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ABSTRACT 
 

Survey evidence suggests that the hurdle rates imposed for DCF analysis are often 

considerably in excess of any plausible estimate of firms’ cost of capital, and that top 

level decision makers often explicitly or implicitly impose additional short payback 

thresholds.  This paper focuses on the value loss that can arise under such ‘short 

termist’ decision criteria.  It is shown that using such decision rules can help to protect 

the firm against the total value loss that can arise from the application of the naïve 

NPV decision rule, and that, for projects with growth prospects and/or moderate or 

greater volatility in future operating cash flows, the value loss (relative to ‘optimal 

decision making’) which arises when firms impose fixed ‘short termist’ thresholds 

can be quite small.  
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1. INTRODUCTION 

Surveys in the academic and professional literature suggest that, particularly amongst 

medium to large scale enterprises, discounted cash flow (DCF) techniques are now 

widely practiced in capital budgeting (Klammer and Walker [1984], Sangster [1993], 

Trahan and Gitman [1995], Drury and Tayles [1997], Abdel-Kader and Dugdale 

[1998], Godden [2001], Alkaraan and Northcott [2006]).  However, it appears that the 

discount rate used in such DCF appraisal, the so called hurdle rate, is typically set 

significantly higher than the firm’s cost of capital, with rates 5% or more above 

conventional estimates of the cost of capital (Hayes and Garvin [1982], Allen [1996], 

Schall et al [1978], Barker [1999], Adler [2000], Godden [2001], Anderson and 

Newell [2003], Meier and Tarhan [2006]).  At the same time, the survey evidence also 

suggests that non-discounting measures remain popular, with additional short payback 

thresholds of 2-4 years often explicitly or implicitly applied by top management when 

considering capital budgeting proposals (Weingartner [1969], Kee and Bublitz [1988], 

Allen [1996], Busby and Pitts [1997], Kaplan and Atkinson [1998], Abdel-Kader and 

Dugdale [1998], Adler [2000], Arnold and Hatzopoulos [2000]).   

 

The concern over apparent ‘short termism’ is that it seems likely to lead to significant 

value loss in the context of the appraisal of long lived projects.  That is, short termism 

seems particularly likely to reject projects with long horizon returns.  However, the 

short termism manifest in high hurdle rates and low payback thresholds may be to an 

extent rationalised.  It can be viewed as a crude way of adjusting for excessive 

optimism concerning project managers’ cash flow forecasts, or because of scarcity of 

managerial talent, or because of financing/liquidity constraints, whether market or self 

imposed (Statman and Sepe [1984], Narayanam [1985], Pike [1985, 1996], Kaplan 
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[1986], Kaplan and Atkinson [1998], Jagannathan and Meir [2002]).  Essentially, 

investment budgets or limited managerial capacity imply that if one accepts a project 

that is only marginally positive NPV, this may foreclose the option to undertake a 

better project that may come along later.  In such a case, given this opportunity cost, a 

project needs to have sufficient positive NPV to be worth undertaking.  Setting a 

higher hurdle rate, or shorter payback threshold can be viewed as a way of ensuring 

this.  The same argument applies to the option to defer an investment; that is, when 

undertaking an investment forecloses the option to undertake it at a later date (when 

interest rates might be lower, or cash flow forecasts higher etc.).  Again, it makes 

sense to require that projects should be activated only when they earn an IRR 

significantly above the cost of finance, or have positive NPV when this is measured at 

a higher hurdle rate, or more crudely, have a shorter payback period.   

 

The real options explanation for apparent short termist decision criteria is now fairly 

well understood and the dependence of the optimal hurdle rate on key parameters 

(including environmental variables such as interest rates, but also project specific 

parameters such as expected cash flow growth rate and volatility) has been examined 

(Ingersoll and Ross [1992], Dixit and Pindyck [1994], Ross [1995]) as has the 

dependence of an optimal payback threshold on such parameters (Wambach [2000], 

Boyle and Guthrie [2006]).   This literature has shown that optimal payback 

thresholds ought to be shorter, and optimal hurdle rates ought to be higher when real 

option effects are present.  It also shows that ‘by how much’ depends on project 

specific characteristics.  
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However, survey evidence concerning actual practice also suggests that hurdle rate 

and payback thresholds are adjusted only to a very limited degree, if at all, across 

projects with differing characteristics (Wardlaw [1994], Busby and Pitts [1997]).  

This suggests a degree of ‘sub-optimality’ in decision making; that is, relative to 

optimal decision making, a degree of value loss will arise if such thresholds are 

applied uniformly across a range of projects with varying individual characteristics.  

The natural question to ask then is whether the value loss that is likely to arise from 

imposing fixed hurdle rates and payback thresholds is likely to be significant or not.  

If, as argued in this paper, the value loss is not significant, this may help explain the 

persistence of such decision criteria over time.     

 

The above cited literature on optimal thresholds (hurdles and paybacks) has not 

directly addressed this value loss question, although two papers have some indirect 

bearing on it.  Wambach [2000] uses the same ‘standard investment model’ adopted 

in this paper, focuses on the discounted payback threshold, and shows that this 

threshold does not vary much when project characteristics are varied.  Whilst this 

observation is of interest, it should be noted that it does not answer the above value 

loss question; the point is that insensitivity of the optimal payback threshold to 

variations in parameters does not in itself indicate anything about the extent of value 

loss that can arise from setting a fixed and non-optimal hurdle rate or payback 

threshold.  In particular, it gives no indication of the extent of value loss that might 

arise from the observed practice of setting too high a hurdle rate and too short a 

payback threshold.  Jagannathan and Meir [2002] also use the standard investment 

model, but have a rather different perspective; their focus is on imprecision in CAPM 

based estimates of the cost of capital.  They argue that imprecision in estimation of 
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the cost of capital is not such a problem as at first sight – because projects typically 

have option characteristics. They show that the optimal hurdle rate implied by the 

standard investment model is relatively insensitive to the number used for the cost of 

capital.  That is, value loss arising from errors in the cost of capital, when computing 

and implementing an optimal hurdle rate, are likely to be small.  Again, this leaves 

open the question addressed in the present paper, concerning value loss from the use 

of fixed and non-optimal decision criteria. 

