Supplementary Materials

Appendix

A SMN distributions and their conditional distribution properties

Assuming $X \sim N_n(0, \Sigma)$, we can generate an *n*-dimensional SMN random vector Y(denoted by $Y \sim \text{SMN}_n(\mu, \Sigma; H)$) by the transformation

$$\boldsymbol{Y} = \boldsymbol{\mu} + \kappa^{1/2}(r)\boldsymbol{X},\tag{A.1}$$

where $\boldsymbol{\mu}$ is a location vector, $\kappa(\cdot)$ is a strictly positive weight function, and r is a positive scale random variable (independent of \boldsymbol{X}) with its cumulative distribution function $H(r; \boldsymbol{\nu})$. We use the notation $\boldsymbol{Y} \sim SMN_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}; H)$. Given r, \boldsymbol{Y} is a multivariate normal distribution, i.e., $\boldsymbol{Y}|r \sim N_n(\boldsymbol{\mu}, \kappa(r)\boldsymbol{\Sigma})$. Hence, the marginal density function of \boldsymbol{Y} can be expressed as

$$p(\boldsymbol{y}) = \int_0^\infty \phi_n(\boldsymbol{y}; \boldsymbol{\mu}, \kappa(r)\boldsymbol{\Sigma}) \, \mathrm{dH}(r), \qquad (A.2)$$

where $\phi_n(\cdot; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ stands for the pdf of the *n*-dimensional normal distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Some SMN distributions and their conditional distribution properties are as follows:

(1) The multivariate Student-t distribution

When $\kappa(r) = 1/r$ and $r \sim \text{Gamma}(\nu/2, \nu/2)$, \boldsymbol{Y} follows a multivariate Student-t distribution $t_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \nu)$, with pdf as

$$p(\boldsymbol{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = \frac{\Gamma((\nu+n)/2)}{\Gamma(\nu/2)(\nu/2)^{n/2}} |2\pi\Sigma|^{-1/2} (1+d/\nu)^{-(\nu+n)/2},$$
(A.3)

where $d = (\boldsymbol{y} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$ is the Mahalanobis distance. The multi-normal distribution is the limiting case when $\nu \to +\infty$. Given $\boldsymbol{Y} = \boldsymbol{y}$, the conditional distribution of r is $\text{Gamma}(\frac{\nu+n}{2}, \frac{\nu+d}{2})$. It comes the conditional expectation

$$E[r^{m}|\boldsymbol{y}] = \frac{2^{m}\Gamma((\nu+n+2m)/2)(\nu+d)^{-m}}{\Gamma((\nu+n)/2)}$$

(2) The multivariate slash distribution

When $\kappa(r) = 1/r$ and $r \sim \text{Beta}(\nu, 1)$, we get the multivariate slash distribution $\text{SL}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \nu)$ with pdf as

$$p(\boldsymbol{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = \begin{cases} \nu |2\pi \boldsymbol{\Sigma}|^{-1/2} \Gamma(\nu + n/2) P_1(\nu + n/2, d/2) (d/2)^{-(\nu + n/2)}, \ \boldsymbol{y} \neq \boldsymbol{\mu}, \\ |2\pi \boldsymbol{\Sigma}|^{-1/2} \nu/(\nu + n/2), \qquad \boldsymbol{y} = \boldsymbol{\mu}, \end{cases}$$
(A.4)

where $P_x(a, b)$ denotes the cumulative distribution function of the Gamma(a, b) distribution. When $\nu \to +\infty$, the slash distribution reduces to the normal distribution. The conditional distribution of r given \boldsymbol{y} is a truncated gamma distribution Gamma $(\nu + n/2, d/2)\mathbb{I}_{(0,1)}$. Then, we get

$$\mathbf{E}[r^{m}|\boldsymbol{y}] = \frac{\Gamma(\nu + n/2 + m)}{\Gamma(\nu + n/2)} (d/2)^{-m} \frac{P_{1}(\nu + n/2 + m, d/2)}{P_{1}(\nu + n/2, d/2)}$$

