
simulation properties as functions of the model parameters. Such expressions are
available for arbitrary locations and aggregation periods for the mean, variance, lag-
autocovariance, lag-autocorrelation, dry period probability, probability of dry–dry
(or wet–wet) transitions, third order central moment and skewness coefficient (e.g.
Cowpertwait 1995, 1998). Expressions for the cross-covariance and cross-correlation
between two locations are also available (Cowpertwait 1995) and are useful to
characterise the model’s spatial properties. RainSim V3 (Burton et al. 2008) further
facilitates the fitting procedure with a highly efficient optimizing algorithm, a new
objective function that reduces problems arising from preferential fitting of observed
statistics and a reduction in the fitting biases of the dry-period probability.

3.2 Daily temperature and evapotranspiration series: the CRU weather generator

The Climatic Research Unit (CRU) daily weather generator (hereafter abbreviated
to CRU-WG) was initially developed by Jones and Salmon (1995). In the initial
implementation daily rainfall series were generated using a two state Markov chain
model; however a recent development (Kilsby et al. 2007) has been to replace this
rainfall model with a single-site NSRP stochastic rainfall generator and to use this
to condition a modified version of the CRU-WG developed by Watts et al. (2004a).
This approach offers improved reproduction of extremes and may be explicitly re-
parameterised using projected future statistics from RCMs.

The CRU-WG uses a cascade of regressive and auto-regressive relationships,
fitted to point observations of meteorological data, to generate long time series
of synthetic daily weather variables. The primary weather variable in this model
is rainfall which here is taken from the multi-site rainfall dataset simulated in
Section 3.1. Since the CRU-WG is a single-site model the rainfall series (P) simulated
for Eindhoven (see Section 2.1; Fig. 1) was used to condition the simulation of
the additional weather variables which are considered to be representative of the
Dommel catchment. This location was selected as it has the best historic record
for the catchment including the input variables of daily temperature maxima (TX),
temperature minima (TN), vapour pressure (VP), wind speed (WS) and sunshine
hours (SS). In the CRU-WG secondary variables (Table 4) are simulated using the
regressive and auto-regressive relationships with further variables calculated from
these.

The weather generator calculates daily mean temperature (T) and daily tempera-
ture range (TR) by a first-order auto-regressive process incorporating the lag-1 daily
mean temperature, temperature range and precipitation, the latter dependent on
conditioning by four daily rainfall transition states (dry–dry, wet–wet, dry–wet and
wet–dry) as described in Kilsby et al. (2007). TN and TX are subsequently derived
from the relationships T N = T − 0.5 TR and T X = T + 0.5 TR. The variables VP,
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Table 4 List of weather
variables generated by the
Climatic Research Unit
weather generator (CRU-WG)

The primary variable (1) is
precipitation which is
generated using the STNSRP
model. Secondary variables (2)
are simulated by the
CRU-WG which also
calculates further variables (3)
from these

Variable and category Symbol

(1) Primary variable
Precipitation (mm) P

(2) Secondary variables
Mean temperature (◦C) T
Daily temperature range (◦C) TR
Vapour pressure (hPa) VP
Wind speed (ms−1) WS
Sunshine duration (hours) SS

(3) Calculated variables
Relative humidity (%) RH
Reference PET (mm day−1) PET

WS and SS are then determined by regression analyses incorporating P and T. The
regression form maintains the autocorrelation structures of these variables and pre-
serves correlations with both T and P. Furthermore, observed correlations between
these three variables also arise naturally due to their common dependency on T and
P. Finally, the simulated variables are used to calculate potential evapotranspiration
(PET) using the Penman–Monteith method (FAO 1986). Further details of the
implementation of the CRU-WG and details of validation experiments are presented
in Kilsby et al. (2007) and Watts et al. (2004a, b), and its application in the production
of the state-of-the-art UK Climate Projections (UKCP) is described by Jones et al.
(2009).

3.3 Deriving change factors from regional climate models

For each of the eight selected RCM experiments from the PRUDENCE project
(Section 2.2; Table 2), simulated values of mean daily temperature and daily total
precipitation for the 1961–1990 (control) and 2071–2100 (scenario) time-slices were
extracted from the two RCM grid cells overlying the meteorological stations in
the study area (Fig. 1). Because the approach applies CFs to observed climate
statistics an explicit bias correction of the RCM output is unnecessary although it
assumes, as with bias correction, that model biases are consistent in control and
future simulations. For each grid cell monthly change factors (CFs) for mean daily
rainfall, proportion of dry days (PDD; defined as days with less than 1.0 mm of
rainfall), daily rainfall variance, daily rainfall skewness (SKEW) and daily lag-1 auto
correlation (AC) were calculated. For air temperature, monthly CFs of mean and
variance in daily temperature were derived. The CF approach (Diaz-Nieto and Wilby
2005; Prudhomme et al. 2002) assumes that future changes to local rainfall statistics
will be proportional to changes simulated by an RCM. The approach of our study
extends the approach of Kilsby et al. (2007), who used CFs from a single climate
model (HadRM3H), by using a multi-model ensemble, and by the application of the
approach to a spatial multi-site rather than single-site rainfall model.

