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1. General design of instrumentation systems and error analysis
1.1 The measuring system

Any measuring system can be broadly represented by the diagram shown in Figure 1.1 containing
three main elements:
1). a transducer;
2). a signal conditioner;
3). a recorder or indicator.
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Figure 1.1 The block diagram of a measurement system

The transducer element is an energy converter which receives the physical quantity being measured
and converts it into some other physical variables, for example, flow to pressure and speed to voltage.
The transducer is the weakest link in a measuring system because the measured quantity is always
modified by the presence of the transducer, making perfect measurement theoretically impossible.

The signal conditioner rearranges the transduced signal into a form which can be readily recorded or
monitored.

The recorder or indicator is a recording or display device.

1.2 System performance
1.2.1 Static performance

1). Sensitivity

Static sensitivity is defined as the ratio of the change in output to the corresponding change in input
under static or steady state conditions.

Static sensitivity: K
y

u
= ∆

∆
(1.1)

∆u : the change in input
∆y : the corresponding change in output

Sensitivity may have different units depending on the instrument being considered. For example, the



platinum resistance thermometer gives a change of resistance with change of temperature and
therefore its sensitivity would have a unit of ohms/oC.

Figure 1.2 shows a linear relationship between output and input, and sensitivity therefore equals the
slope of the calibration graph and is constant. In the case of a nonlinear relationship shown in Figure
1.3, the sensitivity will vary according to the value of the output.

Input (u)

O
ut

pu
t (

y)

∆y

∆u

Input (u)

O
ut

pu
t (

y)

∆y

∆y

∆u

∆u

Figure 1.2 Linear static sensitivity Figure 1.3 Noninear static sensitivity

If elements of a measuring system having static sensitivities of K1, K2, K3,..., etc are connected in
series, then the overall system sensitivity K is given by

K = K1× K2× K3×... (1.2)

If an element has input and output in the same form, for example the voltage amplifier, then the term
gain is used rather than sensitivity.

Example 1.1 A measuring system consists of a transducer, an amplifier, and a recorder. The three
elements are connected in series with individual sensitivities as follows:

transducer sensitivity: 0.3 mV/oC
amplifier gain: 2.5 V/mV
recorder sensitivity: 4.0 mm/V

Find out the overall system sensitivity.

Since the three elements are connected in series, the overall system sensitivity is

K = K1× K2× K3×...= 0.3 mV/oC×2.5 V/mV×4.0 mm/V = 3.0 mm/ oC

2). Accuracy and precision

The accuracy of a measuring system is normally stated in terms of the errors introduced

percentageerror
indicatedvalue truevalue

truevalue
= − ×100% (1.3)

However, it is a common practice to express the error as a percentage of the measuring range of the
equipment:

percentageerror
indicatedvalue truevalue

maximumscalevalue
= − ×100% (1.4)



“Precision”  is a term often confused with accuracy, but a precise measurement may not be an accurate
measurement. If the measuring device is subjected to the same input for several times and the
indicated results lie closely together, then the instrument is said to be of high precision.

3). Possible and probable errors

Consider a measuring system consisting of three elements in series with maximum possible errors of
±a%,  ±b%, and  ±c% respectively. It is unlikely that these maximum errors occur at the same time.
Therefore a more practical way of expressing the overall system error is to take the square root of the
sum of squares of the individual errors, which is known as the probable error.

probable errors = ±√(a2 + b2 + c2)% (1.5)

Example 1.2 For a general measuring system where the errors in the transducer, signal conditioner,
and recorder are ±2%, ±3%, and ±4% respectively, calculate the maximum possible error and the
probable error.

Maximum possible error = ±(2 + 3 + 4)% = ±9%
Probable error = ±√(22 + 32 + 42)% = ±√29% = ±5.4%

Table 1.1 summaries some other static performance terms (Haslam et al., 1981).

Table 1.1 Definition of some other static performance terms
Reproducibility The ability of an instrument to display the same reading for a given input

applied on a number of occasions.
Repeatability The reproducibility when a constant input is applied repeatedly at short

intervals of time under fixed condition of use.
Stability The reproducibility when a constant input is applied over long periods of time

compared with the time of taking reading, under fixed condition of use.
Constancy The reproducibility when a constant input is presented continuously and the

conditions of test are allowed to vary within specified limits, due to some
external effect such as temperature variation.