 

A further contribution of the present work lies in the fact that it also considers the use 

of multiple thresholds;  the survey literature cited above shows that it is common 

practice for firms to set more than one threshold, and in particular, firms that routinely 

use a hurdle rate of discount often also impose an additional payback threshold.  That 

is, top level decision makers often explicitly or implicitly impose additional short 

payback thresholds (Weingartner [1969], Wardlaw [1994]).   In principle, projects 

may fail on either test; indeed, one would expect that which threshold proves to be the 

tighter may well depend on project characteristics.1  

 

The paper also examines the value loss that rises from application of the “naïve” net 

present value (NPV) rule.  Rene Stultz [1999] has argued that, whilst most business 

education will cover the NPV rule, there may be doubts as to the extent to which 

students are exposed to, or understand, the weaknesses of using this rule.  He suggests 

the average MBA student understanding is that projects with positive NPV at an 

appropriate CAPM based risk adjusted discount rate should be accepted. Stultz 

focuses on the idea that not only systematic risk matters -  total risk also often matters.  

                                                           
1 That this is in fact the case is demonstrated in section 3 below. 
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However, the naïve NPV rule can also perform poorly in the presence of real option 

effects.  Evaluated at time zero, the naïve NPV-rule generates two kinds of errors.  

Firstly, it tends to indicate a project should be implemented when it is in fact value 

adding to delay implementation.  Secondly, if it fails the test at time zero, the project 

is either rejected or at best is deferred to a time when it is evaluated as ‘just viable’, at 

which point it is activated but will again add negligible value. Given the above 

observations, it is thus of some interest to compare the value loss that arises from the 

use of payback thresholds and high hurdle rates with that which arises under the naïve 

NPV rule.    

 

Clearly it is not possible to conduct an assessment of value loss with respect to the set 

of all possible investments; the present analysis deals with an analytically tractable 

but important subset with the following characteristics: 

(a) The investment cost or scale for an individual ‘project’ is fixed  
(b) Operating cash flows are uncertain; they evolve over time according to a 

geometric Brownian motion, with a fixed average growth rate and volatility 
(c) The project can either be implemented immediately – or – it can be deferred. 
(d) The investment once made is a sunk cost. 

 
This is a ‘standard investment model’ whose options characteristics are well 

understood and which have been discussed extensively in the literature (for an 

extended discussion of this model, see Dixit and Pindyck [1994]).   This facilitates 

exposition, allowing the primary focus in what follows to be on the extension of the 

model to the study of how short termist decision criteria impact on value.  Although 

somewhat restrictive, the above assumptions  are not ‘unreasonable’; projects often 

have a natural ‘scale’, and often involve repetitive production or service output which 

generates operating cash flows of this nature; project implementation is rarely a ‘now 

or never’ decision and investment costs are always, to lesser or greater extent sunk 
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costs.  Given this framework, value loss can be studied as a function of the key 

characteristics that vary across projects (initial cash flow, capital outlay, cash flow 

growth rate and volatility).  

 

Conceptually, if a decision-maker knows the framework is that of the above standard 

investment model, and knows the parameter values for a given project, it is possible to 

then compute the optimal decision rule for this project.  However, the perspective 

taken here is that, based on survey evidence, decision makers do not make ‘optimal 

decisions’; they tend to impose fixed and relatively invariant short termist decision 

rules, independently of variations in project characteristics.  The focus is thus on 

examining the value consequences of this behaviour.   

 

It is shown that the imposition of a naïve NPV decision rule (i.e. accept projects if 

they have positive NPV, reject or defer them if they have negative NPV) can lead to 

total value loss.  By contrast, short termist decision criteria tend to limit the extent of 

value loss – although there is often still some value loss.  The key finding in this paper 

is that, for projects with growth prospects and/or moderate volatility in future cash 

flows, relative to optimal decision making, the percent value loss arising from the use 

of short termist decision rules is fairly low. As a consequence, whatever, the rationale 

decision makers have for the use of such decision rules of thumb, it would appear that 

if value loss from their use is relatively small, such rules can be evolutionarily stable.2 

                                                           
2 That is, the focus of the present paper is on the consequences that arise when decision-makers do 
what they say they do, rather than an enquiry into why they do what they say they do.  If a decision rule 
appeared to be significantly inefficient, one might not expect it to survive in the long term.  A similar 
argument is often made concerning cost plus pricing.  That is, a cost plus pricing rule in which the plus 
was set independently of demand side considerations could be expected to perform poorly in many 
circumstances, and not to survive the rigours of a competitive market place. In this later case, survey 
evidence reveals that demand side factors do inform pricing decisions; the term ‘cost plus pricing’ thus 
mis-describes the price formation process (see e.g. Dorward [1987], Lucas [2003]). 
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The paper is structured as follows.  Section 2 sets out the basic framework, outlines 

the structure of the optimal solution and examines the performance of the naïve NPV 

decision rule.  Section 3 follows this by analysing decision making and valuation 

when projects are evaluated using a ‘hurdle’ discount rate significantly above the 

firm’s cost of capital and are required to satisfy an additional payback threshold 

constraint.   Section 4 then conducts a study of the value loss associated with this 

‘short termist’ approach to project appraisal and section 5 concludes. 

 

2. VALUE UNDER OPTIMAL DECISION MAKING AND THE NAÏVE DCF 

 RULE 

The basic assumptions are as follows.  A project involves an initial capital outlay, 

denoted K, following which there ensues a stream of operating cash flows.  The 

instantaneous cash flow at time t is denoted tπ  and this is assumed to evolve 

according to a geometric Brownian motion (GBM), such that   

/t t td dt dπ π α σ ϖ= + .      (1) 

Here α  is the trend rate of growth in cash flow (α  can be positive or negative) and σ  

denotes its associated volatility. The initial cash flow is denoted 0π  and the expected 

cash flow for time t grows at the rate α : 

 0 0( ) t
tE eαπ π=         (2) 

Finally, it is assumed that the firm has the option to defer investment (without risk 

that others might steal its investment opportunity).  Thus the firm’s decision for this 

project is simply one of investing at time zero or of waiting (for sufficiently 

favourable market developments) before investing.  The value of the given project 
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will clearly depend on project characteristics 0 , , ,Kπ α σ , and on the decision rule 

used to determine whether to activate the project or not. 