Following the approach described in Kilsby et al. (2007) and Jones et al. (2009),
change factors, αR

g,i (Eq. 1), were calculated to measure the change in each rainfall
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statistic, g, for each RCM, R, between the control (Con) and future (Fut) time-slices
for each calendar month, i, for the two grid cells overlying the Dommel catchment.

αR
g,i = gR,Fut

i

gR,Con
i

(1)

Estimates of future rainfall statistics, gR,Est
i , based on change factors from each

RCM and from statistics observed during the control period (Obs), gObs
i , were then

obtained using Eq. 2.

gR,Est
i = αR

g,i gObs
i (2)

Changes in daily temperature variance may also be calculated in the same way,
however, PDD and AC statistics take values within limited ranges and so they were
first transformed using simple invertible transformations (see Burton et al. 2010a),
prior to evaluating or applying CFs. Estimates of future PDD and AC may then
be calculated as for other rainfall statistics by using an appropriate application of the
change factor. A detailed description of this process is provided in the annex of Jones
et al. (2009).

For mean temperature, T, change is additive and so the change factor is derived
from RCM simulations using Eq. 3 and used to perturb future monthly mean
temperature through the application of Eq. 4. The daily temperature variance is also
perturbed by the ratio of the future to the control variance from the RCM in the
same way as for mean precipitation shown in Eqs. 1 and 2 (see Kilsby et al. 2007).
The CRU-WG then provides simulations of daily temperature with the properties of
the perturbed statistics in the same way as described in Section 3.2.

αR
T,i = T R,Fut

i − T R,Con
i (3)

T R,Est
i = T Obs

i + αR
T,i (4)

In this study, an additional correction to the CFs is necessary as the period of
observed data for temperature and the other CRU-WG variables (1985–2006) is
not concurrent with the RCM control time-slices (1961–1990) and may therefore be
assumed to include a proportion of the change projected by the RCMs. A simple
pattern scaling approach, described by Burton et al. (2010a) was therefore applied
to the CFs to rebase them to the observation period by assuming that changes
in monthly temperature statistics are proportional to global mean temperature
throughout the period between the control and future time-slices. Pattern scaling
(Santer et al. 1990; Mitchell 2003) has been widely used to produce scenarios for
stationary time-slices not covered by GCM/RCM simulations and has been shown
to be generally accurate for temperature and precipitation change at seasonal and
grid scales (Mitchell 2003; Tebaldi et al. 2004). The scale factor rebasing method
described by Burton et al. (2010a) was adapted here for temperature rebasing. The
rebasing of these weather statistics was estimated using projections of global mean
temperature from the GCMs HadCM3 and ECHAM4, scaling according to which
was used to condition each of the eight RCM experiments (Table 2). Further details
of the pattern scaling approach used here are given in Appendix 1.
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For each of the eight RCM experiments the set of seven CFs (five for precipitation,
two for temperature) relative to the period for which observed data was available
was calculated for each calendar month, resulting in a total of 84 (7 × 12) estimates
of future monthly weather statistics. In numerical models such as RCMs, the limits to
process integration and numerical instabilities at the grid scale mean that projections
for individual RCM grid cells must be treated with caution. CFs for a 12 (4 × 3)
element grid centred on the two grid cells for the Dommel were examined to ensure
that the RCMs provided regional spatial consistency.

Across the 12 element grid the range in monthly CFs for mean precipitation is
typically around 10% although there is some model variability. For example, for
HIRHAM_E the range is only ∼6% whilst for HAD_P_H it is typically ∼13%.
This spatial variability tends to be smallest in summer with little variation across the
domain whilst in some models it is larger in winter and spring months with a weak
pattern of larger increases in the north. For mean temperature the range in monthly
CFs for most models is generally < 0.5◦C and in the case of RACMO_H, REMO_H
and ARPEGE_H is generally < 0.2◦C. For most models the range is greatest during
summer months, particularly HIRHAM_E (1.6◦C, August) and RCAO_E (2.3◦C,
August). This enhanced summer range is, in general terms associated with greater
temperature increases in the south. It was concluded that the CFs derived from each
of the RCMs are spatially consistent and that the grid cells overlying the Dommel
were therefore appropriate for this study. The final set of CFs used in this study was
subsequently derived as an average of the two grid cells.

