
Gaussian Process Function Data Analysis

R Package ‘GPFDA’

Jian Qing Shi & Yafeng Cheng

School of Mathematics and Statistics

Newcastle University

Newcastle NE1 7RU, UK

E-mail: j.q.shi@ncl.ac.uk & yafeng.cheng@ncl.ac.uk

October 14, 2014

c©J. Q. Shi & Yafeng Cheng

2

3

Gaussian Process Function Data Analysis
R Package ‘GPFDA’, Version 1.1

This version includes

• Gaussian process regression analysis for a single curve, and

• Gaussian process functional regression analysis for repeated curves

More will be added shortly in the next version, including

• Gaussian process classification and clustering

• Mixture Gaussian process functional regression models

This manual details how to install the package and how to use the package to conduct Gaussian

process regression analysis for functional data of a single batch (single curve) or multiple batches (repeated

curves). The detailed description can be found in Shi et al. (2007) andShi and Choi (2011).

4

Contents

1 Introduction 7

1.1 Installation . 7

1.2 Load the package . 8

2 Gaussian Process Regression Analysis 9

2.1 Gaussian process regression model and inference . 9

2.1.1 Fitted values and predictions . 10

2.1.2 Empirical Bayes estimates . 11

2.2 Examples . 12

2.2.1 Example 1 . 12

2.2.2 Example 2 . 16

2.2.3 Example 3: atmospheric CO2 concentrations . 18

3 Gaussian Process Function Regression Analysis 27

3.1 Gaussian process functional regression model . 27

3.2 GPFR model with a linear functional mean model . 28

3.2.1 Predictions . 29

3.3 Examples . 30

3.3.1 Example 1 . 30

A.1 Covariance functions . 31

5

6 CONTENTS

Chapter 1

Introduction

1.1 Installation

The package GPFDA can be installed using the usual way in R. The simplest way is to install it from

the repository of CRAN together with all dependency packages by

install.packages(‘GPFDA’, dependencies=T)

You can also install the package from the source file locally end with ‘.tar.gz’ in both Linux-like system

and Windows system by

install.packages(‘GPFDA’, repos=NULL)

Package path is omitted here. You need to add the path by yourself. Alternatively, you can use the

following way

install.packages(file.choose(), repos=NULL)

It will open a window. You can then choose the source file from the related folder.

The package used several R dependency packages:

• fda.usc (Functional Data Analysis and Utilities for Statistical Computing , Febrero-Bande and de la

Fuente (2012))

• fda (functional data analysis, Ramsay and Silverman (2005). Involved in package fda.usc)

• data.table (fast data frame indexing, ordering etc.)

• spam (sparse matrix calculation)

7

8 CHAPTER 1. INTRODUCTION

• MASS (basic functions from ‘Modern Applied Statistics with S’, Venables and Ripley (2002), used

in some examples and demo’s)

All those packages need to be installed or updated as the dependencies of GPFDA . This will be done

automatically if it is installed from repository (CRAN). But you need to install them manually if you

install GPFDA locally from source file.

1.2 Load the package

To load the package in R , use

library(GPFDA)

or

require(GPFDA)

To update the package, click the ‘package’ icon in menu, and select ‘update packages’; or reinstall the

package (need to detach the package by using R command detach(package:GPFDA), if the package is

loaded into the workspace).

Chapter 2

Gaussian Process Regression

Analysis

2.1 Gaussian process regression model and inference

Let y be a response variable and x be a Q-dimensional covariates. A nonparametric regression model is

expressed as

y = f(x) + ε, ε ∼ N(0, σ2),

where f(·) is unknown. However, most of the nonparametric methods suffer from the curse of dimen-

sionality when they are applied to the problem with multi-dimensional covariates (i.e. Q is large). A

variety of alternative approaches has been developed to overcome this problem. Examples include the

additive model, the projection pursuit regression, the sliced inverse regression, the neural network model,

the varying-coefficient model and Gaussian process regression (GPR) model.

Gaussian process regression model is a nonparametric model and has some nice features; see the

details in Shi and Choi (2011). Suppose we have a data set

D =

 y1

x1

 y2

x2

 . . .

 yn

xn

 .

The discrete form of a GPR model is defined as follows.

yi = f(xi) + εi, i = 1, . . . , n, (2.1)

εi ∼ i.i.d. N(0, σ2),

f(·) ∼ GP (µ(·), k(·, ·)) and Cov(f(xi), f(xj)) = k(xi,xj),

9

10 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

where GP (µ(·), k(·, ·)) is a Gaussian process prior with mean µ(·) and the covariance function k(·, ·). The

following is one of the most commonly used covariance functions in practice

k(xi, xj ;θ) = v1exp

(
−1

2

Q∑
q=1

wq(xi,q − xj,q)2
)

+

Q∑
q=1

aqxi,qxj,q (2.2)

which is the combination of a squared exponential and a linear covariance kernel. The above covariance

kernel depends on a set of hyper-parameters {v1, wq, aq, q = 1, . . . , Q}.