(3) The contaminated-normal distribution

When $\kappa(r) = 1/r$ and r is a discrete random variable with pdf $h(r; \nu, \gamma) = \nu \mathbb{I}_{(r=\gamma)} + (1-\nu)\mathbb{I}_{(r=1)}$, with $0 < \nu \leq 1, 0 < \gamma \leq 1$, we obtain the multivariate contaminatednormal distribution $CN_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \nu, \gamma)$. Its pdf is given by

$$p(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Sigma},\nu,\gamma) = \nu\phi_n(\boldsymbol{y};\boldsymbol{\mu},\gamma^{-1}\boldsymbol{\Sigma}) + (1-\nu)\phi_n(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\Sigma}).$$
(A.5)

When $\gamma = 1$, it reduces to the normal distribution. Given \boldsymbol{y} , r is a discrete random variable with the conditional distribution as $\tilde{h}(r; \tilde{\nu}, \gamma) = \tilde{\nu} \mathbb{I}_{(r=\gamma)} + (1-\tilde{\nu}) \mathbb{I}_{(r=1)}$, with $1/\tilde{\nu} = 1 + (1/\nu - 1)\gamma^{-n/2} \exp(-\frac{1-\gamma}{2}d)$. Hence, we get $\mathrm{E}[r^m|\boldsymbol{y}] = \tilde{\nu}\gamma^m + 1 - \tilde{\nu}$.

B The observed and expected information matrix

We provide the information matrix of Θ for the HPFR model. Since the SMN distributions belong to the elliptical distributions class (Fang et al., 1990), the observed response \boldsymbol{y}_m of the HPFR model follows an elliptical distribution $\operatorname{EL}_{n_m}(\tilde{\boldsymbol{\mu}}_m, \boldsymbol{\Sigma}_m; g_m)$, where $g_m(\cdot) : \mathbb{R} \to [0, \infty)$ is the density generator such that $\int_0^\infty g_m(u; \boldsymbol{\nu}) du < \infty$. The pdf of \boldsymbol{y}_m is given by

$$p(\boldsymbol{y}_m) = \left| \boldsymbol{\Sigma}_m \right|^{-1/2} g_m(d_m; \boldsymbol{\nu}), \ m = 1, \dots, M,$$

where $d_m = (\boldsymbol{y}_m - \boldsymbol{\mu}_m)^\top \boldsymbol{\Sigma}_m^{-1} (\boldsymbol{y}_m - \boldsymbol{\mu}_m)$, and

$$g_m(d_m; \boldsymbol{\nu}) = (2\pi)^{-n_m/2} \int_0^\infty \kappa^{-n_m/2}(r) \exp\{-\kappa^{-1}(r)d_m/2\} \, \mathrm{dH}(r; \boldsymbol{\nu}).$$

Thus, the log-likelihood function for Θ is given by

$$l(\Theta) = \sum_{m=1}^{M} l_m(\Theta) = -\frac{1}{2} \sum_{m=1}^{M} \log(|\Sigma_m|) + \sum_{m=1}^{M} \log\{g_m(d_m; \nu)\},$$
(B.1)

and the score function of Θ has a form as

$$\frac{\partial}{\partial \Theta_i} l(\Theta) = -\frac{1}{2} \sum_{m=1}^M \operatorname{tr}(\Sigma_m^{-1} \dot{\Sigma}_{m,\Theta_i}) + \sum_{m=1}^M \dot{g}_{m,\Theta_i}/g_m, \tag{B.2}$$

where $\dot{\Sigma}_{m,\Theta_i}$ and \dot{g}_{m,Θ_i} mean respectively, $\partial \Sigma_m / \partial \Theta_i$ and $\partial g_m / \partial \Theta_i$.