Figure 4 illustrates the projected average CFs calculated from the RCMs for the
grid cells corresponding to the Dommel for mean precipitation and temperature.
The projected changes are discussed in more detail in Section 5 in the context of the
downscaled climate change scenarios. However, in general terms, mean precipitation
is projected to increase between December and March (CF > 1) and decrease
between May and September (CF < 1). All RCMs project temperature increases
throughout the year but especially during summer.
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4 Results of control climate simulations

4.1 Validation of the STNSRP model: control simulations

The daily rainfall observations for the control period, 1961–1990, for the 22 selected
rain gauges were used to calibrate the STNSRP model. This calibration was subse-
quently used to generate a 100-year climatically stationary simulation for the control
period at the rain gauges’ locations (i.e. using only the multi-site properties of the
model). To achieve this, each rain gauge record was first characterized in terms
of calendar month estimates of the daily mean, variance, PDD, AC and SKEW
statistics. The daily cross-correlation between the rain gauges was also evaluated for
each calendar month making a total of 4092 observed statistics (12 calendar months ×
[22 × 5 single-site statistics + 231 cross-correlation statistics]). An STNSRP model
parameter set was then fitted for each calendar month using numerical optimization
and a 100-year daily spatial simulation of the model was generated and sampled at
the locations of the 22 rain gauges.

Analysis of the simulated time series provides a demonstration that the model
outputs are consistent with the characteristics of the observed rainfall. The observed,
fitted and simulated monthly statistics of the control simulation are presented in
Fig. 5 for five of the precipitation stations: Maarheeze (Maar), Deurne (Deur),
Eindhoven (Ein), Eersel (Eers) and Leopoldsburg (Leop). These stations were
selected to represent the range of precipitation amounts in the catchment from
the lowest to highest annual amounts (Fig. 1). Both fitted and simulated monthly
statistics are presented, which are slightly different due to the stochastic nature of the
simulations: fitted values are those expected from the rainfall model and simulated
values exhibit sample variability. The spatial rainfall cross-correlation properties are
shown in Fig. 6 for pairs of the 22 stations for January and July.

The differences between the observed precipitation properties of the selected
stations are fairly small due to the small altitudinal range of the catchment and its
uncomplicated topographic setting. The cross-correlation properties exhibit more lo-
calised (less spatially correlated) events in the summer than the winter (as illustrated
in Fig. 6), reflecting an annual cycle between smaller (e.g. convective) and larger
(e.g. stratiform) rainfall systems. Model fits to the observations are generally good,
indicating that the model provides a good structural match to the observed rainfall.
In particular, fits to mean and PDD were found to be good for all 22 rainfall gauges.
Overall, the properties of the simulation are seen to approximate the fits, with some
variation arising from the stochastic nature of the simulation. Although fits and
simulations of SKEW are somewhat underestimated for the stations of Eindhoven
and Maarheeze during summer, the majority of stations are well simulated in terms
of this statistic, which is highly susceptible to sample variability. For most months, the
spatial properties are very well fitted with the possible exception of May to July which
appears to exhibit a slight under-simulation of the correlation for distances greater
than about 50 km (July shows the worst example of this in Fig. 6). However, observed
data for May and June appear to show an increasing correlation with distance for
distances greater than about 50 km and August has the least correlation at ∼60 km
(and is accurately simulated). Therefore it is likely that much of this difference arises
from sample variability. In general, the synthetic data series are found to provide a
good representation of rainfall observed simultaneously at the 22 rainfall stations in
the study area for the control period.
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4.2 Validation of the CRU weather generator: simulations for the weather
observation period

As previously noted, the CRU-WG is currently only developed as a single-site
application and so cannot be used to produce spatially correlated series of the
additional weather variables in the same manner as the STNSRP model is able to
simulate for precipitation. However, Jones et al. (2009) suggests that the approach
may be appropriate for catchments of up to approximately 1000 km2. In practice,
simulating these variables at a single point is sufficient for hydrological modelling of
the Dommel due to the relatively low spatial variability of temperature and potential
evapotranspiration over the catchment arising from its limited size and homogeneous
nature. Correlation in mean daily air temperature between the meteorological
stations in the Dommel catchment ranges from 0.980 to 0.997. As discussed in
Sections 2.1 and 3.2, Eindhoven was selected as the most appropriate station to
provide representative meteorological data because it offers the longest complete
record (1985–2006), it is centrally located, its precipitation is close to the catchment

Fig. 7 Validation of Climatic Research Unit weather generator (CRU-WG) for simulated daily
temperature minima (TN), and maxima (TX), vapour pressure (VP), wind speed (WS), sunshine
hours (SS) and potential evapotranspiration (PET) for the weather observation (WObs) period
(1985–2006). The crosses denote the CRU-WG simulated means of weather statistics for the WObs
period (CRU-WG CTL) and the circles show the corresponding observed values (OBS). The error
bars represent variability denoted by two standard deviations of the simulated 100 annual means
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average (Fig. 2) and the record length is sufficient to produce reliable calibrations
(Watts et al. 2004a). The CRU-WG was therefore calibrated on the Eindhoven data.