2.1.1 Fitted values and predictions

We now temporarily assume that the noise variance σ2 is known, and the covariance function k(·, ·) is

predetermined with fixed hyper-parameters known in advance. We use θ to denote σ2 and the hyper-

parameters. They can be estimated by using for example the empirical Bayesian approach which will be

discussed in the next section. It is also common to assume a zero mean function, i.e. µ(·) = 0.

Let f = (f(x1), . . . , f(xn))T . When the value of the hyper-parameters θ is given, the posterior

distribution, p(f |D, σ2), is a multivariate normal distribution with

E(f |D, σ2) = K(K + σ2I)−1y

Var(f |D, σ2) = σ2K(K + σ2I)−1,

where the covariance matrix K is calculated by using the kernel covariance function. Its (i, j)-th element

is calcualted by

K(i, j) = Cov(fi, fj) = k(xi,xj ;θ). (2.3)

Note that the mean vector of the Gaussian process prior is assumed to be zero.

It is straightforward to predict an output for a new data points i.e. the points other than {x1, . . . ,xn}.

We also call them as test data and call D as training data. Let x∗ be a new input and let f(x∗) be the

related nonlinear function. Since (f(x1), . . . , f(xn), f(x∗)) constitutes a (n + 1)-variate normal vector.

Consequently, the posterior distribution of f(x∗) given the training data D is also a Gaussian distribution,

with mean and variance given by

E(f(x∗)|D) = ψT (x∗)Ψ−1y, (2.4)

Var(f(x∗)|D) = k(x∗,x∗)−ψT (x∗)Ψ−1ψ(x∗), (2.5)

where ψ(x∗) = (k(x∗,x1), · · · , k(x∗,xn))T is the covariance between f(x∗) and f = (f(x1), . . . , f(xn)),

and Ψ is the covariance matrix of (y1, · · · , yn) given by

Ψ = K + σ2I. (2.6)

2.1. GAUSSIAN PROCESS REGRESSION MODEL AND INFERENCE 11

If y∗ is the related output or response to x∗, then its predictive distribution is also Gaussian, with

the mean given by (2.4) and the variance

σ̂∗2 = Var(f(x∗)|D) + σ2. (2.7)

If we use the posterior mean E(f(x∗)|D) in (2.4) as the prediction of f(x∗), it satisfies posterior

consistency, i.e. it is a consistent estimation of the true function f0(·) (see the detailed discussion in Shi

and Choi, 2011).

2.1.2 Empirical Bayes estimates

In Bayesian inference, we usually select the values of hyper-parameters based on our prior knowledge.

We however should be cautious on doing so for the GPR model since the dimension of θ is usually quite

large and we don’t usually know the meaning or physical interpretation of θ. An alternative way is to

estimate them using the observed data. This is so called empirical Bayes estimates (Carlin and Louis,

1996; Shi and Choi, 2011).

Using empirical Bayesian approach, we estimate θ from the marginal distribution of y = (y1, . . . , yn)T :

p(y|θ) =

∫
p(y|f)p(f |θ)df , (2.8)

where p(y|f) =
∏n
i=1 g(fi) and f ∼ N(0,K). The (i, j)-th element of the covariance matrix K is

calculated by (2.3). Consequently, for the continuous response with normal distribution as given in (2.1),

the marginal distribution (2.8) has an analytical form as a multivariate normal. The marginal distribution

of y is a normal distribution

y ∼ N(0,Ψ),

with covariance matrix Ψ given in (2.6). Hence, the marginal log-likelihood of θ is given by

l(θ|D) = −1

2
log |Ψ(θ)| − 1

2
yTΨ(θ)

−1
y − n

2
log 2π. (2.9)

Thus θ is estimated by maximizing the above log-likelihood.

Remarks.

• The conjugate gradient optimization method is used in the package.

• In practice we often estimate σ2 and the hyper-parameters at the same time. This package therefore

treats σ2 as one of the elements in θ.

We may sometime introduce a hyper-prior for the hyper-parameters. For example, we may use the

following prior distribution for hyper-parameters involved in the squared exponential covariance kernel

12 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

(2.2)

w−1q ∼ Γ(αw, αw/µw), d ∈ [1, D]

i.e. E(w−1) = µw, var(w
−1) = µ2

w/αw

aq ∼ N(µa, σ
2
a), d ∈ [1, D]

log(v1) ∼ N(µv1 , σv1).

Let p(θ) be the density function of the above hyper-prior distribution, we can estimate θ by MAP

(maximum a posteriori probability), i.e. maximizing l(θ|D) + log p(θ).

2.2 Examples

This section contains two examples using simulated data and one example using real data. We need to

load the package before we run the code.

library(GPFDA)

It may depend on a few other packages. They should be installed before running the examples; check the

details in Section 1.1

Demo files for the examples are included in the package. We can use the following command to

demonstrate the examples.

demo(DemoName,package="GPFDA")

For example, demonstrate Example 1 in the next section using

demo(gpr_ex1,package="GPFDA")

2.2.1 Example 1

This example involves a one-dimensional covariate. The data is generated by

y = sin(6x) + ε; x ∈ [0, 1] and ε ∼ GP (0, k(·, ·)),

where k(·, ·) is specified by (2.2) which depends on x. The samples used to learn the model is non-equally

spaced drawn from x ∈ [0, 1]. Sample size of the training data is 21. Test data are equally spaced from

0 to 1 with sample size of 34.