Denoting

$$I_m(\omega) = (2\pi)^{-n_m/2} \int_0^\infty \kappa^{-\omega}(r) \exp\{-\kappa^{-1}(r)d_m/2\} \, \mathrm{dH}(r; \boldsymbol{\nu}), \omega > 0, \qquad (B.3)$$

then g_m and \dot{g}_{m,Θ_i} (with respect to $\boldsymbol{\beta}$ and $\boldsymbol{\psi}$) can be expressed respectively as $I_m(n_m/2)$ and $-I_m(n_m/2+1)\dot{d}_{m,\Theta_i}/2$. We can find g_m for some SMN distributions in Appendix A. Specific forms of $I_m(\omega)$ and $\partial \log(g_m)/\partial \boldsymbol{\nu}$ or $\partial g_m/\partial \boldsymbol{\nu}$ are given below,

(1) for Student-t:

$$I_m(\omega) = (2\pi)^{-n_m/2} 2^{\omega} \nu^{\nu/2} \Gamma(\nu/2 + \omega) / \Gamma(\nu/2) (d_m + \nu)^{-(\nu/2 + \omega)},$$

$$\frac{\partial \log(g_m)}{\partial \nu} = \frac{1}{2} \varphi(\frac{\nu + n_m}{2}) - \frac{1}{2} \varphi(\frac{\nu}{2}) - \frac{1}{2} \log(1 + \frac{d_m}{\nu}) + \frac{d_m - n_m}{2(\nu + d_m)},$$

where $\varphi(x) = d \log(\Gamma(x))/dx$ is the digamma function.

(2) for slash:

$$I_m(\omega) = (2\pi)^{-n_m/2} 2^{\nu+\omega} \nu \Gamma(\nu+\omega) P_1(\nu+\omega, d_m/2) d_m^{-(\nu+\omega)},$$

$$\frac{\partial \log(g_m)}{\partial \nu} = 1/\nu + c_m,$$

where $c_m = E[\log(X)]$ and X follows a truncated gamma distribution $Gamma(\nu + n_m/2, d_m/2)I(0, 1)$.

(3) for contaminated-normal:

$$I_{m}(\omega) = (2\pi)^{-(n_{m}-1)/2} [\nu \gamma^{\omega} \phi_{1}(\sqrt{\gamma d_{m}}) + (1-\nu)\phi_{1}(\sqrt{d_{m}})],$$

$$\frac{\partial g_{m}}{\partial \nu} = (2\pi)^{-(n_{m}-1)/2} [\gamma^{n_{m}/2} \phi_{1}(\sqrt{\gamma d_{m}}) - \phi_{1}(\sqrt{d_{m}})],$$

$$\frac{\partial g_{m}}{\partial \gamma} = (2\pi)^{-(n_{m}-1)/2} \nu \gamma^{n_{m}/2-1} (n_{m} - \gamma d_{m})\phi_{1}(\sqrt{\gamma d_{m}})/2.$$

The observed information matrix $\mathbf{J}(\widehat{\boldsymbol{\Theta}})$ can be approximated by $\sum_{m=1}^{M} \widehat{\boldsymbol{s}}_m \widehat{\boldsymbol{s}}_m^{\top}$ (M-cLachlan and Basford, 1988), where $\widehat{\boldsymbol{s}}_m = \partial l_m(\boldsymbol{\Theta})/\partial \boldsymbol{\Theta}|_{\widehat{\boldsymbol{\Theta}}}$. By calculating the expectation

of the second-order derivatives of (B.1), we can obtain the Fisher information matrix $\mathbf{I}(\mathbf{\Theta}) = (\mathbf{I}_{\Theta_i \Theta_j})_{p \times p}$, in which p is the dimension of $\mathbf{\Theta}$. The elements of the information matrix are calculated by