 

A useful way of presenting valuation results lies in first setting out value under 

uncertainty under the assumption that the project must be implemented, if at all, at 

time zero.  Denote the value of such a project as iV  (‘i’ for ‘immediate’ investment).   

Then  

 

( ) ( )
0 00 0

0 0 1

rt r t
i t

i

V K E e dt K e dt

K K
r

απ π

π π
πα

∞ ∞− −= − + = − +

⎛ ⎞= − + = −⎜ ⎟
− ⎝ ⎠

∫ ∫

   (3) 

where  

( )i r Kπ α= − ,        (4) 

Here r denotes an appropriate discount rate and Eτ  denotes the expectations operator, 

with expectations formed at time τ .  In this model, notice that it must be assumed that 

r α> , or the project will have infinite value.  Notice also, from (3), that 

implementing the project at time zero has positive expected net present value only if 

0 iπ π> .   If the project has to be undertaken at time 0 or not at all, then iπ  can be 

viewed as an investment ‘trigger’, since if the initial cash flow 0π  is above this level,  

the project has positive NPV project and is worth implementing.   

 

However, with the option of deferral, immediate implementation may not maximise  

value; it may be that ‘more value’ can be extracted by ‘waiting to invest’.  The 

optimal solution to the value maximisation problem under uncertainty, where deferral 

is an option, is documented in a wide range of literature so a formal derivation is 

omitted (for a full exposition, see e.g. Dixit and Pindyck [1994]).   In order to present 
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the solution, it is useful to define the intermediate variables ( )21
1 2R α σ≡ − , 

( )1 22 2
2 1 2R R rσ≡ + , ( ) 2

1 1 2 /R Rλ σ= − +  and use these to define what is termed an 

‘option multiplier’ as 

( )1 1 1M λ λ= − .       (5) 

The optimal decision rule, and the value that accrues to the firm as a result, turns on 

whether initial cash flow 0π  is above or below a ‘trigger level’ uπ  (‘u’ for ‘under 

uncertainty’) which is defined in relation to the certainty trigger level iπ  as  

u iMπ π=         (6) 

(this explains why M is often referred to as an ‘option multiplier’).  Notice that M is 

ultimately a simple function of the parameters , ,r α σ .  It can be shown that 1λ >1 and 

so M>1 when 2 0σ > , so the trigger level under uncertainty, uπ  is greater than the 

trigger level under certainty, iπ .   Recall that 0 iπ π>  implies positive NPV, from (3). 

That is, if initial cash flow is above iπ , the project is value adding.  However, 

equation (6) indicates that, under uncertainty, the initial cash flow has to be higher 

than this if value is to be maximised; only if 0 ( )u iMπ π π> =  should the project be 

implemented immediately.  If 0 uπ π< , optimal decision making requires that the 

project be deferred until some future time t occurs at which the cash flow tπ  reaches 

the level uπ . Value under optimal decision making is summarised in the following 

result. 
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Result 1.  Optimal Decision and Value: 
(i) If 0 u iMπ π π≥ = , the firm invests at time zero, and value *V  is given as  

0 0* 1
i

V K K
r

π π
π α

⎛ ⎞
= − = −⎜ ⎟ −⎝ ⎠

  

(ii) If 0 uπ π< , the firm waits until a time τ  is reached when uτπ π= .   
Value is given as 

1

0* 1u

u i

V K
λ

π π
π π
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 
 Proof:  (i) follows from equation (3).  Part (ii) is a standard result - see e.g. 
Dixit and Pindyck [1994], pp. 140-145.  The proof is repeated in the appendix 
for convenience. 

 

Optimal decision making thus turns on whether initial cash flow 0π  is above or below 

the level uπ  in (6), where this level is higher than the level iπ , defined in (4), that 

which would arise under the naïve NPV rule, by the option multiplier factor M.  The 

value V* defined by result 1 is the benchmark against which the value that results 

from alternative decision criteria are compared in what follows.  It is worth noting 

that optimal value is a function of the cost of capital r, and individual project 

characteristics; the growth rate α  and volatility σ , the initial cash flow 0π  and the 

scale of the project K. 

 

The first deviation from optimal decision-making to be considered is the consequence 

of adopting a naïve NPV decision rule in which projects are accepted if they have 

positive NPV but are either rejected completely or deferred if they have NPV<0.   

 

Result 2.  Decision and Value, denoted naiveNPVV , under the naïve NPV rule. 
 (i) If  0 iπ π≥ , the firm invests at time zero, and value is given as   

   0 1naiveNPV
i

V K π
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

(ii) If 0 iπ π< , the firm waits, and value is zero: 
0naiveNPVV = .   

 
 Proof:  Part (i) as per Result 1(i).  For part (ii), if 0 iπ π≥ , but if 0 iπ π< , the 
firm either rejects the project, so earning zero NPV, or defers it until it just 
becomes viable, and then implements, so again earning zero NPV. 
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The percent value loss that arises under such a naïve NPV decision rule (in which 

NPV>0 projects are accepted and NPV<0 projects are rejected or are deferred) is 

defined as  

 ( )% 100 * / *naiveNPV naiveNPVVL V V V= × −  .    (7) 

That is, percent value loss from using the naïve NPV rule is measured against the 

benchmark value that arises from optimal decision making.  The key feature of the 

naïve NPV rule is that it only generates positive value if there is positive value at time 

zero; that is, if it is initially negative NPV, it is either rejected, or it is deferred until a 

time when it just turns positive NPV; in both cases, a zero value outcome.  Further, as 

Result 1 indicates, higher value can often be had by deferring projects even when they 

have positive NPV projects at time zero.  How the value loss arising from using the 

naïve NPV rule varies with the key project parameters 0 / , ,Kπ α σ  is studied 

numerically in section 4 below. 