The following code is used to generate data. Seed is set to be a fixed number for reproducing the

result.

2.2. EXAMPLES 13

library(GPFDA)

library(MASS)

rm(list=ls())

set.seed(3)

hp <- list("pow.ex.w"=log(10),"linear.a"=log(10),"pow.ex.v"=log(5),"vv"=log(1))

c <- seq(0,1,len=40)

n <- 21

ntest=34

idx <- sort(sample(1:40,n))

x <- c[idx]

y <- (mvrnorm(n=n,mu=x-x,Sigma=.01*(cov.linear(hp,x)+cov.pow.ex(hp,x)))[,1])+sin(x*6)

y <- as.matrix(y)

x <- as.matrix(x)

test <- as.matrix(seq(0,1,len=ntest))

Model learning is obtained using

a <- gpr(x,y,c("linear","pow.ex"),hp)

The above function is to estimate the parameters using Empirical Bayesian approach. This will return a

‘.gpr’ object, which is a list of:

• CovFun: Covariance function type

• fitted: Fitted value for training data

• fitted.sd: Standard deviation of the fitted value for training data

• gamma: Parameter used in powered exponential covariance function

• hyper: Estimates of the hyper-parameters

• I: Variance of the estimated hyper-parameters

• train.x: Training data of the covariates

• train.y: Training data of the response

For example the estimates of the hyper-parameters are:

> a$hyper

$linear.a

14 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

[1] 0.5134467

$pow.ex.v

[1] 0.6114809

$pow.ex.w

[1] 1.592719

$vv

[1] -2.724992

For convenience we took a log transformation in the package. So the actual values of the estimates are

> sapply(a$hyper,exp)

linear.a pow.ex.v pow.ex.w vv

1.67104084 1.84315896 4.91709944 0.06554671

Thus the estimates of the hyper-parameters in (2.2) are

â = 1.67104084, v̂ = 1.84315896 ŵ = 4.91709944 and σ̂2 = 0.06554671.

To calculate predictions for a set of test data, we use the function gppredict()

b <- gppredict(a,test)

where test is the set of test data. This will return a list of objects, in addition to all the objects obtained

from the model learning process, including:

• mu: Predictive mean

• sigma: Predictive variance

Thus b$mu can be used to calculate prediction. The prediction interval with e.g. 95% level can be

calculated by

upper=b$mu+1.96*sqrt(b$sigma)

lower=b$mu-1.96*sqrt(b$sigma)

Fig 2.1 shows the fitted values with their 95% confidence interval for the training data and prediction

with their 95% prediction interval for the test data.

2.2. EXAMPLES 15

0.2 0.4 0.6 0.8

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Fitted value

input (x)

re
s
p

o
n

s
e

(a) Fitted line

0.2 0.4 0.6 0.8

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Prediction

input (x)

re
s
p

o
n

s
e

(b) Prediction

Figure 2.1: Fitted values and predictions: the red crosses are the training data; Solid lines are the fitted values

or prediction; Shadow areas are the confidence interval or the the prediction interval.

16 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

The default setting of gppredict() is to use the estimation of the hyper-parameters obtained in the

training precess gpr. It can also accept custom input if the values of the parameters are pre-determined.

The first argument train controls the way of input.

If we have already run the command:

a <- gpr(x,y,c("linear","pow.ex"),hp)

the default setting is to use the output of gpr:

b <- gppredict(train = a, Data.new = test)

or equivalently

b <- gppredict(a, test)

Alternatively, we can use the following way:

b <- gppredict(train = F, Data.new = test, hyper = a$hyper,

Cov = a$CovFun, Y = a$train.y, Data = a$train.x)

Here, the training data, covariance matrix, the values of parameters could use custom input or the

pre-stored output of gpr.

We can use the following command to show the demo of this example.

demo(gpr_ex1,package="GPFDA")

Note: when you see the information Waiting to confirm page change ... you need to click the graph

window to continue the demo.

2.2.2 Example 2

The second example involves 4-dimensional covariates. The data is generated as:

y = 0.2x1 × |x1|1/3 − 4 sin(x2) + exp(x3) + log(x4) + ε, ε ∼ GP (0, k(·, ·)),

where k(·, ·) is specified by (2.2) which depends on x = (x1, x2, x3, x4)T . Again the training data are

non-equally spaced and the sample size is 100. Seed is set up for reproducing the results.

set.seed(2)

hp <- list("pow.ex.w"=rep(log(10),4),"linear.a"=rep(log(10),4),"pow.ex.v"=log(5),

"vv"=log(1))

kernal <- c(’linear’,’pow.ex’)

nn=100; mm=1000;

2.2. EXAMPLES 17

p=dnorm((rnorm(800)))

idx=sort(sample(1:800,nn,prob=p/sum(p)))