To validate the CRU-WG an assessment of its ability to adequately simulate
the main features of the observed climate at Eindhoven was undertaken. As the
regression relationships used by the CRU-WG are dependent on rainfall state
and amount, simulated rainfall series (Section 4.1) characterised by monthly mean
estimates of the daily mean, variance, PDD, AC and SKEW statistics of rainfall, esti-
mated for the weather observation (WObs) period (1985–2006) from the Eindhoven
meteorological station were used to condition the CRU-WG to generate 100 30-year
WObs simulations of the observed weather.

The performance of the CRU-WG in reproducing the mean climatology at
Eindhoven is assessed in Fig. 7, by comparing the observed average weather statistics
with the range estimated from the 100 simulations. This shows that the weather
generator skilfully reproduces both TN and TX throughout the year with the
observed average within the two standard deviation range of the simulations for most
half-months of the year. Only during summer is there a slight underestimation of
TX by the CRU-WG, with the observed means outside the range of two standard
deviations of the simulations. For VP, WS and SS there is close correspondence
between the observed and simulated values throughout the year although WS is
overestimated for some half monthly periods whilst the same is true for SS during
spring and summer periods. Overall, the simulations show excellent agreement with
observed values and reproduce the annual cycles of all weather variables well. Of
particular importance to hydrological assessment, the PET simulations display a
close correspondence with observed values throughout the year.

5 Results of future climate simulations

5.1 Future projections of multi-site precipitation

The projected statistics of future multi-site rainfall were estimated using the CF
approach described in Section 3.3 for each raingauge and RCM experiment. The
STNSRP model was then fitted to these statistics for each of the eight RCM exper-
iments in turn and used to generate daily 100-year stationary-climate time series of
precipitation for all stations for the future (2071–2100) time-slice corresponding to
the projections of each of the RCMs.

Roughly, the downscaled time series of future precipitation for the RCM ex-
periments project an increase in winter precipitation and a decrease in summer
precipitation, which is in agreement with the CFs of the selected RCM projections
(Section 3.3; Fig. 4). Figure 8 shows the mean daily precipitation for the driest
station Maarheeze and wettest station Leopoldsburg, which are indicative of the
spatial range, and the overall average in mean daily precipitation of all 22 raingauges
(catchment average) for the 100-year simulations of the future period (2071–2100)
compared to the control period (1961–1990). Comparing the magnitude and timing
of the downscaled multi-site precipitation, distinct differences exist between the se-
lected RCMs. The most pronounced increases in winter precipitation and decreases
in summer precipitation are obtained for RCAO_E, while seasonal precipitation
changes for ARPEGE_H are less obvious compared to the other RCMs. This is
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Fig. 8 Mean daily precipitation of the driest station (Maarheeze) and wettest station (Leopoldsburg)
and the overall average of all 22 raingauges (catchment average) for the eight 100-year simulations
of the future period (2071–2100) compared to the control period (1961–1990). The values of the
driest and wettest stations are presented for the control (SIM_CTL; black crosses), simulated future
(SIM_FUT; blue crosses) and expected future (EXP_FUT; red crosses) periods and the dotted lines
denote the overall catchment averages of mean daily precipitation

in agreement with the calculated CFs (Fig. 4). Precipitation projections based on
RCAO_H show a distinct emphasising of the precipitation peak during March for
all sites, which is (to a lesser extent) also found for the HIRHAM_H, REMO_H
and RACMO_H precipitation simulations. Comparing the HIRHAM and RCAO
experiments using boundary conditions from two different GCMs (HadAM3H
and ECHAM4/OPYC; suffix _H and _E respectively) suggests that the increased
precipitation peak during March derives from the driving GCM, since the increase
in precipitation during this month is only found for the experiments using boundary
conditions from HadAM3H.
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For winter (DJF), all downscaled scenarios show an increase in catchment average
daily mean precipitation and standard deviation (SD), and typically an increase in
the proportion of wet days (Pwet; P > 1.0 mm) is indicated (Table 5). The increase
in mean daily precipitation spans a wide range between +9% (ARPEGE_H) and
+40% (RCAO_E). There is a strong suggestion that the GCM influences the
winter wet-day amount (Mwet) as both HIRHAM_E and RCAO_E exhibit greater
increases than their HadAM3H-driven counterparts. Changes in Mwet during winter
are also highest for RCAO_E (+23%), while less pronounced increases in mean daily
precipitation and Mwet are projected for RCAO_H (+19% and +4% respectively),
indicating that GCM boundary conditions strongly influence the precipitation in-
creases. However, the highest increases in the proportion of wet days (Pwet) were
found for HIRHAM_H (+22%) while the run based on RACMO_H resulted in a
very small overall average decrease in Pwet during winter (−1%).