 

3. VALUE UNDER HURDLE RATES AND PAYBACK  THRESHOLDS 

This section extends the standard model by considering how value is affected by the 

widespread use of ‘short termist’ decision rules.  Specifically, the focus is on the use 

of an arbitrarily high hurdle discount rate (h) and the added restriction that projects 

must also beat a payback threshold (PB).  The use of a hurdle rate in DCF analysis 

can also assumed to apply over a fixed time horizon H.  This could be infinite, 

although it seems that firms often examine cash flows only over a more limited or 

‘truncated’ time horizon.  A time horizon of  10 year time horizon is used in the 

analysis below, although empirically the effect of varying the threshold to a longer or 

even infinite horizon makes little difference, given the high hurdle rate of discount 

(for survey evidence on firms’ time horizons, see Hayes and Garvin [1982], Ross 

[1986], Poterba and Summers [1995], Segelod [2000]).  The survey evidence 

discussed in section 1 on hurdle rates suggests these are often set at least 5% above 
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the cost of capital, whilst for the additional payback threshold, this was commonly set, 

implicitly or explicitly, as short as 2-4 years.   

 

Consider then the impact of the firm using a fixed and non-optimal hurdle rate h along 

with a fixed and non-optimal payback threshold PB.  The decision rule is that if the 

project has positive NPV at the hurdle rate and has a lower payback period than the 

payback threshold, the project is activated immediately.  If not, it is deferred until the 

cash flow improves to a point where the test is finally passed.  In general, an 

individual project may be accepted (having positive expected NPV at the hurdle rate 

and passing the payback threshold test), or be deferred (because it has negative 

expected NPV and/or fails to satisfy the payback requirement).   In terms of optimal 

decision making, clearly if a project has negative expected value, it should be 

deferred.  Further, according to result 1, if a project has positive expected value, it 

may still be optimal to defer.  The question is thus whether the short termist decision 

criteria imply ‘too much deferral’ – or ‘not enough’.  Intuitively, over a set of projects 

with varying individual characteristics (initial cash flow/capital outlay, growth 

prospects, volatility), some will be deferred too much and some too little’, in both 

cases with an attendant value loss relative to optimal decision making.      

 

The payback threshold as a decision criterion requires that the project be accepted at 

time τ  only if the sum of expected cash flows within the interval [0, ]PB  outweighs 

the initial capital investment.  That is, if 

 ( )( ) 0
PB PB t

tK E dt K e dt
τ τ α τ

τ ττ τ
π π

+ + −− + = − + ≥∫ ∫ .   (8) 

Clearly, this condition is satisfied if the initial cash flow is sufficiently large.  A 

project thus passes the PB decision rule at time τ  if its starting cash flow at that time, 
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τπ , lies above a threshold value, denoted PBπ  defined by (8): Integrating and 

rearranging this gives, 

( )/ 1PB
PB K eατπ π α≥ ≡ −  for 0α ≠ , and  

/PB K PBτπ π≥ ≡  if 0α =       (9)  

If the cash flow is below PBπ  , the firm will wait until the cash flow reaches this 

threshold level.   

 

Turning now to DCF appraisal using the hurdle rate h over a time period H,  this 

requires that 

 ( ) ( ) ( )( ) 0
H Hh t h t

tK E e dt K e dt
τ ττ α τ

τ ττ τ
π π

+ +− − − −− + = − + ≥∫ ∫  . (10) 

Again, this condition will be satisfied at time τ  if the initial cash flow is sufficiently 

large. That is, a project will have a positive NPV using the hurdle discount rate at time 

τ  if its cash flow, τπ  at that time lies above a threshold value, denoted hπ .  This 

threshold is obtained by integrating and rearranging (10) to get3 

( ) ( )( )/ 1h H
h h K e α

τπ π α −≥ = − −  .     (11) 

Again, if not, the project will be deferred until a time when it is satisfied. 

 

As previously remarked, the aim is now to consider the extent of value loss that may 

arise if projects with differing characteristics are only implemented if they have 

positive NPV when evaluated under a fixed (non-optimal) hurdle rate and if they 

additionally pass the payback requirement.  That is, if the cash flow τπ  at time τ  

satisfies 

                                                           
3 Note that 0hα − <  since 0rα − <  and h r> . 
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 [ , ]PB hMaxτπ π π π≥ ≡ .      (12) 

then the project is acceptable in that it satisfies both the ‘short termist’ decision rules. 

Figure 1 about here 

Which of the requirements, the hurdle rate or payback thresholds, proves to be the 

more stringent requirement in (12) depends on the growth rate for the project.4  This is 

illustrated in figure 1 for the case where the hurdle rate is set at 25%, the time horizon 

H=10 years, and the PB threshold is 3.5 years; the curves represent plots for the 

equations in (9) and (11).  The interpretation of figure 1 is that a project has positive 

NPV when evaluated at the hurdle rate if, given its expected cash flow growth rate α , 

its initial cash flow ratio to capital outlay lies above the hurdle rate curve, and it 

satisfies the payback criterion if it lies above the payback threshold curve. The exact 

positions for the two curves depends upon the levels set for the thresholds (for 

h,H,PB).  In figure 1 for example, the payback requirement is more stringent for 

projects with growth rates above around -5% ( 0.05α = − ), whilst the hurdle rate 

requirement is more stringent for projects with lower growth rates.  It follows that one 

project may be deferred because it fails the payback threshold, whilst another project 

might be deferred because it fails the hurdle rate test – given this dependence on the 

value of α , the project growth rate.    

 

The optimal decision rule in Result 1 required immediate investment if 0 uπ π> , and 

deferral of investment otherwise.  Under the short termist decision criteria, immediate 

investment occurs if 0π π> , with deferral otherwise.  Intuition suggests that value in 

                                                           
4 That is, whether h PBπ π>  or not depends, for given r,h,H,PB, purely on the value of α ; from (9) 

and (11), h PBπ π>  if ( ) ( ) ( )( )/ 1 / 1h HPBe h e ααα α −− > − − . 
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this case will be the same as in Result 1, but with the trigger value π  replacing uπ  in 

the valuation formula - and this is in fact the case:    

 
Result 3.  Decision and Value, STV , under short termist hurdle rate and payback 
threshold decision rules: 
 (i) If  0π π≥ , the firm invests at time zero, and value is given as   

   0 1ST
i

V K π
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

(ii) If 0π π< , the firm waits until a time τ  is reached when τπ π= .  Value is   
      then given as 

1

0 1ST
i

V K
λπ π

π π
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
.   