X=matrix(0,ncol=4,nrow=800)

X[,1]=seq(-5,10,len=800)

X[,2]=seq(0,1,len=800)

X[,3]=seq(-15,-10,len=800)

X[,4]=seq(1,2,len=800)

Y=(mvrnorm(n=800,mu=as.matrix(X[,1]-X[,1]),Sigma=(cov.linear(hp,X)

+cov.pow.ex(hp,X)))[,1])*0.002+(0.2*sign(X[,1])*abs(X[,1])^(1/3)

-4*sin(X[,2])+exp(X[,3])+log(X[,4]))*3

X=X[idx,];Y=as.matrix(Y[idx])

x=matrix(0,ncol=4,nrow=mm)

x[,1]=seq(-5,10,len=mm)

x[,2]=seq(0,1,len=mm)

x[,3]=seq(-15,-10,len=mm)

x[,4]=seq(1,2,len=mm)

The model training and prediction calculating for the test data are carried out by:

a <- gpr(X,Y,kernal,trace=2)

b <- gppredict(a,x)

The argument trace is used to control whether you want to print out every trace step of the optimization

precess. Convergence information is included in

a$conv

It has two possible values: 0 and 1 where 0 means converged successfully and 1 means failed.

The estimates of the hyper-parameters are

> unlist(sapply(a$hyper,exp))

linear.a1 linear.a2 linear.a3 linear.a4 pow.ex.v

0.015916366 0.004562655 9.644476266 4.280208192 4.822551884

pow.ex.w1 pow.ex.w2 pow.ex.w3 pow.ex.w4 vv

9.147491678 9.993546889 8.654467722 10.024756532 0.013280801

Figure 2.2 shows the fitted values and the predicted value against one covariate.

You may use the following command to run the demo

demo(gpr_ex2,package="GPFDA")

18 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

−5 0 5 10

−
8

−
6

−
4

−
2

Prediction

input (x)

re
s
p

o
n

s
e

(a) Fitted values

−5 0 5 10

−
8

−
6

−
4

−
2

Prediction

input (x)

re
s
p

o
n

s
e

(b) Predictions and the 95% predictive interval

Figure 2.2: Plots of the fitted values and predictions against x1 (solid lines): the crosses stand for training data

and the the shadow area in the right panel is the predictive interval.

2.2.3 Example 3: atmospheric CO2 concentrations

This example used a real data set. Three types of covariance kernels are used, including a custom defined

kernel.

The data is included in the package (it can also be download from http://cdiac.esd.ornl.gov/

ftp/trends/co2/maunaloa.co2). It is the recording of monthly average atmospheric Carbon Dioxide

concentrations (per million by volume (ppmv)) collected at the Mauna Loa Observatory, Hawaii, between

1958 and 2003. Five missing values are removed in this example.

We can load the data by

data(co2)

This gives a 51× 13 matrix. Each row includes the records for 12 months as well as the annual average

for the year. There are total 51 years from 1958 to 2003. We use the following R code to remove the

http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2
http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2

2.2. EXAMPLES 19

missing data and rearrange the data as the format used in the package.

y=data.matrix(co2[,!names(co2)%in%"Annual_Average"])

y=matrix(t(y),ncol=1)

x=1:612/12; x[y<0]=NA

mat=cbind(y,x)

mat=na.omit(mat)

X=as.matrix(mat[,2])

Y=as.matrix(mat[,1])

x=seq(1,612,len=1000)/12

The time scale is set to be from 1/12 to 51, which can be changed easily. The data is presented in Figure

2.3, showing a clear periodic pattern.

0 10 20 30 40 50

3
2

0
3

6
0

Raw data

input

re
s
p

o
n

s
e

Figure 2.3: CO2 data: monthly average atmospheric Carbon Dioxide concentrations

We first fit the data using the squared exponential or the rational quadratic covariance function. The

prediction is calculated at the 1000 equally spaced time points.

20 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

system.time(a1 <- gpr(as.matrix(X),as.matrix(Y),c("pow.ex"),mean="t"))

system.time(b1 <- gppredict(a1,Data.new=as.matrix(x)))

hp2 <- list(’rat.qu.a’=2,’rat.qu.s’=0.1,’rat.qu.w’=-1,’vv’=1.5)

a2 <- gpr(as.matrix(X),as.matrix(Y),c(’rat.qu’),mean=’t’,trace=2,hyper = hp2)

b2 <- gppredict(a2,Data.new=as.matrix(x))

Note that system.time is to show the time of running the code. The last argument mean is to define the

mean structure. Here mean="t" defines a GPR model using a linear trend line as a mean function. It

can also take the value of 0 or 1, standing for zero mean or a constant mean. The default setting is 0.

You may use plot(b1) or plot(b2) to plot the predictions. The predictions and their 95% predictive

interval are given in Figure 2.4. Neither of them can model the preiodic pattern.