For summer (JJA), all scenarios show a decrease in mean daily precipitation
ranging from −16% (REMO_H) to −57% (RCAO_E), an increase in CV and
a decrease in Pwet from 26% (ARPEGE_H and REMO_H) to 62% (RCAO_E).
Typically the overall catchment average of Mwet is projected to increase during
summer; by up to 16%. This suggests that the projected reduction in summer rainfall
arises despite an intensification of rainstorm events due to a greater decrease in
Pwet. The projected changes in daily summer precipitation for the RCM experiments
HIRHAM_E and RCAO_E result in more pronounced drier conditions than found
with HIRHAM_H and RCAO_H: greater decrease in the mean, higher increase in
CV and greater decrease in Pwet with inconclusive results for Mwet. This suggests
that the GCM boundary conditions strongly influence changes in precipitation during
summer principally through the mechanism of reducing the number of wet days.

5.2 Future projections of mean temperature and evapotranspiration

To generate consistent future scenarios of temperature and other weather variables,
the CFs associated with each of the eight RCM simulations were used to produce the
future climate simulations as described in Section 3.3. As the CRU-WG generates
the weather variables in a specific sequence for three groups of variables (Table 4)
the perturbations are modified to allow for changes that have arisen earlier in this

Table 5 Catchment average percentage change in mean, standard deviation (st.dev), coefficient of
variation (CV), proportion of wet days (Pwet : P > 1.0 mm) and mean wet day amount (Mwet) during
winter (DJF) and summer (JJA) for the eight Regional Climate Model (RCM) experiments

HIRHAM_H HIRHAM_E RCAO_H RCAO_E HAD_P_H ARPEGE_H RACMO_H REMO_H
Changes (%) Winter (DJF)

mean +19 +18 +19 +40 +13 +9 +14 +13
st.dev +2 +25 +14 +39 +20 +11 +2 +6
CV −14 +6 −5 −1 +6 +2 −11 −6
Pwet +22 +5 +15 +15 +2 −1 +15 +10
Mwet −2 +12 +4 +23 +10 +11 −1 +3

Changes (%) Summer (JJA)
mean −35 −39 −35 −57 −39 −19 −31 −16
st.dev −16 −7 +4 −24 −2 −3 +3 +17
CV +29 +54 +60 +78 +62 +21 +49 +39
Pwet −35 −45 −44 −62 −45 −26 −40 −26
Mwet −1 +9 +15 +11 +8 +9 +16 +11

Changes are expressed for the future period (2071–2100) relative to the control period (1961–1990)



268 Climatic Change (2012) 111:249–277

sequence. Thus changes in temperature related to say a decrease in summer rainfall
are determined and used to modify the direct temperature change accordingly.
Further details of parameter adjustment for future climate change scenarios, and
validation of the CRU-WG in reproducing RCM projected changes are provided by
Kilsby et al. (2007) and Jones et al. (2009). The CRU-WG was thus conditioned using
the simulated future daily rainfall series for Eindhoven for the 2071–2100 time-slice
(described in Section 5.1) to generate temporally consistent daily series of weather
variables, perturbed in accordance with individual RCM projections of change.

Before examining the projected changes a validation of the CRU-WG, perturba-
tion was undertaken to assess whether the means of the simulated temperature series
reliably represent the additive application of the CFs as indicated by Eq. 4. To test
the simulated future temperature series, the mean daily temperature simulated by
the CRU-WG is compared with that which would be expected through the additive
application of the relevant rebased RCM CFs directly to the CRU-WG simulated
control climate means (TEX P). The CRU-WG simulated control climate means were
demonstrated to be a robust simulation of the observations in Section 4.2 and so this
process represents an appropriate assessment of the application of the CFs. Figure 9
shows that, for each RCM, TEX P lies within the two standard deviations of CRU-WG
FUT for most half-monthly periods and demonstrates that the difference between
the control and future downscaled temperature series reproduces the changes in
mean temperature projected by the RCMs.