 
 Proof:  Part (i) is as per Result 1(i).  For (ii), see appendix. 

 

There are two ways that DCF analysis using a hurdle rate, in conjunction with the 

payback threshold, can lead to sub-optimal decisions and value loss.  Firstly, if for a 

project,  uπ π> , the tendency under the short termist decision rules is to implement 

the project too quickly.  In this case there is no value loss if 0 uπ π>  as the project is 

implemented immediately when this is in fact a correct decision;  however, if 

0 uπ π π< <  the project is implemented when it should be deferred, and in the case 

where 0 uπ π π< < , the project is deferred, but will then be implemented ‘too soon’.  

By contrast, if uπ π< , the project will tend to be deferred too long. In this case if  

0uπ π π< <  the project is implemented immediately, a correct decision.  However, if  

0uπ π π< < , the project is deferred when it should be implemented immediately, and 

if 0 uπ π π< <  it is deferred when it should be deferred, but it will be deferred ‘too 

long’.  Given that uπ  is affected by project characteristics ,α σ  and π  is affected by 

α , which of these outcomes is likely to occur is project specific.   
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Result 3 provides the basis for assessing the extent of value loss that can arise out of 

short termism and how this value loss varies with key parameters.  Percentage value 

loss arising from the short termism decision criteria is measured as 

 ( )% 100 * / *ST STVL V V V= × −       (13) 

where V* denotes value under optimal decision making and STV  denotes value under 

the short termist decision rules.  How this value loss varies with project characteristics 

0, , / Kα σ π   is studied numerically in section 4 below.   

 

4. VALUE CONSEQUENCES    

For projects that are sufficiently strong in terms of initial cash flow relative to capital 

outlay, there is of course no value loss associated with imposing short termist decision 

criteria, or indeed, in applying the naïve NPV rule; such projects are implemented 

immediately under all of the above decision rules. Value loss thus only arises for 

projects which have less favourable starting conditions. This section presents a study 

of how value loss depends on a project’s volatility, its growth prospects and its initial 

cash flow/capital outlay.  In the figures presented below, the discount rate is set at 

10%, the payback threshold at 3 years, the hurdle rate at 25%, and the time horizon 

for the latter at 10 years.  Clearly value loss will tend to be less if these decision 

criteria are relaxed – but the aim of this section is to show that even relatively 

demanding decision thresholds do not induce particularly high value loss, at least for 

projects with some growth prospects and/or volatility in future cash flows.  However, 

before undertaking this, it is instructive, in the light of Stultz’s [1999] comments 

discussed above, to first compare value loss under short termist decision rules with 

that which arises if a naïve NPV rule is adopted.   
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Figure 2 about here 

Figure 2 illustrates the relative value loss for the case where 

10%, 5%, 20%r α σ= = = 5,  and illustrates several key points: 

(a) that there is no value loss at all for projects with sufficiently high initial 

cash flow/capital outlay ratio (since these are implemented immediately 

whatever the decision rule). 

(b) that the naïve NPV rule loses 100% of potential value on projects with 

sufficiently low initial cash flow/capital outlay ratio (since these are rejected 

outright, or deferred only until the point where they earn zero NPV). 

(c) that short termist decision rules limit the extent of value loss (to a 

maximum of 20% in the above scenario) whatever the value of the initial cash 

flow/capital outlay ratio.   

The naïve NPV rule loses 100% of value on projects which are initially rejected 

because it also indicates that they should be activated just as soon as they become 

marginal.  That is, in being activated when they become just marginal, they never get 

to actually add any value.  By contrast, the short termist constraints guarantee that 

projects are deferred to a point where they do add value.  Thus figure 2 illustrates why 

adherence to a naïve NPV decision rules is so problematic.  It is possible to study 

more extensively the performance of the NPV rule by examining variation in the key 

parameters ,α σ ; however, the essential structure of value loss under the naïve NPV 

rule remains very similar to that described in figure 2 as these parameters are varied.  

That is, there is always 100% value loss on a set of projects that have sufficiently low 

initial cash flow/capital outlay.   

                                                           
5The table function in EXCEL enables tabulation of value under optimal decision-making (result 1), 
value under short termist constraints (result 3) and under the naïve NPV rule (result 2), in this case as a 
function of the initial cash flow/capital outlay ratio ( 0 / Kπ ). 
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This poor performance characteristic would indeed be worrying if the average 

decision-maker was characterised as a ‘Stultzian MBA student’ (i.e. one who uses the 

naïve NPV rule).  However, in practice, the discount rate used tends to be higher than 

the cost of finance - and payback thresholds are also often imposed. This makes sense 

given the poor performance profile for the naïve NPV rule.  High hurdles and short 

payback thresholds significantly reduce the maximum level of value loss that can 

arise.  The rest of this section accordingly focuses on value loss under these short 

termist decision rules.  

 

Value loss arising from the short termist decision rule is given in (13) is a function of 

the three project characteristics, namely growth α , volatility σ , and the initial cash 

flow/capital outlay ratio, 0 / Kπ .  Figure 3 tabulates value loss as α  and 0 / Kπ  are 

varied for  5% volatility in cash flow; figures 4 and 5 then repeat this for the case of 

20% and 40% volatility.  In all these figures, it should be noted that value loss falls to 

zero for projects with sufficiently high  0 / Kπ .   This is because the optimal decision 

is to implement such project immediately, and the short termist decision rules also 

recommend immediate implementation.  It is only at lower levels of  0 / Kπ  where, 

under short termist decision rules, there is a possible divergence in investment timing, 

and hence the possibility of value loss.  