$$\begin{split} \mathbf{I}_{\beta_i\beta_j} &= \sum_{m=1}^M \frac{4}{n_m} d_{g,m} \dot{\tilde{\boldsymbol{\mu}}}_{m,\beta_i}^\top \boldsymbol{\Sigma}_m^{-1} \dot{\tilde{\boldsymbol{\mu}}}_{m,\beta_j}, \\ \mathbf{I}_{\psi_i\psi_j} &= \sum_{m=1}^M \left[a_m \mathrm{tr}(\boldsymbol{\Sigma}_m^{-1} \dot{\boldsymbol{\Sigma}}_{m,\psi_i} \boldsymbol{\Sigma}_m^{-1} \dot{\boldsymbol{\Sigma}}_{m,\psi_j}) + b_m \mathrm{tr}(\boldsymbol{\Sigma}_m^{-1} \dot{\boldsymbol{\Sigma}}_{m,\psi_i}) \mathrm{tr}(\boldsymbol{\Sigma}_m^{-1} \dot{\boldsymbol{\Sigma}}_{m,\psi_j}) \right], \\ \mathbf{I}_{\psi_i\nu_j} &= \sum_{m=1}^M \frac{1}{n_m} \mathrm{E}[d_m \frac{\partial}{\partial \nu_j} (W_{g_m})] \mathrm{tr}(\boldsymbol{\Sigma}_m^{-1} \dot{\boldsymbol{\Sigma}}_{m,\psi_i}), \\ \mathbf{I}_{\nu_i\nu_j} &= -\sum_{m=1}^M \mathrm{E}[\frac{\partial^2}{\partial \nu_i \partial \nu_j} \log(g_m)], \\ \mathbf{I}_{\beta_i\psi_j} &= \mathbf{I}_{\beta_i\nu_j} = 0, \end{split}$$

where $a_m = \frac{2f_{g,m}}{n_m(n_m+2)}$, $b_m = \frac{f_{g,m}}{n_m(n_m+2)} - \frac{1}{4}$, $f_{g,m} = E(W_{g_m}^2 d_m^2)$, $d_{g,m} = E(W_{g_m}^2 d_m)$, in which $W_{g_m} = \frac{\partial \log(g_m)}{\partial d_m}$ with $d_m = e_m^{\top} e_m$ and $e_m \sim EL_{n_m}(\mathbf{0}, \mathbf{I}_{n_m}; g_m)$. The asymptotic variance-covariance matrix of $\hat{\boldsymbol{\theta}}$ can be estimated via $\mathbf{I}^{-1}(\widehat{\boldsymbol{\Theta}})$. The expectation values of $f_{g,m}$ and $d_{g,m}$ for some SMN distributions (e.g., normal, Student-*t* and slash) have closed forms (Cao et al., 2015). For contaminated-normal and other distributions, we need to use numerical integration or Monte Carlo approximation.

C Technical details for information consistency

Lemma 1 Suppose \boldsymbol{y}_n are generated from model (1) with $\tau_0 \in \mathcal{F}$ and we fit them by SMGP with bounded covariance kernel function $C(\cdot, \cdot; \boldsymbol{\theta})$ for any covariate values in \mathcal{X} . Suppose $C(\cdot, \cdot; \boldsymbol{\theta})$ is continuous in $\boldsymbol{\theta}$ and $\hat{\boldsymbol{\theta}} \rightarrow \boldsymbol{\theta}$ almost surely as $n \rightarrow \infty$. Then we have

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n|\boldsymbol{X}_n) + \log p(\boldsymbol{y}_n|\tau_0, \boldsymbol{X}_n) \leqslant \frac{1}{2} \{c + \log |\boldsymbol{I}_n + \phi^{-1}\boldsymbol{C}_n| + b(\|\tau_0\|_c^2 + c)\}, \quad (C.1)$$

where $\|\tau_0\|_c$ is the reproducing kernel Hilbert space (RKHS) norm of τ_0 associated with $C(\cdot, \cdot; \boldsymbol{\theta})$ and $\boldsymbol{C}_n = (C(\boldsymbol{x}_i, \boldsymbol{x}_j))_{n \times n}, \phi, b$ and c are some positive constants.

Proof. From the hierarchical structure of SMGP, we can rewrite the HPFR model (omit subscript m) conditional on r by

$$y(t) = \mu(t) + \breve{\tau}(t) + \breve{\varepsilon}(t), \tag{C.2}$$

where $\breve{\tau} = \tau | r \sim \text{GP}(0, \kappa(r)C(\cdot, \cdot; \boldsymbol{\theta}))$ which is independent with the error term $\breve{\varepsilon} = \varepsilon | r \sim N(0, \kappa(r)\phi)$.

