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Appendix

A SMN distributions and their conditional distribution properties

Assuming X ∼ Nn(0,Σ), we can generate an n-dimensional SMN random vector Y

(denoted by Y ∼ SMNn(µ,Σ; H)) by the transformation

Y = µ+ κ1/2(r)X, (A.1)

where µ is a location vector, κ(·) is a strictly positive weight function, and r is a posi-

tive scale random variable (independent of X) with its cumulative distribution function

H(r;ν). We use the notation Y ∼ SMNn(µ,Σ; H). Given r, Y is a multivariate normal

distribution, i.e., Y |r ∼ Nn(µ, κ(r)Σ). Hence, the marginal density function of Y can be

expressed as

p(y) =
∫ ∞

0
φn(y;µ, κ(r)Σ) dH(r), (A.2)

where φn(·;µ,Σ) stands for the pdf of the n-dimensional normal distribution with mean

µ and covariance matrix Σ. Some SMN distributions and their conditional distribution

properties are as follows:

(1) The multivariate Student-t distribution

When κ(r) = 1/r and r ∼ Gamma(ν/2, ν/2), Y follows a multivariate Student-t

distribution tn(µ,Σ; ν), with pdf as

p(y;µ,Σ, ν) =
Γ((ν + n)/2)

Γ(ν/2)(ν/2)n/2
|2πΣ|−1/2(1 + d/ν)−(ν+n)/2, (A.3)

where d = (y − µ)>Σ−1(y − µ) is the Mahalanobis distance. The multi-normal

distribution is the limiting case when ν → +∞. Given Y = y, the conditional

distribution of r is Gamma(ν+n
2
, ν+d

2
). It comes the conditional expectation

E[rm|y] =
2mΓ((ν + n+ 2m)/2)(ν + d)−m

Γ((ν + n)/2)
.

(2) The multivariate slash distribution
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When κ(r) = 1/r and r ∼ Beta(ν, 1), we get the multivariate slash distribution

SLn(µ,Σ; ν)) with pdf as

p(y;µ,Σ, ν) =

 ν|2πΣ|−1/2Γ(ν + n/2)P1(ν + n/2, d/2)(d/2)−(ν+n/2), y 6= µ,

|2πΣ|−1/2ν/(ν + n/2), y = µ,

(A.4)

where Px(a, b) denotes the cumulative distribution function of the Gamma(a, b) dis-

tribution. When ν → +∞, the slash distribution reduces to the normal distribu-

tion. The conditional distribution of r given y is a truncated gamma distribution

Gamma(ν + n/2, d/2)I(0,1). Then, we get

E[rm|y] =
Γ(ν + n/2 +m)

Γ(ν + n/2)
(d/2)−m

P1(ν + n/2 +m, d/2)

P1(ν + n/2, d/2)
.

(3) The contaminated-normal distribution

When κ(r) = 1/r and r is a discrete random variable with pdf h(r; ν, γ) = νI(r=γ)+

(1 − ν)I(r=1), with 0 < ν 6 1, 0 < γ 6 1, we obtain the multivariate contaminated-

normal distribution CNn(µ,Σ; ν, γ). Its pdf is given by

p(y;µ,Σ, ν, γ) = νφn(y;µ, γ−1Σ) + (1− ν)φn(y;µ,Σ). (A.5)

When γ = 1, it reduces to the normal distribution. Given y, r is a discrete random

variable with the conditional distribution as h̃(r; ν̃, γ) = ν̃I(r=γ) + (1− ν̃)I(r=1), with

1/ν̃ = 1 + (1/ν − 1)γ−n/2 exp(−1−γ
2
d). Hence, we get E[rm|y] = ν̃γm + 1− ν̃.

B The observed and expected information matrix

We provide the information matrix of Θ for the HPFR model. Since the SMN dis-

tributions belong to the elliptical distributions class (Fang et al., 1990), the observed

response ym of the HPFR model follows an elliptical distribution ELnm(µ̃m,Σm; gm),

where gm(·) : R→ [0,∞) is the density generator such that
∫∞

0 gm(u;ν)du <∞. The pdf

of ym is given by

p(ym) =
∣∣∣Σm

∣∣∣−1/2
gm(dm;ν), m = 1, . . . ,M,

where dm = (ym − µm)>Σ−1
m (ym − µm), and

gm(dm;ν) = (2π)−nm/2
∫ ∞

0
κ−nm/2(r) exp{−κ−1(r)dm/2} dH(r;ν).