Figures 3-5 about here 

Clearly, value loss is at its most significant at relatively low volatilities.  In figure 3, 

value loss is close to 100% when there are negative growth rates, over the full range 

of initial cash flow to capital outlay.  However, even in this case, at higher growth 

rates, value loss is reduced.  For example, at a 6% growth rate the value loss is limited 
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to a maximum of 30%, and at a 9% growth rate, it is always less than 5% whatever 

the initial cash flow/capital outlay ratio,  0 / Kπ .  Figure 4 focuses on the case where 

volatility is 20% (a figure used in Dixit and Pindyck [1994] to illustrate the potential 

magnitude of real option effects, given it is broadly consistent with volatility observed 

in the larger stock markets around the world).  Figure 4 shows that value loss is low 

so long as there is some prospect for growth in cash flow over time.  At a 3% growth 

rate, the value loss is ~30% or less, this falling to ~15% or less for when growth is 6% 

and to less than 4% value loss when there is a 9% growth rate.   It can be argued that 

20% may be a rather low volatility level for real projects as opposed to financial 

portfolios (the volatility of a stock market index, is the volatility of a significantly 

diversified portfolio).  Moving on to figure 5, with volatility set at 40%, value loss is 

low whatever the initial cash flow/capital outlay of the project and whatever the 

growth rate (so long as the latter is not massively negative).  It can be argued that 

volatilities of this level or higher may be quite common; in such cases, the value loss 

from imposing short termist decision criteria is really very small.6 

 

Whilst the reduction in value loss arising from increased volatility is as one would 

expect, the value loss impact associated with growth prospects is perhaps less 

obvious.  The general effect of the payback threshold is to make it harder for projects 

which have growth prospects to be activated.  However, this only means such projects 

tend to be deferred.  With strong expected growth, cash flow will tend to rise over 

time to a point where the project does finally pass the test. Thus the value loss from 

imposing a more stringent payback requirement does not necessarily translate into 

high value loss; indeed, quite the opposite, value loss is low for such projects.   

                                                           
6 Given this observation, there is no need to report results at higher volatilities; value loss is already 
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It is straightforward to extend the numerical study reported above in different 

directions.  For example, it is possible to analyse the performance of the hurdle rate 

criterion and the payback threshold separately.  This is omitted, given space 

considerations, since the results are remarkable similar in structure to those reported 

above.  It is also be possible to explore how the results are affected by changes in the 

discount rate (here set at r=10%) in all scenarios.  The use of 10% as a nominal 

discount rate is probably a reasonable benchmark figure for use for the UK and US 

economies.  However, having examined variation in r around the 10% value used in 

the above numerical work, it appears that the above observations concerning value 

loss are fairly robust to variation in the underlying interest rate r.  This finding is also 

in line with the finding by Jagannathan and Meier [2002], that changes in r did not 

significantly affect the optimal level that ought to be set for the hurdle rate.7   

 

Given the above observations, the key points are well illustrated by the scenarios 

considered in figures 3-5.  For projects with growth prospects and/or a reasonable 

level of uncertainty concerning future cash flows, the value loss from exerting unduly 

short termist constraints (short payback thresholds, high hurdle rates), appears to be 

relatively small.   

 

5. DISCUSSION OF ASSUMPTIONS AND MODEL LIMITATIONS 

The results in section 4 cover a wide range of scenarios and parameter values.  

However, the assumption that the cash flow process is geometric Brownian motion is 

                                                                                                                                                                      
small at 40% volatility, and becomes yet smaller as volatility is increased. 
7 For example, flexing r over the range 5-15%, the message is essentially the same as that reported.  
Note that it does not make too much sense to flex r too close to the hurdle rate – given the empirical 
evidence that hurdle rates tend to be set significantly above the cost of finance. 
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to an extent restrictive.  Firstly, it should be noted that this implies that the cash flow 

can never go negative, and it also assumes that there is a fixed constant expected 

growth rate for the cash flow (although this can be varied and set as a positive or 

negative number).  It also assumes that, if a project is not activated, the cash flow for 

the project still ‘evolves’.  This means that the value of the project evolves over time, 

and thus if not activated today, there may come a day when it is worth activating. This 

is particularly true for projects with an average positive growth rate in cash flow.  

Thus the model used in this paper is more appropriate for projects with longer 

duration, for projects in which the view of the future cash flow can change over time, 

and for projects that can be deferred without fear of pre-emption; it is less appropriate 

for short term projects,  for projects for which cash flow forecasts are temporally 

invariant, or for projects which have to be implemented ‘now or never’.   

 

It also may appear that the cash flow process does not model well projects that have a 

cash flow life cycle (of initial growth, maturity and then decline), given the 

assumption of constant growth rate in expected cash flow.  However, if the life cycle 

is sufficiently long, modelling it using a GBM process may be an acceptable 

approximation (since, given the discounting effect on the more distant cash flows, 

their impact on value is relatively small). It is also possible to model a crude form of 

life cycle within this standard investment model by adding a Poisson ‘death process’ 

as per Merton [1971] and McDonald and Siegel [1986]. This assumes that in each 

unit of time there is a constant probability that the cash flow process simply 

terminates.  It is possible to pursue this quantitatively, although given space 

considerations it is omitted, given the central insight from so doing is reasonably 

straightforward.  Essentially, with such a death process, if the probability of death is 
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significant, there is no longer such an incentive to wait to invest.  In effect the hurdle 

rate that is optimal will be lower, the higher the death probability.  It follows that, for 

projects which have shorter expected life because of higher ‘death probabilities’, the 

short termist decision rules may give rise to higher levels of value loss than manifest 

in section 4 above. By contrast, when projects have reasonably long expected lives 

(because of a relatively small ‘death’ probability), the results can be expected to be 

similar to those found in section 4.  Finally, it is also possible to extend the model by 

considering scrap or resale values since these can also affect project life (given the 

project abandonment option).  However, there is a fair amount of evidence that this 

has generally a relatively small impact on the optimal threshold for project acceptance 

(see for example Abel and Eberly [1995]). 

 

To sum up, clearly it cannot be claimed that, for all investments, value loss is small.  

However, the focus in this paper concerns the impact of short termist criteria on the 

assessment of long lived projects and it can be argued that such projects often involve 

repetitive processes that generate cash flow streams which can be quite well 

characterised by the standard investment model.      