Let

$$p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n|r, \boldsymbol{X}_n) = \int_{\mathcal{F}} p(\boldsymbol{y}_n|r, \breve{\tau}, \boldsymbol{X}_n) \, \mathrm{d}p_{\widehat{\boldsymbol{\theta}}}(\breve{\tau}), \tag{C.3}$$

where $p_{\hat{\theta}}(\check{\tau})$ is the induced measure from $\text{GP}(0, \kappa(r)C(\cdot, \cdot; \hat{\theta}))$. Then we have

$$p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n | \boldsymbol{X}_n) = \int p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n | r, \boldsymbol{X}_n) h(r) \, \mathrm{d}r \tag{C.4}$$

and

$$p(\boldsymbol{y}_n|\tau_0, \boldsymbol{X}_n) = \int p(\boldsymbol{y}_n|r, \tau_0, \boldsymbol{X}_n) h(r) \, \mathrm{d}r.$$
(C.5)

Let \mathcal{H} be the RKHS associated with covariance kernel function $C(\cdot, \cdot; \boldsymbol{\theta})$, and \mathcal{H}_n be the span of $\{C(\cdot, \boldsymbol{x}_i; \boldsymbol{\theta}) | i = 1, ..., n\}$, i.e., $\mathcal{H}_n = \{\breve{f}(\cdot) : \breve{f}(\boldsymbol{x}) = \sum_{i=1}^n \alpha_i C(\boldsymbol{x}, \boldsymbol{x}_i; \boldsymbol{\theta}), \text{ for any } \alpha_i \in \mathbb{R}\}$. Assuming the true underlying function $\breve{\tau}_0 = \tau_0 | r \in \mathcal{H}_n$, then given $r, \tau_0(\cdot)$ can be expressed as

$$\tau_0(\cdot) = \kappa(r) \sum_{i=1}^n \alpha_i C(\cdot, \boldsymbol{x}_i; \boldsymbol{\theta}) \triangleq \kappa(r) \boldsymbol{C}(\cdot) \boldsymbol{\alpha},$$

where $\boldsymbol{C}(\cdot) = (C(\cdot, \boldsymbol{x}_1; \boldsymbol{\theta}), \dots, C(\cdot, \boldsymbol{x}_n; \boldsymbol{\theta}))$ and $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)^{\top}$.

By Fenchel-Legendre duality relationship, we have

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n|r, \boldsymbol{X}_n) \leq \mathrm{E}_{\bar{P}}[-\log p(\boldsymbol{y}_n|r, \breve{\tau}, \boldsymbol{X}_n)] + \mathrm{D}[\bar{P}, P],$$
(C.6)

where P is the measure induced by $\operatorname{GP}(0, \kappa(r)C(\cdot, \cdot; \widehat{\boldsymbol{\theta}}))$, and \overline{P} is the posterior distribution of $\check{\tau}$ from a GP model with prior $\operatorname{GP}(0, \kappa(r)C(\cdot, \cdot; \boldsymbol{\theta}))$ and Gaussian likelihood term $\prod_{i=1}^{n} \operatorname{N}(\widehat{\boldsymbol{y}}_{n} | \check{\boldsymbol{\tau}}(\boldsymbol{x}_{i}), \kappa(r)\phi)$, where $\widehat{\boldsymbol{y}}_{n} = \kappa(r)(\boldsymbol{C}_{n} + \phi \boldsymbol{I}_{n})\boldsymbol{\alpha}$ and $\phi > 0$ is a constant to be specified. Then we have

$$D[\bar{P}, P] = \frac{1}{2} \{ -\log |\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}| + \log |\boldsymbol{B}_{n}| + \operatorname{tr}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}\boldsymbol{B}_{n}^{-1}) + \kappa(r) \|\boldsymbol{\tau}_{0}\|_{c}^{2} + \kappa(r)\boldsymbol{\alpha}^{\top}\boldsymbol{C}_{n}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n} - \boldsymbol{I}_{n})\boldsymbol{\alpha} - n \},$$
(C.7)