An examination of the changes in CRU-WG FUT derived from Fig. 9 indicates
that they are consistent with the RCM CFs; the largest changes in mean temperature
are simulated during late summer with the increase for August in the range of
+3.3◦C (REMO_H) to +7.7◦C (RCAO_E). The smallest increases are projected
during spring, for example the change for April ranges from +2.0◦C (ARPEGE_H)
to +3.8◦C (RCAO_E). For all months except January the largest increase in the
ensemble is projected by the two ECHAM4-driven RCMs; this sensitivity being
greatest during spring and high summer. Consequently the range of projected mean
summer (JJA) temperatures ranges from 19.9◦C (REMO_H) to 23.3◦C (RCAO_E)
whilst for winter (DJF) the range is from 7.7◦C (ARPEGE_H) to 9.1◦C (RCAO_E)
relative to simulated means for the WObs period of 16.8◦C and 3.8◦C respectively.

The range of future projections of TN, T, TX and PET derived from the ensemble
of RCM experiments are summarised in Fig. 10. Greater sensitivity of temperatures
is seen in the simulations using CFs derived from the ECHAM4-driven RCMs,
particularly during summer months and for TX. Consequently, the mean monthly
ensemble range for projected change in TX is 4.1◦C in summer compared with a
1.9◦C range in winter. For TN the range is 3.1◦C and 2.0◦C in summer and winter
respectively.

Changes in simulated future PET (Fig. 10) are strongly related to the correspon-
ding temperature change in each RCM and consequently the largest changes are pro-
jected by RCAO_E. Mean annual PET is projected to increase for all models, from
663 mm/year simulated for the WObs period to values ranging from 777 mm/year
(+17%; ARPEGE_H) and 904 mm/year (+36%; RCAO_E) with large increases of
up to +49% (RCAO_E) during summer months.

For many sectors the greatest impact of climate change is likely to be associated with
extreme events and it is therefore important to test the ability of a model to ade-
quately represent the occurrence of such events and not just the average behaviour.
The change in occurrence of extremes was examined using four standard tempera-
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Fig. 9 Validation of future mean monthly temperature for each of the eight 100-year Climatic
Research Unit weather generator (CRU-WG) simulations for the 2071–2100 time-slice. The lower
crosses denote the simulated CRU-WG means for the weather observation period 1985–2006 (CRU-
WG CTL and the circles denote the expected future half-monthly means (TEX P). The upper crosses
indicate the CRU-WG simulated future mean temperatures (CRU-WG FUT) with the error bars
representing variability denoted by two standard deviations of the simulated 100 annual means

ture indices (Table 6). The 10th and 90th percentiles of the observed daily minimum
and maximum temperature distribution were calculated for each half-month and
were used to define thresholds for the corresponding periods within each series
simulated by the CRU-WG. First, an additional validation was undertaken of the
simulations for the WObs period by calculating the accumulated seasonal totals
for each index and comparing these with the observed frequencies (Fig. 11). For
most seasons the CRU-WG captures the observed distributions reasonably well,
particularly for TN. The observed frequency of “warm nights” (TN90) totals are
well reproduced throughout the year though the number of “cold nights” (TN10)
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Fig. 10 Future mean daily
temperature minima (TN),
mean (T) and maxima (TX)
and potential
evapotranspiration (PET) for
the 2071–2100 time-slice
simulated by the Climatic
Research Unit weather
generator (CRU-WG). The
lower crosses denote the
means for the weather
observation period
(1985–2006; OBS), the grey
lines show the half-monthly
means for the individual
simulations corresponding to
the eight Regional Climate
Model (RCM) experiments.
The two dashed lines denote
the simulations using RCMs
driven by the ECHAM4
General Circulation Model
(CRU-WG FUT_E) whilst the
solid lines denote the
simulations using RCMs
driven by the HadAM3H
General Circulation Model
(CRU-WG FUT_H)

Table 6 List of extreme indices used to validate the Climatic Research Unit weather generator
(CRU-WG)

Index Definition

TN10 Number of days below 10th percentile daily minimum temperature calculated
for each half month for the period of observations (WObs; 1985–2006)

TX10 As for TN10 but for daily maximum temperature
TN90 Number of days exceeding 90th percentile daily minimum temperature

calculated for each half month for the period of observations
TX90 As for TN90 but for daily maximum temperature



Climatic Change (2012) 111:249–277 271

Fig. 11 Comparison of seasonal total daily temperature extremes TN10, TX10, TN90 and TX90 as
defined by each of the four indices given in Table 6. The circles denote the observed totals (OBS).
The crosses indicate the totals simulated by the Climatic Research Unit weather generator (CRU-
WG) for the weather observation (1985–2006) period (CRU-WG CTL) with the associated error bars
showing two standard deviations of the estimated annual variability in CRU-WG simulations. The
diamonds indicate the ensemble mean values for the eight CRU-WG downscaled future scenarios
for 2071–2100 (CRU-WG FUT) with the error bars providing the ensemble minimum and maximum

is underestimated in winter. The largest difference is apparent in the number of “hot
days” (TX90) which is underestimated during spring and summer indicating that the
frequency of extreme hot periods may not be reproduced in the simulated series.