To capture the periodic pattern, we use the following covariance function (Rasmussen and Williams,

2006):

k(x, x′) = v ∗ exp(−w ∗ (x− x′)2 − u ∗ sin2(π ∗ (x− x′))). (2.10)

This is not a standard covariance kernel included in the package. So we need to define it manully.

• The first step is to define the covariance kernel itself. The name of the kernel must be constituted

by the prefix ‘cov.’ and 6 letters (e.g., ‘cov.custom’).

cov.custom=function(hyper,Data,Data.new=NULL){

hyper=lapply(hyper,exp);

datadim=dim(Data)

if(is.null(Data.new)) Data.new=Data

A1=xixj_sta(Data,Data.new,hyper$custom.w) #exp(w)*||x-x’||^2

mdim=dim(Data);mdim.new=dim(Data.new)

cov.=sapply(1:mdim[1],function(i) matrix(rep(Data[i,], mdim.new[1]),

nrow=mdim.new[1],byrow=T)-Data.new)

cov..=matrix(0,ncol=mdim[1],nrow=mdim.new[1])

if(mdim[2]>1){

for(i in 1:(mdim[2]-1)){

cov..=cov..+cov.[1:mdim.new[1],];cov.=cov.[-(1:mdim.new[1]),]}

cov.=cov..+cov. # x-x’

}

A2=hyper$custom.u*(sin(pi*cov.))^2

2.2. EXAMPLES 21

return(hyper$custom.v*exp(-A1-A2))

}

Here the function xixj_sta is used to calculate exp(w) ∗ ||x − x′||2. It is defined in the package,

and the details can be found in the package description.

• The second step is to define the first derivative of the likelihood in terms of all the parameters

involved in the covariance kernel. The formulas are omit here. The name of the functions should

look like DCov.custom.w, where the middle affix is the custom defined name, and the last letter i.e.

w names the vector of the parameters which can use one letter only.

DCov.custom.w=function(hyper,data,AlphaQ){

Dcov=cov.custom(hyper,data)

A1=-xixj_sta(data,data,hyper$custom.w)

out=Dcov %*% A1

out=sum(out*AlphaQ)

return(out)

}

DCov.custom.u=function(hyper,data,AlphaQ){

Dcov=cov.custom(hyper,data)

hyper=lapply(hyper,exp)

mdim=dim(data);mdim.new=mdim

cov.=sapply(1:mdim[1],function(i) matrix(rep(data[i,], mdim.new[1]),

nrow=mdim.new[1],byrow=T)-data)

cov..=matrix(0,ncol=mdim[1],nrow=mdim.new[1])

if(mdim[2]>1){

for(i in 1:(mdim[2]-1)){

cov..=cov..+cov.[1:mdim.new[1],];cov.=cov.[-(1:mdim.new[1]),]}

cov.=cov..+cov.

}

A2=-hyper$custom.u*(sin(pi*cov.))^2

out=Dcov%*%A2

out=sum(out*AlphaQ)

return(out)

}

22 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

DCov.custom.v=function(hyper,data,AlphaQ){

out=cov.custom(hyper,data)

out=sum(out*AlphaQ)

return(out)

}

In this case, only the first derivative of the covariance matrix against the parameters need to be

calculated. If define it as ‘out’, the result should be the trace of ‘out’ multiply ‘AlphaQ’, which is

same as ‘sum(out*AlphaQ)’. The argument ‘AlphaQ’ is calculated in the main function, which will

attach to these functions. AlphaQ = (Q−1y)2 −Q−1, where Q is the covariance matrix.

• The third step is to define the second derivative of the likelihood.

D2custom.w=function(hyper,data,inv.Q,Alpha.Q){

Dcov=cov.custom(hyper,data)

A1=-xixj_sta(data,data,hyper$custom.w)

wD2=Dcov%*%(A1^2+A1)

wD1=Dcov%*%A1

D2c.w=D2(wD1,wD2,inv.Q,Alpha.Q)

return(D2c.w)

}

D2custom.w=function(hyper,data,inv.Q,Alpha.Q){

Dcov=cov.custom(hyper,data)

A1=-xixj_sta(data,data,hyper$custom.w)

wD2=Dcov%*%(A1^2+A1)

wD1=Dcov%*%A1

D2c.w=D2(wD1,wD2,inv.Q,Alpha.Q)

return(D2c.w)

}

D2custom.u=function(hyper,data,inv.Q,Alpha.Q){

Dcov=cov.custom(hyper,data)

hyper=lapply(hyper,exp)

2.2. EXAMPLES 23

mdim=dim(data);mdim.new=mdim

cov.=sapply(1:mdim[1],function(i) matrix(rep(data[i,],

mdim.new[1]),nrow=mdim.new[1],byrow=T)-data)

cov..=matrix(0,ncol=mdim[1],nrow=mdim.new[1])

if(mdim[2]>1){

for(i in 1:(mdim[2]-1)){

cov..=cov..+cov.[1:mdim.new[1],];cov.=cov.[-(1:mdim.new[1]),]}

cov.=cov..+cov.