and

$$E_{\bar{P}}[-\log p(\boldsymbol{y}_n|r, \breve{\tau}, \boldsymbol{X}_n)] \leqslant -\log p(\boldsymbol{y}_n|r, \tau_0, \boldsymbol{X}_n) + \frac{\delta}{2} tr(\boldsymbol{C}_n \boldsymbol{B}_n^{-1}), \quad (C.8)$$

where $\boldsymbol{B}_n = \boldsymbol{I}_n + \phi^{-1} \boldsymbol{C}_n$, $\widehat{\boldsymbol{C}}_n$ is the estimation of \boldsymbol{C}_n at $\widehat{\boldsymbol{\theta}}$ and δ is a generic positive constant. Combining (C.6)-(C.8) gives

$$-\log p_{\widehat{\theta}}(\boldsymbol{y}_{n}|r,\boldsymbol{X}_{n}) + \log p(\boldsymbol{y}_{n}|r,\tau_{0},\boldsymbol{X}_{n})$$

$$\leq \frac{1}{2} \{-\log |\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}| + \log |\boldsymbol{B}_{n}| + \operatorname{tr}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}\boldsymbol{B}_{n}^{-1} + \delta\boldsymbol{C}_{n}\boldsymbol{B}_{n}^{-1}) + \kappa(r) \|\tau_{0}\|_{c}^{2} + \kappa(r)\boldsymbol{\alpha}^{\top}\boldsymbol{C}_{n}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n} - \boldsymbol{I}_{n})\boldsymbol{\alpha} - n\}.$$
(C.9)

Since the covariance function is bounded and continuous in θ and $\hat{\theta} \to \theta$, we have $\widehat{C}_n^{-1}C_n - I_n \to 0$ as $n \to \infty$. Hence, there exist some positive constant c and ε such that

$$-\log |\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}| < c, \quad \boldsymbol{\alpha}^{\top}\boldsymbol{C}_{n}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}-\boldsymbol{I}_{n})\boldsymbol{\alpha} < c,$$

$$\operatorname{tr}(\widehat{\boldsymbol{C}}_{n}^{-1}\boldsymbol{C}_{n}\boldsymbol{B}_{n}^{-1}) < \operatorname{tr}((\boldsymbol{I}_{n}+\varepsilon\boldsymbol{C}_{n})\boldsymbol{B}_{n}^{-1}).$$
(C.10)

Thus we have

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_{n}|r, \boldsymbol{X}_{n}) + \log p(\boldsymbol{y}_{n}|r, \tau_{0}, \boldsymbol{X}_{n})$$

$$\leq \frac{1}{2} \{ c + \log |\boldsymbol{B}_{n}| + \operatorname{tr}((\boldsymbol{I}_{n} + (\varepsilon + \delta)\boldsymbol{C}_{n})\boldsymbol{B}_{n}^{-1}) + \kappa(r)(\|\tau_{0}\|_{c}^{2} + c) - n \}.$$
(C.11)

Letting $\phi = 1/(\varepsilon + \delta)$, we get

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_{n}|r,\boldsymbol{X}_{n}) + \log p(\boldsymbol{y}_{n}|r,\tau_{0},\boldsymbol{X}_{n})$$

$$\leq \frac{1}{2} \{c + \log |\boldsymbol{I}_{n} + \phi^{-1}\boldsymbol{C}_{n}| + \kappa(r)(\|\tau_{0}\|_{c}^{2} + c)\}.$$
 (C.12)

It follows that

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_n | \boldsymbol{X}_n) \leqslant \frac{1}{2} \{ c + \log | \boldsymbol{I}_n + \phi^{-1} \boldsymbol{C}_n | \}$$

$$-\log \int p(\boldsymbol{y}_n | r, \tau_0, \boldsymbol{X}_n) \exp\{-\frac{1}{2} \kappa(r) (\| \tau_0 \|_c^2 + c) \} h(r) \, \mathrm{d}r.$$
(C.13)