2



Thus, the log-likelihood function for Θ is given by

l(Θ) =
M∑
m=1

lm(Θ) = −1

2

M∑
m=1

log(
∣∣∣Σm

∣∣∣) +
M∑
m=1

log{gm(dm;ν)}, (B.1)

and the score function of Θ has a form as

∂

∂Θi

l(Θ) = −1

2

M∑
m=1

tr(Σ−1
m Σ̇m,Θi

) +
M∑
m=1

ġm,Θi
/gm, (B.2)

where Σ̇m,Θi
and ġm,Θi

mean respectively, ∂Σm/∂Θi and ∂gm/∂Θi.

Denoting

Im(ω) = (2π)−nm/2
∫ ∞

0
κ−ω(r) exp{−κ−1(r)dm/2} dH(r;ν), ω > 0, (B.3)

then gm and ġm,Θi
(with respect to β and ψ) can be expressed respectively as Im(nm/2)

and −Im(nm/2 + 1)ḋm,Θi
/2. We can find gm for some SMN distributions in Appendix A.

Specific forms of Im(ω) and ∂ log(gm)/∂ν or ∂gm/∂ν are given below,

(1) for Student-t:

Im(ω) = (2π)−nm/22ωνν/2Γ(ν/2 + ω)/Γ(ν/2)(dm + ν)−(ν/2+ω),

∂ log(gm)

∂ν
=

1

2
ϕ(
ν + nm

2
)− 1

2
ϕ(
ν

2
)− 1

2
log(1 +

dm
ν

) +
dm − nm
2(ν + dm)

,

where ϕ(x) = d log(Γ(x))/dx is the digamma function.

(2) for slash:

Im(ω) = (2π)−nm/22ν+ωνΓ(ν + ω)P1(ν + ω, dm/2)d−(ν+ω)
m ,

∂ log(gm)

∂ν
= 1/ν + cm,

where cm = E[log(X)] and X follows a truncated gamma distribution Gamma(ν +

nm/2, dm/2)I(0, 1).

(3) for contaminated-normal:

Im(ω) = (2π)−(nm−1)/2[νγωφ1(
√
γdm) + (1− ν)φ1(

√
dm)],

∂gm
∂ν

= (2π)−(nm−1)/2[γnm/2φ1(
√
γdm)− φ1(

√
dm)],

∂gm
∂γ

= (2π)−(nm−1)/2νγnm/2−1(nm − γdm)φ1(
√
γdm)/2.

The observed information matrix J(Θ̂) can be approximated by
∑M
m=1 ŝmŝ

>
m (M-

cLachlan and Basford, 1988), where ŝm = ∂lm(Θ)/∂Θ|
Θ̂

. By calculating the expectation

3



of the second-order derivatives of (B.1), we can obtain the Fisher information matrix

I(Θ) = (IΘiΘj
)p×p, in which p is the dimension of Θ. The elements of the information

matrix are calculated by

Iβiβj =
M∑
m=1

4

nm
dg,m ˙̃µ

>
m,βi

Σ−1
m

˙̃µm,βj ,

Iψiψj
=

M∑
m=1

[
amtr(Σ−1

m Σ̇m,ψi
Σ−1
m Σ̇m,ψj

) + bmtr(Σ−1
m Σ̇m,ψi

)tr(Σ−1
m Σ̇m,ψj

)
]
,

Iψiνj =
M∑
m=1

1

nm
E[dm

∂

∂νj
(Wgm)]tr(Σ−1

m Σ̇m,ψi
),

Iνiνj =−
M∑
m=1

E[
∂2

∂νi∂νj
log(gm)],

Iβiψj
=Iβiνj = 0,

where am = 2fg,m
nm(nm+2)

, bm = fg,m
nm(nm+2)

− 1
4
, fg,m = E(W 2

gmd
2
m), dg,m = E(W 2

gmdm), in

which Wgm = ∂ log(gm)
∂dm

with dm = e>mem and em ∼ ELnm(0, Inm ; gm). The asymptotic

variance-covariance matrix of θ̂ can be estimated via I−1(Θ̂). The expectation values of

fg,m and dg,m for some SMN distributions (e.g., normal, Student-t and slash) have closed

forms (Cao et al., 2015). For contaminated-normal and other distributions, we need to

use numerical integration or Monte Carlo approximation.

C Technical details for information consistency

Lemma 1 Suppose yn are generated from model (1) with τ0 ∈ F and we fit them by

SMGP with bounded covariance kernel function C(·, ·;θ) for any covariate values in X .