}

A2=-hyper$custom.u*(sin(pi*cov.))^2

uD2=Dcov%*%(A2^2+A2)

uD1=Dcov%*%A2

D2c.u=D2(uD1,uD2,inv.Q,Alpha.Q)

return(D2c.u)

}

D2custom.v=function(hyper,data,inv.Q,Alpha.Q){

vD1=cov.custom(hyper,data)

vD2=vD1

D2c.v=D2(vD1,vD2,inv.Q,Alpha.Q)

return(D2c.v)

}

• Finally we define a function including only the diagonals of the covariance matrix. This makes

computation more efficient.

diag.custom=function(hyper,data){

Qstar=rep(exp(hyper$custom.v),dim(data)[1])

return(Qstar)

}

We can now define a new GPR model, in which the covariance function combines three kernels: the

custom defined (2.10), the squared exponential and the rational quadratic covariances. The model is

defined by

hp3 <- list(custom.u= 1,custom.v=.1,custom.w=-.1,pow.ex.v=.1,pow.ex.w=.1,

rat.qu.a=.2,rat.qu.s=.1,rat.qu.w=-.1, vv=-2.5)

24 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

a3 <- gpr(as.matrix(X),as.matrix(Y),Cov=c(’pow.ex’,’custom’,’rat.qu’),

NewHyper=c(’custom.w’,’custom.u’,’custom.v’),mean=’t’,trace=2,hyper = hp3)

b3 <- gppredict(a3,Data.new=as.matrix(x))

To define the new covariance kernel, the name of the custom defined one should be included, and the

parameters used in the custom defined kernel should also be included in the argument ‘NewHyper’.

The prediction using the new model is shown in Figure 2.5. The periodic pattern has been modeled

this time.

The demo of the example can be carried out by:

demo(co2,package="GPFDA")

2.2. EXAMPLES 25

0 10 20 30 40 50

3
2

0
3

6
0

Prediction by powered exponential

input

re
s
p

o
n

s
e

(a) Using the squared exponential cov function

0 10 20 30 40 50

3
2

0
3

6
0

Prediction by rational quadratic

input

re
s
p

o
n

s
e

(b) Using the rational quadratic cov function

Figure 2.4: Co2 data: the raw data (dotted point, in red), the fitted line (the blue line) with its 95% predictive

interval (in shade).

26 CHAPTER 2. GAUSSIAN PROCESS REGRESSION ANALYSIS

0 10 20 30 40 50

3
2

0
3

6
0

Prediction by sum of three kernels

input

re
s
p

o
n

s
e

Figure 2.5: Co2 data: the raw data (dotted point, in red), the fitted line (the blue line) with its 95% predictive

interval (in shade) using the combination of three covariance functions.

Chapter 3

Gaussian Process Function

Regression Analysis

3.1 Gaussian process functional regression model

The GPR models discussed in the previous chapter is for a single curve (which can also be regarded as a

batch with only one realization). We now turn our attention to consider batch data or data with repeated

curves.

Assume that we have a functional response variable ym(t) for m = 1, 2, . . . ,M , and we also have a set

of functional covariates xm(t) and a set of scalar covariates um, where

xm(t) = (xm1(t), xm2(t), . . . , xmQ(t))T and um = (um1, um2, . . . , ump)
T .

A general nonlinear regression model for the m-th batch is defined as

ym(t) = f(t,xm(t),um) + εm(t), (3.1)

where εm(t)’s are random errors which are independent at different t’s. Here, we indistinctively refer to

this m-th replication as m-th batch or m-th curve if we need to emphasize its different aspects.

A Gaussian process functional regression (GPFR) model is defined by

ym(t) = µm(t) + τm(xm) + εm(t), (3.2)

where µm(t) models the common mean structure across different curves, while τm(xm) defines the covari-

ance structure of ym(t) for the different data points within the same curve. We use a Gaussian process

regression model to define the covariance structure:

τm(xm) ∼ GPRm[0, km(θm)|xm], m = 1, . . . ,M, (3.3)

27

28 CHAPTER 3. GAUSSIAN PROCESS FUNCTION REGRESSION ANALYSIS

where GPRm[0, km(θm)|xm], as defined in (2.1), denotes a Gaussian process regression model with a

covariance function km and hyper-parameters θm. Equations (3.2) and (3.3) jointly define a Gaussian

process functional regression model; it is denoted by (Shi and Choi, 2011)

ym(t) ∼ GPFR[µm(t), km(θm)|xm(t),um].

3.2 GPFR model with a linear functional mean model

In this section, we consider a special case of Gaussian process functional regression model by using a

linear functional mean model. We assume that the mean model µm(t) depends on the scalar covariates

um and t only, i.e. µm(t) = uTmβ(t). Thus, the Gaussian process functional regression model with a

linear functional regression mean is given by

ym(t) = uTmβ(t) + τm(xm) + εm(t). (3.4)

Assume that all the functional variables in the same batch are observed at the same data points {tmi, i =

1, . . . , nm} for m = 1, . . . ,M . The data observed in each batch are

Dm = {(ymi, tmi, xm1i, . . . , xmQi) for i = 1, . . . , nm; and (um1, . . . , ump)}, (3.5)

where ymi = y(tmi) is the observation of ym(t) at tmi and xmqi = xq(tmi) is the measurement of the q-th

input variable for q = 1, . . . , Q. Likewise, the observations of the scalar variables for the m-th batch are

given by um = (um1, . . . , ump)
T . If any of the functional variables have not been recorded at the same

data points, they can still be used in the analysis but they need to be treated beforehand; see Ramsay

and Silverman (2005) for further details.