Denote $\tilde{h}(r) \triangleq p(\boldsymbol{y}_n | r, \tau_0, \boldsymbol{X}_n) h(r) / p(\boldsymbol{y}_n | \tau_0, \boldsymbol{X}_n)$ be the conditional density function of r given \boldsymbol{y}_n and τ_0 , then we have

$$\int p(\boldsymbol{y}_{n}|r,\tau_{0},\boldsymbol{X}_{n}) \exp\{-\frac{1}{2}\kappa(r)(\|\tau_{0}\|_{c}^{2}+c)\}h(r) dr$$

$$=p(\boldsymbol{y}_{n}|\tau_{0},\boldsymbol{X}_{n})\int \exp\{-\frac{1}{2}\kappa(r)(\|\tau_{0}\|_{c}^{2}+c)\}\tilde{h}(r) dr.$$
(C.14)

Plugging (C.14) in (C.13), we get

$$-\log p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_{n}|\boldsymbol{X}_{n}) + \log p(\boldsymbol{y}_{n}|\tau_{0},\boldsymbol{X}_{n})$$

$$\leq \frac{1}{2}\{c + \log |\boldsymbol{I}_{n} + \phi^{-1}\boldsymbol{C}_{n}|\} - \log \int \exp\{-\frac{1}{2}\kappa(r)(||\tau_{0}||_{c}^{2} + c)\}\widetilde{h}(r)\mathrm{d}r \qquad (C.15)$$

$$\leq \frac{1}{2}\{c + \log |\boldsymbol{I}_{n} + \phi^{-1}\boldsymbol{C}_{n}| + (||\tau_{0}||_{c}^{2} + c)\mathrm{E}[\kappa(r)|\boldsymbol{y}_{n},\tau_{0}]\},$$

where $E[\kappa(r)|\boldsymbol{y}_n, \tau_0] = \int \kappa(r)\tilde{h}(r) dr$. Supposing $E[\kappa(r)|\boldsymbol{y}_n, \tau_0]$ is bounded, i.e., there exists a positive constant b such that

$$\mathbf{E}[\kappa(r)|\boldsymbol{y}_n, \tau_0] < b, \tag{C.16}$$

taking infimum of the right hand side of (C.15) over τ_0 and applying the Representer Theorem (Seeger et al., 2008), we complete the proof of Lemma 1.

Remark 1 Lemma 1 requires that $E[\kappa(r)|\boldsymbol{y}_n, \tau_0]$ is bounded (C.16). We now prove it is satisfied for some members of SMN distributions.

(1) For normal distribution:

It is easy to see since $\kappa(r) \equiv 1$.

(2) For Student-t distribution:

Given \boldsymbol{y}_n and τ_0 , the conditional distribution of r is $\operatorname{Gamma}(\frac{\nu+n}{2}, \frac{\nu+d_n}{2})$ with $d_n = (\boldsymbol{y}_n - \boldsymbol{\tau}_0(\boldsymbol{X}_n))^\top (\boldsymbol{y}_n - \boldsymbol{\tau}_0(\boldsymbol{X}_n))/\phi$, where $\boldsymbol{\tau}_0(\boldsymbol{X}_n) = (\tau_0(\boldsymbol{x}_1), \dots, \tau_0(\boldsymbol{x}_n))^\top$. It comes that

$$\mathbf{E}[r^{-1}|\boldsymbol{y}_n, \tau_0] = \frac{\nu + d_n}{\nu + n - 2},$$

which is bounded since $d_n = O(n)$.