Suppose C(·, ·;θ) is continuous in θ and θ̂ → θ almost surely as n→∞. Then we have

− log p
θ̂
(yn|Xn) + log p(yn|τ0,Xn) 6

1

2
{c+ log |In + φ−1Cn|+ b(‖τ0‖2

c + c)}, (C.1)

where ‖τ0‖c is the reproducing kernel Hilbert space (RKHS) norm of τ0 associated with

C(·, ·;θ) and Cn = (C(xi,xj))n×n, φ, b and c are some positive constants.

Proof. From the hierarchical structure of SMGP, we can rewrite the HPFR model

(omit subscript m) conditional on r by

y(t) = µ(t) + τ̆(t) + ε̆(t), (C.2)

where τ̆ = τ |r ∼ GP(0, κ(r)C(·, ·;θ)) which is independent with the error term ε̆ = ε|r ∼
N(0, κ(r)φ).
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Let

p
θ̂
(yn|r,Xn) =

∫
F
p(yn|r, τ̆ ,Xn) dp

θ̂
(τ̆), (C.3)

where p
θ̂
(τ̆) is the induced measure from GP(0, κ(r)C(·, ·; θ̂)). Then we have

p
θ̂
(yn|Xn) =

∫
p
θ̂
(yn|r,Xn)h(r) dr (C.4)

and

p(yn|τ0,Xn) =
∫
p(yn|r, τ0,Xn)h(r) dr. (C.5)

LetH be the RKHS associated with covariance kernel function C(·, ·;θ), andHn be the

span of {C(·,xi;θ)|i = 1, . . . , n}, i.e.,Hn = {f̆(·) : f̆(x) =
∑n
i=1 αiC(x,xi;θ), for any αi ∈

R}. Assuming the true underlying function τ̆0 = τ0|r ∈ Hn, then given r, τ0(·) can be ex-

pressed as

τ0(·) = κ(r)
n∑
i=1

αiC(·,xi;θ) , κ(r)C(·)α,

where C(·) = (C(·,x1;θ), . . . , C(·,xn;θ)) and α = (α1, . . . , αn)>.

By Fenchel-Legendre duality relationship, we have

− log p
θ̂
(yn|r,Xn) 6 EP̄ [− log p(yn|r, τ̆ ,Xn)] + D[P̄ , P ], (C.6)

where P is the measure induced by GP(0, κ(r)C(·, ·; θ̂)), and P̄ is the posterior distribu-

tion of τ̆ from a GP model with prior GP(0, κ(r)C(·, ·;θ)) and Gaussian likelihood term∏n
i=1 N(ŷn|τ̆(xi), κ(r)φ), where ŷn = κ(r)(Cn + φIn)α and φ > 0 is a constant to be

specified. Then we have

D[P̄ , P ] =
1

2
{− log |Ĉ

−1

n Cn|+ log |Bn|+ tr(Ĉ
−1

n CnB
−1
n )

+ κ(r)‖τ0‖2
c + κ(r)α>Cn(Ĉ

−1

n Cn − In)α− n},
(C.7)

and

EP̄ [− log p(yn|r, τ̆ ,Xn)] 6 − log p(yn|r, τ0,Xn) +
δ

2
tr(CnB

−1
n ), (C.8)

where Bn = In + φ−1Cn, Ĉn is the estimation of Cn at θ̂ and δ is a generic positive

constant. Combining (C.6)-(C.8) gives

− log p
θ̂
(yn|r,Xn) + log p(yn|r, τ0,Xn)

6
1

2
{− log |Ĉ

−1

n Cn|+ log |Bn|+ tr(Ĉ
−1

n CnB
−1
n + δCnB

−1
n )

+ κ(r)‖τ0‖2
c + κ(r)α>Cn(Ĉ

−1

n Cn − In)α− n}.

(C.9)
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Since the covariance function is bounded and continuous in θ and θ̂ → θ, we have

Ĉ
−1

n Cn − In → 0 as n → ∞. Hence, there exist some positive constant c and ε such

that

− log |Ĉ
−1

n Cn| < c, α>Cn(Ĉ
−1

n Cn − In)α < c,

tr(Ĉ
−1

n CnB
−1
n ) < tr((In + εCn)B−1

n ).
(C.10)

Thus we have

− log p
θ̂
(yn|r,Xn) + log p(yn|r, τ0,Xn)

6
1

2
{c+ log |Bn|+ tr((In + (ε+ δ)Cn)B−1

n )

+ κ(r)(‖τ0‖2
c + c)− n}.