In (3.4) ym(t) and β(t) can be approximated by using a set of basis functions:

ym(t) ≈ ỹm(t) = AT
mΦ(t), and β(t) ≈ BTΦ(t),

where Φ(t) = (φ1(t), . . . , φH(t))T are a set of H basis functions, Am is an H-dimensional coefficient

vector and B is a H × p matrix. For example, Φ(t) could be a set of B-spline basis functions.

Based on the data {Dm} given in (3.5), we can evaluate the marginal likelihood for the model (3.4),

and then calculate all unknown parameters using empirical Bayesian approach (see Shi et al., 2007; Shi

and Choi, 2011).

In practice, we may use a fast approximating approach. The coefficients Am and B can be estimated

by

Âm = (ΦT
mΦm)−1ΦT

mym,

B̂
T

= (UTU)−1UTA,

3.2. GPFR MODEL WITH A LINEAR FUNCTIONAL MEAN MODEL 29

where ym = (ym1, . . . , ymnm
)T , U = (u1, . . . ,uM)T and Φm is an nm×H matrix with elements (φh(tmi)).

The details can be found in Section 5.3 in Shi and Choi (2011).

3.2.1 Predictions

We now consider how to calculate the prediction y∗ = y(t∗) at a new point (t∗,x∗,u∗) with x∗ = x(t∗).

From (3.4), the mean is estimated by

µ̂(t) = uT B̂
T
Φ(t), (3.6)

and the prediction of y∗ include two parts

ŷ∗ = µ̂(t∗) + τ̂(x∗), (3.7)

where τ∗ = τ(x∗) is predicted by its conditional mean E(τ∗|D) from the Gaussian process regression

model defined in (3.3) (the formula is given by (2.4)).

Type I prediction. We suppose that we have already observed some data for a batch and want to

predict y(t∗) at a new point, denoting it as the (M + 1)-th curve or batch. In addition to the training

data observed in the first M batches, assume that n observations have also been obtained in the new

curve at t = (t1, t2, . . . , tn)T , providing the data

DM+1 = {(yM+1,i, tM+1,i, xM+1,1,i, . . . , xM+1,Q,i), i = 1, . . . , n; uM+1}.

Thus the training data is D = {D1, . . . ,DM ,DM+1}, which is used to estimate the parameters using the

methods discussed earlier. To predict y∗ at a new data point t∗, we assume that y∗ and the observed

data {yM+1,i, i = 1, . . . , n} have the same model (3.4), and thus τ∗ and {τmi, i = 1, . . . , n} have the same

GPR model structure.

The predictive mean ŷ∗ and predictive variance σ̂∗2 are respectively given by equations (5.26) and

(5.27) in Section 5.3.1 in Shi and Choi (2011).

Type II prediction. The second case is to calculate prediction for a completely new curve. Notationally,

we still refer to the new curve as the (M + 1)-th curve, with scalar covariate uM+1. Our objective is to

predict y∗ at (t∗,x∗) in the (M + 1)-th batch. In this case, there is no data observed in the (M + 1)-th

batch, and thus the training data are D = {D1, . . . ,DM}. One simple method is to predict it using the

mean part only, so that

ŷ∗ = µ̂M+1(t∗) = uTM+1B̂
T
Φ(t∗). (3.8)

An alternative way is to assume that curves 1, 2, . . . ,M provide an empirical distribution of the set of all

possible curves (Shi et al., 2005), considering that

P (y∗ belongs to the m-th curve) = wm, (3.9)

30 CHAPTER 3. GAUSSIAN PROCESS FUNCTION REGRESSION ANALYSIS

for m = 1, 2, . . . ,M .

If we assume that y∗ is generated from the m-th curve means, predictive mean and variance of y∗ is

calculated from the above Type I prediction procedure which are denoted by ŷ∗m and σ̂∗2m respectively.

Based on the above assumption for the empirical distribution, a prediction for the response associated

with a new input x∗ at t∗ in a completely new curve can be calculated by

ŷ∗ =

M∑
m=1

wmŷ
∗
m, (3.10)

and the related predictive variance is

σ̂∗2 =

M∑
m=1

wmσ̂
∗2
m +

(
M∑
m=1

wmŷ
∗2
m − ŷ∗2

)
. (3.11)

We usually take equal empirical probabilities i.e. wm = 1/M . Unequal weights can be considered using

an allocation model (see e.g. Shi and Wang, 2008).

Remarks.

1. In the package GPFDA, we used equal empirical probabilities to calculate Type II prediction.

2. The current version of GPFDA consides the special case (3.4) only (i.e. with a linear function mean

model). A more general model will be available in tne next version.