(3) For slash distribution:

The conditional distribution of r given \boldsymbol{y}_n and τ_0 is a truncated gamma distribution Gamma $(\nu + n/2, d_n/2)\mathbb{I}_{(0,1)}$. Then, we get

$$E[r^{-1}|\boldsymbol{y}_n, \tau_0] = \frac{d_n}{n+2\nu-2} \frac{P_1(\nu+n/2-1, d_n/2)}{P_1(\nu+n/2, d_n/2)}$$

= $\frac{d_n}{2} \frac{1}{(\nu+n/2-1) - \exp(-d_n/2)/q_n}$, (C.17)

where

$$q_n = \int_0^1 t^{\nu+n/2-2} e^{-d_n t/2} dt$$

= $(2/d_n)^{\nu+n/2-1} \gamma(\nu+n/2-1, d_n/2).$ (C.18)

Here, $\gamma(a, x) \triangleq \int_0^x t^{a-1} e^{-t} dt$ is the incomplete gamma function. Using Theorem 4.1 in Neuman (2013), we find that

$$q_n \ge \frac{1}{\nu + n/2 - 1} \exp\{-\frac{\nu + n/2 - 1}{\nu + n/2} \frac{d_n}{2}\}.$$
 (C.19)

Combined (C.17) and (C.19), we have

$$E[r^{-1}|\boldsymbol{y}_n, \tau_0] \leq \frac{d_n}{(n+2\nu-2)(1-\exp\{-d_n/(n+2\nu)\})} \leq \frac{d_n}{n+2\nu-2} + \frac{n+2\nu}{n+2\nu-2},$$

which is bounded since $d_n = O(n)$.

(4) For contaminated-normal distribution:

Given \boldsymbol{y}_n and τ_0 , r is a discrete random variable with the conditional distribution as $\tilde{h}(r; \tilde{\nu}, \gamma) = \tilde{\nu} \mathbb{I}_{(r=\gamma)} + (1 - \tilde{\nu}) \mathbb{I}_{(r=1)}$, with $1/\tilde{\nu} = 1 + (1/\nu - 1)\gamma^{-n/2} \exp(-\frac{1-\gamma}{2}d_n)$. Hence, we have $\mathbb{E}[r^{-1}|\boldsymbol{y}_n, \tau_0] = \tilde{\nu}(\gamma^{-1} - 1) + 1 \leq \gamma^{-1}$.

Proof of Theorem 1. Applying Lemma 1 we obtain that

$$\frac{1}{n} \operatorname{E}_{\boldsymbol{X}_{n}}(\operatorname{D}[p(\boldsymbol{y}_{n}|\tau_{0},\boldsymbol{X}_{n}), p_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{y}_{n}|\boldsymbol{X}_{n})]) \\ \leqslant \frac{c}{2n} + \frac{1}{2n} \operatorname{E}_{\boldsymbol{X}_{n}}(\log|\boldsymbol{I}_{n} + \phi^{-1}\boldsymbol{C}_{n}|) + \frac{b}{2n}(\|\tau_{0}\|_{c}^{2} + c). \tag{C.20}$$

Suppose $\|\tau_0\|_c$ is bounded and $\mathbb{E}_{\mathbf{X}_n}(\log |\mathbf{I}_n + \phi^{-1}\mathbf{C}_n|) = o(n)$, then Theorem 1 follows from (C.20).

Remark 2 The expect regret $E_{\mathbf{X}_n}(\log |\mathbf{I}_n + \phi^{-1}\mathbf{C}_n|)$ depends both on the covariance function $C(\cdot, \cdot; \boldsymbol{\theta})$ and the distribution $\mathcal{U}(\mathbf{x})$, which can be shown as order o(n) for some widely used covariance functions (Seeger et al., 2008).

References

Cao, C. Z., Lin, J. G., Shi, J. Q., Wang, W., Zhang, X. Y. (2015). Multivariate measurement error models for replicated data under heavy-tailed distributions. Journal of Chemometrics, 29(8), 457-466.

Fang, K. T., Kotz, S., Ng, K. W.(1990). Symmetrical multivariate and related distributions. Chapman and Hall: London. McLachlan, G. J., Basford, K. E. (1988). Mixture models inference and applications to clustering. Marcel Dekker: New York.

Neuman, E. (2013). Inequalities and bounds for the incomplete gamma function. Results in Mathematics, 63(3), 1209-1214.
Seeger, M. W., Kakade, S. M., Foster, D. P. (2008). Information consistency of nonparametric Gaussian process methods.
IEEE transactions on Information Theory, 54(5), 2376-2382.