Calculating the frequencies with which each percentile threshold was exceeded
in the future scenarios indicates that whilst there is considerable uncertainty in the
magnitude of the change in occurrence of extreme events, the projections indicate
a climate with less (more) frequent cold (warm) extremes throughout the year at
Eindhoven. In particular, there is a large projected increase in the frequency of TN90
events during summer, with the ensemble mean indicating a fourfold increase relative
to the control period. However, the uncertainty in projections of TN90 and TX90
events is also large, for example, for summer TN90 ranges from 35 days per year
(REMO_H) to 60 days per year (RCAO_E). Since the CRU-WG underestimates
the frequency of TX90 events in the control period it is very likely that these events
will become much more frequent by the end of the century, likely at or exceeding the
upper end of the projected range shown in Fig. 11.
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6 Discussion and conclusion

In this paper we describe a method to produce a downscaled multi-model ensemble
of daily multi-site rainfall scenarios for the Dommel catchment and consistent rep-
resentative temperature and potential evapotranspiration scenarios for hydrological
impact assessment in the Dommel catchment. An integrated application of the CF
approach applied to a stochastic spatial–temporal rainfall model in combination
with a rainfall conditioned weather generator was used to produce statistically
downscaled climate change scenarios for different RCM experiments. Validation of
the stochastic STNSRP model and CRU-WG indicated that both produce reliable
simulations of the current climate and, with the exception of summer maxima, the
CRU-WG simulates extreme temperatures reasonably well. Although this relatively
poor performance for extreme summer temperatures highlights a need for future
development of the weather generator, the resultant simulations may still be used to
provide an assessment of relative future change in climate and hydrology dependent
upon the application and sensitivity of the analysis to the underestimation of summer
extremes at a daily resolution. Jones et al. (2009) suggest that improvements in the
simulation of extremes might be achieved through the use of more complex statistical
distributions, although the perturbation of additional coefficients for future scenarios
is not a trivial matter. It should also be noted that climate models themselves do not
simulate the blocking atmospheric regimes that lead to such events well (Blenkinsop
et al. 2009; Murphy et al. 2009). Overall, considering the combined skill demonstrated
by the STNSRP model and the CRU-WG, the approach is considered a suitable
means to provide downscaled climate change scenarios for hydrological modelling of
the Dommel and is the first time that the CF-weather generator approach of Kilsby
et al. (2007) has been extended for use with a spatial–temporal rainfall generator. In
addition to downscaling for the 22 raingauges’ locations the STNSRP model’s spatial
process provides the potential to downscale at arbitrary locations other than at rain
gauges used for calibration. It should also be noted that the combined CF, rainfall
model and weather generator downscaling methodology (Kilsby et al. 2007), and by
extension the approach described here, surmounts a number of shortcomings of the
traditional perturbation approach. The combined methodology used here in general
produces simulated future rainfall time series with different occurrence patterns,
moments, and persistence properties than the control series, observations or climate
model outputs. The development of such statistical downscaling tools is important if
the use of probabilistic methods in impact assessments is to become more widespread
as proposed by Collins (2007).

Here, future daily precipitation for the Dommel catchment is projected to exhibit
a spatially averaged increase of +9% to +40% during winter for 2071–2100 relative
to 1961–1990. In summer, mean daily precipitation is projected to decrease on
average by 16% to 57%. Temperature is projected to increase throughout the
year with the greatest increase during summer, although the range of projections
is also largest during summer (from 3.1◦C to 6.5◦C). These changes are consistent
with the regional projections for the whole PRUDENCE ensemble summarised by
Christensen and Christensen (2007). The daily weather generator simulations also
indicate an increase in the frequency of extreme temperatures, though again there is
considerable uncertainty in the magnitude of the change. Potential evapotranspira-
tion is projected to increase by +17% to +36% on a mean annual basis, with largest
increases during summer months (e.g. +21% to +49% during July).
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Although the ensemble of RCM experiments shows consistency in the direction
of seasonal changes, the individual experiments diverge in terms of the magnitude of
projected changes in daily precipitation, temperature and potential evapotranspira-
tion. In addition, the downscaled climate change projections for the Dommel catch-
ment are also strongly influenced by the GCM used to provide boundary conditions
for each RCM experiment. This is consistent with previous analyses of temperature
and precipitation change (e.g. Déqué et al. 2007; Fowler et al. 2007b) and has been
shown to be an important factor in the assessment of projected changes in impacts
(Dankers and Feyen 2009; Kay et al. 2009; Manning et al. 2009). A multi-model
ensemble of climate change scenarios based on different RCMs and GCMs thus
provides robust estimates of precipitation, temperature and evapotranspiration for
hydrological impact assessments in this, or indeed any, region. However, it should be
noted that the PRUDENCE ensemble does not fully represent structural uncertainty
in climate models, particularly as only two GCMs were used in the ensemble, and the
GCM-RCM matrix is not fully explored, constituting an ‘ensemble of opportunity’.
Secondly, the future projections in this ensemble are limited to the SRES A2
emissions (medium–high) scenario (Nakićenović et al. 2000) as PRUDENCE only
provides a limited number of RCM simulations for the SRES B2 emissions (medium–
low) scenario. Within PRUDENCE the uncertainty derived from the limited choice
of emissions scenario is greatest for summer temperatures over southern Europe
(Déqué et al. 2007) where the use of other scenarios is recommended. Furthermore,
incomplete knowledge of atmospheric processes and the inability to resolve fine-
scale physics necessitates the parameterization of key processes and properties, such
as convection, cloud formation and cloud characteristics. Consequently, the full
range of model uncertainty can only be quantified when used alongside perturbed
physics ensembles (Tebaldi and Knutti 2007) which fully explore the range of model
parameterizations. A truly comprehensive assessment of uncertainty should take
into account the “cascade of uncertainty” referred to by Schneider (1983), for e.g.
incorporating uncertainty arising from the future response of biogeochemical cycles
and from the trajectory of emissions. However, in demonstrating the application of
these downscaling methods, they could, with the appropriate resources, be extended
to the full range of PRUDENCE outputs and to additional state-of-the-art RCM
experiments such as those provided by the ENSEMBLES1 project.