(C.11)

Letting φ = 1/(ε+ δ), we get

− log p
θ̂
(yn|r,Xn) + log p(yn|r, τ0,Xn)

6
1

2
{c+ log |In + φ−1Cn|+ κ(r)(‖τ0‖2

c + c)}.
(C.12)

It follows that

− log p
θ̂
(yn|Xn) 6

1

2
{c+ log |In + φ−1Cn|}

− log
∫
p(yn|r, τ0,Xn) exp{−1

2
κ(r)(‖τ0‖2

c + c)}h(r) dr.
(C.13)

Denote h̃(r) , p(yn|r, τ0,Xn)h(r)/p(yn|τ0,Xn) be the conditional density function of r

given yn and τ0, then we have

∫
p(yn|r, τ0,Xn) exp{−1

2
κ(r)(‖τ0‖2

c + c)}h(r) dr

=p(yn|τ0,Xn)
∫

exp{−1

2
κ(r)(‖τ0‖2

c + c)}h̃(r) dr.
(C.14)

Plugging (C.14) in (C.13), we get

− log p
θ̂
(yn|Xn) + log p(yn|τ0,Xn)

6
1

2
{c+ log |In + φ−1Cn|} − log

∫
exp{−1

2
κ(r)(‖τ0‖2

c + c)}h̃(r)dr

6
1

2
{c+ log |In + φ−1Cn|+ (‖τ0‖2

c + c)E[κ(r)|yn, τ0]},

(C.15)

where E[κ(r)|yn, τ0] =
∫
κ(r)h̃(r) dr. Supposing E[κ(r)|yn, τ0] is bounded, i.e., there exists

a positive constant b such that

E[κ(r)|yn, τ0] < b, (C.16)
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taking infimum of the right hand side of (C.15) over τ0 and applying the Representer

Theorem (Seeger et al., 2008), we complete the proof of Lemma 1.

Remark 1 Lemma 1 requires that E[κ(r)|yn, τ0] is bounded (C.16). We now prove it is

satisfied for some members of SMN distributions.

(1) For normal distribution:

It is easy to see since κ(r) ≡ 1.

(2) For Student-t distribution:

Given yn and τ0, the conditional distribution of r is Gamma(ν+n
2
, ν+dn

2
) with dn =

(yn − τ 0(Xn))>(yn − τ 0(Xn))/φ, where τ 0(Xn) = (τ0(x1), . . . , τ0(xn))>. It comes

that

E[r−1|yn, τ0] =
ν + dn

ν + n− 2
,

which is bounded since dn = O(n).

(3) For slash distribution:

The conditional distribution of r given yn and τ0 is a truncated gamma distribution

Gamma(ν + n/2, dn/2)I(0,1). Then, we get

E[r−1|yn, τ0] =
dn

n+ 2ν − 2

P1(ν + n/2− 1, dn/2)

P1(ν + n/2, dn/2)

=
dn
2

1

(ν + n/2− 1)− exp(−dn/2)/qn
,

(C.17)

where

qn =
∫ 1

0
tν+n/2−2e−dnt/2 dt

= (2/dn)ν+n/2−1γ(ν + n/2− 1, dn/2).
(C.18)

Here, γ(a, x) ,
∫ x

0 t
a−1e−tdt is the incomplete gamma function. Using Theorem 4.1

in Neuman (2013), we find that

qn >
1

ν + n/2− 1
exp{−ν + n/2− 1

ν + n/2

dn
2
}. (C.19)

Combined (C.17) and (C.19), we have

E[r−1|yn, τ0] 6
dn

(n+ 2ν − 2)(1− exp{−dn/(n+ 2ν)})

6
dn

n+ 2ν − 2
+

n+ 2ν

n+ 2ν − 2
,

which is bounded since dn = O(n).

(4) For contaminated-normal distribution:
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Given yn and τ0, r is a discrete random variable with the conditional distribution

as h̃(r; ν̃, γ) = ν̃I(r=γ) + (1 − ν̃)I(r=1), with 1/ν̃ = 1 + (1/ν − 1)γ−n/2 exp(−1−γ
2
dn).

Hence, we have E[r−1|yn, τ0] = ν̃(γ−1 − 1) + 1 6 γ−1.

Proof of Theorem 1. Applying Lemma 1 we obtain that

1

n
EXn(D[p(yn|τ0,Xn), p

θ̂
(yn|Xn)])

6
c

2n
+

1

2n
EXn(log |In + φ−1Cn|) +

b

2n
(‖τ0‖2

c + c).
(C.20)

Suppose ‖τ0‖c is bounded and EXn(log |In + φ−1Cn|) = o(n), then Theorem 1 follows

from (C.20).

Remark 2 The expect regret EXn(log |In+φ−1Cn|) depends both on the covariance func-

tion C(·, ·;θ) and the distribution U(x), which can be shown as order o(n) for some widely

used covariance functions (Seeger et al., 2008).
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