 

6.  CONCLUDING COMMENTS 

In the context of capital budgeting, it has often been suggested that managers appear 

to be ‘short-termist’, to over-emphasise the importance of the returns that are earned 

early in a project’s life.  In particular, surveys reveal that firms often apply a relatively 

high ‘hurdle’ discount rate (often 20%+) when evaluating projects, a rate much higher 

than the firm’s actual cost of capital.  Further, surveys also show that senior 

management often additionally impose payback thresholds, in that projects are also 
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expected to return the initial outlay in a relatively short period of time (2-4 years 

being common).  Finally, this survey evidence also suggests the choice of hurdle rate 

and/or short payback threshold is not something that is varied according to project 

characteristics.     

 

There is now a small but significant academic literature which discusses the potential 

rationality of the above forms of short-termist behaviour.  The present paper focuses 

on option effects that are pervasive in practice – budget constraints and scarce 

managerial capacity to handle projects may mean that undertaking a marginal project 

forecloses the option to find and undertake a better one later, or foreclose the option to 

defer the project until a later date (when it may have better cash flow prospects etc.).  

In such circumstances, it is not optimal to accept a project simply because it has 

positive NPV at the firm’s cost of capital.  Projects should only be accepted if they are 

sufficiently positive NPV.  Using a higher hurdle rate and/or shorter payback 

threshold is a crude way of ensuring this. 

 

In theory, the use of a fixed and uniform ‘higher hurdle rate’ in DCF analysis, or 

indeed the use of a fixed payback threshold, is non-optimal, and is at best only an 

approximate way of taking account of real option effects.  Using such fixed rules of 

thumb might give good decisions for some types of project but rather less good 

decisions for others.  The overall ‘cost’ of such short termism thus must depend on the 

nature of the projects under investigation.  This is essentially a quantitative rather than 

qualitative question, and is really one that can only be addressed by examining a class 

of investments for which decisions and value can be quantified.  The present study did 

this by focusing on a ‘standard investment model’ featuring fixed size investments 
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which earn returns over time which are uncertain but characterised by constant growth 

rates – and investments for which the firm has control over the time at which the 

investment is undertaken.   Although a sub-set of the class of ‘all’ investments, it can 

be argued that this is an important sub-set.    The central finding is that for projects 

with some growth prospects and/or some volatility with respect to future cash flows, 

even quite restrictive short termist decision criteria (hurdle rate 25%, payback 

threshold 3 years), have a relatively benign impact.  That is, they are not particularly 

costly in terms of the percent value loss they entail.  For those impressed by the 

argument that, if there is enough competition, only the ‘fittest will survive’, this is 

perhaps what one might expect; that is, it would be surprising if investment rules used 

in practice entailed significant value loss and yet persisted over time. 
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Equation Section  1  
 
 
APPENDIX   [For completeness – to be included in the working 
paper but perhaps omitted from a published version – Opinions?]    
 
It is useful to define the variable /t t KπΠ ≡  (cash flow to capital outlay ratio). Value 
if implemented immediately is 

 0 0
0 1V K K

r r
π
α α

Π⎛ ⎞= − = −⎜ ⎟− −⎝ ⎠
     (A.1) 

and so value if implemented at time τ  is 1V K
r

τ
τ α

Π⎛ ⎞= −⎜ ⎟−⎝ ⎠
. 

 
If at time 0, investment is deferred, then value is no longer given by (A.1), although it  
clearly remains a function of ,t Kπ  and is homogenous of degree one in these prices.  
Thus, value at any time prior to implementation can be written as a function 
 ( ) ( )/t t tV K K Kψ π ψ= = Π       (A.2) 
where tπ  is the cash flow that would hold at that time if the project was implemented 
then.  A stochastic dynamic programming approach can be used to determine the 
optimal decision rule which maximises value; this determines the cash flow threshold 
at which point the firm should invest, and determines the value that results from this 
decision rule.  Details of the solution to this standard problem involves an analysis of 
the  Bellman equation of dynamic programming and can be found in Dixit and 
Pindyck [1994,pp. 140-145 ].  For convenience, the analysis is repeated below.  The 
Bellman equation requires that (dropping time subscripts in what follows to avoid 
notational clutter) 

( )rVdt E dV= .       (A.3)  
The next step involves evaluating ( )E dV  using Itô’s lemma (note – working with 
relative price in what follows): 
 21

2dV V d V dΠ ΠΠ= Π + Π       (A.4) 
where 
 ( )V KψΠ ′= Π ,  ( )V KψΠΠ ′′= Π ,    
  
Also, from (1),  

d dt dα σ ϖΠ = Π + Π ⇒ 2 2 2d dtσΠ = Π     (A.5) 
Hence the term dV  is given as 

( ) ( )2 21 1
2 2dV V d V d Kd Kdψ ψΠ ΠΠ ′ ′′= Π + Π = Π Π+ Π Π   (A.6) 
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Now, using (A.5), 

[ ] ( )2 21
2dV dt d K dtψ α σ ϖ ψ σ′ ′′= Π + Π + Π  

Thus taking expectations, 
( )2 21

2( )E dV Kdtσ ψ α ψ′′ ′= Π + Π      (A.7) 
Hence the arbitrage equation becomes 

( )2 21
2 0r Kdt Kdtψ σ ψ α ψ′′ ′− Π + Π =     (A.8) 

Dividing through by Kdt then gives the usual ordinary second order differential 
equation 

2 21
2 0rσ ψ α ψ ψ′′ ′Π + Π − = .      (A.9) 

A solution for the function ψ  is now sought.  Consider a trial solution of the form 
 ( ) λψ Π = Π         (A.10) 

Thus, ( ) 1λψ λ −′ Π = Π  and ( ) ( ) 21 λψ λ λ −′′ Π = − Π .  Substituting into (A.10) gives 

 ( )21
2 1 0rλ λ λσ λ λ αλ− Π + Π − Π =      (A.11) 

which would hold if 
 ( )2 2 21 1

2 2 0rσ λ α σ λ+ − − =       (A.12) 
It is convenient to define  
 ( )21

1 2R α σ≡ −        (A.13) 