This framework, using a spatially coherent stochastic rainfall model and a weather
generator, both perturbed by projected changes from climate models, provides a
significant advance in the ability to provide an assessment of the uncertainty of the
impacts of climate change on small to medium-scale catchments (50 km2–2000 km2).
Considering potential future hydrological impacts for the Dommel, the projected
increase in daily mean precipitation and proportion of wet days during winter may
result in higher seasonal discharges, with a possible increase in the leaching of heavy
metals and nutrients towards surface water. In addition, the projected decrease
in mean daily precipitation and strong increase in potential evapotranspiration
during summer months is expected to lower summer discharges, possibly with an
associated increase in the frequency and intensity of hydrological droughts. It has
been demonstrated that during droughts water quality in the Meuse deteriorates,

1http://ensembles-eu.metoffice.com/

http://ensembles-eu.metof/f/ice.com/
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for example, due to increased concentrations of major elements and some heavy
metals (van Vliet and Zwolsman 2008). The scenarios created here are therefore
being used to generate hydrological simulations to assess the potential impact of
climate change on heavy metal contamination of the Dommel catchment (Visser
et al. 2011) and the rainfall scenarios have been used to assess the impact of
climate change on a groundwater influenced hillslope ecosystem (Brolsma et al.
2010). This demonstrates how the approach outlined here may be used as a stepping
stone towards a probabilistic assessment of future hydrological responses to climate
change in this region. It also provides projections which can be used to make robust
adaptation and mitigation decisions with regards to the future impacts of climate
change.
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Appendix 1: Pattern scaling

The global mean temperature (μ) projected for each GCM integration is calculated
from GCM output from the IPCC data distribution centre2 for 30-year time-slices
centred on the years 1975 (control), 2025, 2055 and 2085 (future) which we will
denote as μG

Con, μG
2025, μG

2055 and μG
Fut (where G indicates the GCM from which

the temperature is derived). Linear interpolation of μG
Con and μG

2055 was used to
estimate the GCM projected global mean temperature for 1995, the central year
of the weather observation (WObs) period (1985–2006), which we write as μG

Wobs.
Following the approach described in Burton et al. (2010a) the future estimate of
temperature variance, TV R,Est

i , for RCM R and month i may be calculated from the
observed value, TVWObs

i , by rebasing the change factor as:

TV R,Est
i = αR

TV,i

1 + (
αR

TV,i − 1
)

SFG(R)

WObs

TVWObs
i (5)

where the change factors are as calculated in Eq. 1 and the scale factor for the
observation period, SFG(R)

WObs, may be calculated from the GCM conditioning the
RCM R, G(R), as:

SFG(R)

WObs = μ
G(R)

WObs − μ
G(R)

Con

μ
G(R)

Fut − μ
G(R)

Con

(6)

Here we note that the equivalent expression to Eq. 5 for a rebased additive
change factor approach to estimate future mean daily temperature from the available

2http://www.ipcc-data.org/

http://prudence.dmi.dk/
http://www.ipcc-data.org/
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observations, TWObs
i , may be written as shown in Eq. 7, applying the change factors

calculated in Eq. 3 and the scale factors derived in Eq. 6:

T R,Est
i = αR

T,i

(
1 − SFG(R)

WObs

)
+ TWObs

i (7)
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