3.3 Examples

This section contains a few simulated examples, the computation time is also included in the code.

Package ‘ggplot2’ may be required to draw some graphs.

3.3.1 Example 1

Use the following command to run the demo:

demo(gpfr,package="GPFDA")

The details will be added shortly.

Appendix

A.1 Covariance functions

The details of derivatives of kernel functions

• linear kernel:

Ψlinear(i, j) =

Q∑
q=1

exp(aq)xq(ti)xq(tj)

There are a series of aq in linear kernel, for each aq, the first derivative is:

∂Ψ

∂aq
(i, j) = exp(aq)xq(ti)xq(tj)

The second derivative is:
∂2Ψ

∂a2q
(i, j) = exp(aq)xq(ti)xq(tj)

• powered exponential:

Ψpow.ex = exp(v)exp

(
−

Q∑
q=1

exp(wq)||xq − x′q||γ
)

There are a series of wq and one v in powered exponential, for each wq, the first derivative is:

∂Ψ

∂wq
= −exp(v)exp

(
−

Q∑
q=1

exp(wq)||xq − x′q||γ
)
exp(wq)||xq − x′q||γ

The second derivative is:

∂2Ψ

∂w2
q

= exp(v)exp

(
−

Q∑
q=1

exp(wq)||xq − x′q||γ
)(

exp(2wq)||xq − x′q||2γ − exp(wq)||xq − x′q||γ
)

For v, the first derivative is:

∂Ψ

∂v
= exp(v)exp

(
−

Q∑
q=1

exp(wq)||xq − x′q||γ
)

The second derivative is:

∂2Ψ

∂v2
= exp(v)exp

(
−

Q∑
q=1

exp(wq)||xq − x′q||γ
)

31

32 CHAPTER 3. GAUSSIAN PROCESS FUNCTION REGRESSION ANALYSIS

• rational quadratic

Ψrat.qu = (1 +

Q∑
q=1

exp(sα,q)||xq − x′q||)−exp(α)

There are a series of sα,q in rational quadratic, for each sα,q, the first derivative is:

∂Ψ

∂sα,q
= −exp(α)(1 +

Q∑
q=1

exp(sα,q)||xq − x′q||)−exp(α)−1exp(sα,q)||xq − x′q||

The second derivative is:

∂2Ψ

∂s2α,q
= −exp(α)

[
(−exp(α)− 1)

(
1 +

Q∑
q=1

exp(sα,q)||xq − x′q||

)−exp(α)−2
exp(2sα,q)||xq − x′q||2 +

(
1 +

Q∑
q=1

exp(sα,q)||xq − x′q||

)−exp(α)−2
exp(sα,q)||xq − x′q||

]

For α, the first derivative is:

∂Ψ

∂α
= log(1 +

Q∑
q=1

exp(sα,q)||xq − x′q||)(1 +

Q∑
q=1

exp(sα,q)||xq − x′q||)−exp(α)

The second derivative is:

∂2Ψ

∂α2
= log(1+

Q∑
q=1

exp(sα,q)||xq−x′q||)log(1+

Q∑
q=1

exp(sα,q)||xq−x′q||)(1+

Q∑
q=1

exp(sα,q)||xq−x′q||)−exp(α)

• noise term. The first derivative is:
∂Ψ

∂ε
= exp(ε)

The second derivative is:
∂2Ψ

∂ε2
= exp(ε)

To see the examples of using these three different kernel functions for example 1, do:

example(’cov.linear’, package=’GPFDA’)

example(’cov.pow.ex’, package=’GPFDA’)

example(’cov.rat.qu’, package=’GPFDA’)

Bibliography

Carlin, B. P. and Louis, T. A. (1996). Bayes and Empirical Bayes Methods for Data Analysis. Chapman

& Hall/CRC, London.

Febrero-Bande, M. and de la Fuente, M. O. (2012). Statistical computing in functional data analysis:

the r package fda. usc. Journal of Statistical Software, 51(4):1–28.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer, New York, second

edition.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The MIT

Press.

Shi, J. Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional Data. Chapman &

Hall/CRC, London, first edition.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2005). Hierarchical Gaussian process mixtures

for regression. Statistics and Computing, 15:31–41.

Shi, J. Q. and Wang, B. (2008). Curve prediction and clustering with mixtures of Gaussian process

functional regression models. Statistics and Computing, 18:267–283.

Shi, J. Q., Wang, B., Murray-Smith, R., and Titterington, D. M. (2007). Gaussian process functional

regression modeling for batch data. Biometrics, 63:714 – 723.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, London, fourth

edition.

33

	Introduction
	Installation
	Load the package

	Gaussian Process Regression Analysis
	Gaussian process regression model and inference
	Fitted values and predictions
	Empirical Bayes estimates

	Examples
	Example 1
	Example 2
	Example 3: atmospheric CO2 concentrations

	Gaussian Process Function Regression Analysis
	Gaussian process functional regression model
	GPFR model with a linear functional mean model
	Predictions

	Examples
	Example 1

	Covariance functions