 ( )( )1 222 21
2 2 2R rα σ σ≡ − +       (A.14)  

so the roots to the quadratic equation (A.17) are   
( ) 2

1 1 2 /R Rλ σ= − +        (A.15) 
and 

( ) 2
2 1 2 /R Rλ σ= − − .       (A.16) 

 
 
 ( )2 2 21 1

2 2 0rσ λ α σ λ+ − − =       (A.17) 
It is convenient to define  
 ( )21

1 2R α σ≡ −        (A.18) 

 ( )( )1 222 21
2 2 2R rα σ σ≡ − +       (A.19) 

so the roots to the quadratic equation (A.17) are   
( ) 2

1 1 2 /R Rλ σ= − +        (A.20) 
and 

( ) 2
2 1 2 /R Rλ σ= − − .       (A.21) 

The general solution is thus 
 1 2

1 2( ) B Bλ λψ Π = Π + Π       (A.22) 
where 1 2( 0), ( 0)λ λ> <  are defined by (A.20) and (A.21).  As 0Π→  value must be 
finite so this boundary condition entails 2 0B = , and so  

1
1( ) B λψ Π = Π .         (A.23) 

At time τ  where the investment is implemented, smooth pasting requires that 
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 ( ) 1u
u K K

r
ψ

α
Π⎛ ⎞Π = −⎜ ⎟−⎝ ⎠

      (A.24) 

(value matching) and that the first derivatives be equal (see Dixit [1993] for a clear 
exposition of these so called smooth pasting conditions); that is 

 1( )u K K
r

ψ
α

⎛ ⎞′ Π = ⎜ ⎟−⎝ ⎠
.      (A.25) 

Equation (A.24) implies 

 1 1
1 11 1u u

u uB K K B
r r

λ λ

α α
Π Π⎛ ⎞Π = − ⇒ Π = −⎜ ⎟− −⎝ ⎠

,    (A.26) 

whilst (A.25) gives 

 1 11
1 1 1 1

1 u
u uB K K B

r r
λ λλ λ

α α
− Π⎛ ⎞Π = ⇒ Π =⎜ ⎟− −⎝ ⎠

.    (A.27) 

From (A.26) and (A.27), we get  
( ) ( )1 1

1 1 1 11 1 1/ 1u uB Bλ λλ λ− Π = ⇒ Π = − ,    (A.28) 
and hence substituting back into (A.27), that 

( )1 1
1 1

1 1
u

u uB r
r

λ λλ α
α λ

Π
Π = ⇒Π = −

− −
,    (A.29) 

and so 

( )1

1 1u rλ α
λ

Π = −
−

.       (A.30) 

This is equation (6) in the paper and is a standard result in the literature (see Dixit and 
Pindyck [1994], p. 145).  The decision at time zero is to implement the project only if 

0 uΠ ≥ Π         (A.31) 
If it is implemented at time zero, then value is simply 

0 1V K
r α
Π⎛ ⎞= −⎜ ⎟−⎝ ⎠

       (A.32) 

If, however, 0 uΠ < Π  then value is given by (A.1).  This requires determination of 1B  
using (A.28).  Thus, from (A.28),  

( )1
1 11/ 1uB λ λ= Π −        (A.33) 

so  
( )0V Kψ= Π         (A.34) 

where  
( )

( )

1 1 1

1

0 1 0 0 1

0 1

( ) ( / ) 1

( / ) 1
u

u

B Kλ λ λ

λ

ψ λ

λ

Π = Π = Π Π −

= Π Π −
.    (A.35) 

Since / KπΠ =  and 11/( 1) 1 1u
i

M πλ π
⎛ ⎞− = − = −⎜ ⎟
⎝ ⎠

 from (5) and (6), this establishes 

result 1(ii), that 
1

0* 1u

u i

V K
λ

π π
π π
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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Investment under short termist decision criteria 
      
Here, given the inequality in (12), the firm chooses to invest at time 0 only if 
 0Π ≥ Π         (A.36) 
This constraint only plays a role if uΠ > Π  where uΠ  is defined by (A.30).  Suppose 
the firm waits until a time τ  at which this price can be achieved.  At the time of 
investment, as per (A.1), value is given as 

1V K
rτ α

⎛ ⎞Π
= −⎜ ⎟−⎝ ⎠

       (A.37)  

whilst, as before, for t τ< ,   
 ( )t tV Kψ= Π         (A.38) 
where ( ) 1

1B λψ Π = Π  from (A.23).  At the point of investment, only the value 
matching condition applies (see Dixit [1993] for a discussion of smooth pasting 
conditions).  That is, at τ , 

  ( ) 1V K K
rτ τψ

α
⎛ Π ⎞

= Π = −⎜ ⎟−⎝ ⎠
.     (A.39)  

hence,  
 

 ( ) 1

1 1B K K
r

λ

α
⎛ Π ⎞

Π = −⎜ ⎟−⎝ ⎠
      (A.40) 

so 
   

 1
1 1B

r
λ

α
−⎛ Π ⎞

= − Π⎜ ⎟−⎝ ⎠
       (A.41) 

and hence  

( ) 11 1 1
1( ) 1 1 /B

r r
λλ λ λψ

α α
−⎛ ⎞ ⎛ ⎞Π Π
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Value at time zero is thus 
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Since / KπΠ = , using (4), 1 1
ir

π
πα

⎛ Π ⎞ ⎛ ⎞− = −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
, result 3(ii) is established, that 

value under the short termist decision rule is 
1

0 1ST
i
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λπ π

π π
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.       (A.44)
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Figure 1    Comparing Hurdle Rate and Payback Thresholds 
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Figure 2:  Comparing Short Termist Constraints and the Naïve NPV rule  
(setting 5%α = , 20%σ = , 10%, 25%, 3r h PB years= = = ) 
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Figure 3 :  Value Loss for Low Volatility Projects  (setting 5%σ =  10%, 25%, 3r h PB years= = = ) 
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Figure 4 : Value Loss for Mid Volatility Projects (setting 20%σ = , 10%, 25%, 3r h PB years= = = ) 
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Figure 5: Value Loss for Higher Volatility Projects (setting 40%σ = , 10%, 25%, 3r h PB years= = = ) 
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