Range The total range of values with an instrument is capable of measuring.
Span The range of input signals corresponding to the desired working range of the

output signal.
Tolerance The maximum error.
Linearity The maximum deviation from a linear relationship between input and output,

i.e. from a constant sensitivity, expressed as percentage of full scale.
Resolution The smallest change of input to an instrument which can be detected with

certainty, expressed as a percentage of full scale.
Dead-band The largest change of input to which the instrument does not respond due to

friction or backlash effects, expressed as a percentage of full scale.
Hysteresis The maximum difference between readings for the same input when

approached from opposite directions, i.e. when increasing and decreasing the
input, expressed as a percentage of full scale.

1.2.2 Dynamic performance

The static characteristics of measuring instruments are concerned only with the steady-state reading
that the instrument settles down to, such as the accuracy of the reading, etc.



The dynamic characteristics of a measuring instrument describe its behaviour between the time a
measured quantity changes value and the time when the instrument output attains a steady value in
response. As with static characteristics, any values for dynamic characteristics quoted in instrument
data sheets only apply when the instrument is used under specified environmental conditions. Outside
these calibration conditions, some variations in the dynamic parameters can be expected.

The dynamic performance of both process measuring and control systems is very important and is
specified by responses to certain standard test inputs: the step input, the ramp input, and the sine-
wave input.

For a general linear, time-invariant measuring system, the following relation can be written between
input and output for time t greater than zero:
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 (1.6)

where qi is the measured quantity, qo is the output reading and a0 . . . an , b0 . . .bm are constants.

If we limit consideration to that of step changes in the measured quantity only, then Eq(1.6) reduces
to:
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Further simplification can be made by making certain special cases of Eq(1.7) which collectively
apply to nearly all measurement systems.

Zero-order instrument

If all the coefficients a1 . . . an other than a0 in Eq(1.7) are assumed zero, then:

a q b qo i0 0= or q b q a Kqo i i= =0 0/ (1.8)

where K is a constant known as the instrument sensitivity as defined earlier.

Any instrument which behaves according to Eq(1.8) is said to be of zero-order type. A potentiometer,
which measures motion, is a good example of such an instrument, where the output voltage changes
instantaneously as the slider is displaced along the potentiometer track.

First-order instrument

If all the coefficients a2 . . . an except for a0 and a1 are assumed zero in Eq(1.7) then:

a
dq

dt
a q b qo

o i1 0 0+ = (1.9)

Any instrument which behaves according to Eq(1.9) is known as a first-order instrument.

Applying Laplace transform to Eq(1.9) with zero initial condition, we get:
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and rearranging gives:
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Defining K b a= 0 0/  as the static sensitivity and τ = a a1 0/  as the time constant of the system,
Eq(1.10) becomes:
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+1 τ

(1.11)

If Eq(1.11) is solved analytically, the output quantity q0 in response to a step change in qi varies with
time in the manner shown in Figure 1.4. The time constant τ of the step response is the time taken for
the output quantity q0 to reach 63% of its final value.

The thermocouple is a good example of a first-order instrument. It is well known that, if a
thermocouple at room temperature is plunged into boiling water, the output emf does not rise
instantaneously to a level indicating 100oC, but instead approaches a reading indicating 100oC in a
manner similar to that shown in Figure 1.4.
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Figure 1.4 Response of a first-order instrument to a step change

A large number of other instruments also belong to this first-order class. This is of particular
importance in control systems where it is necessary to take account of the time lag that occurs
between a measured quantity changing in value and the measuring instrument indicating the change.
Fortunately, the time constant of many first-order instruments is small relative to the dynamics of the
process being measured, and so no serious problems are created.

Second-order instrument

If all coefficients a3 . . .an other than a0, a1 and a2 in Eq(1.7) are assumed zero, then we get:

a
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Applying Laplace transform to Eq(1.12) with zero initial condition gives:
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It is convenient to re-express the variables a0, a1, a2 and b0 in Eq(1.13) in terms of three parameters K
(static sensitivity), ω (undamped natural frequency) and ε (damping ratio), where:

k =b0/a0

ω = √(a0/a2)

ε = a1/2√(a0a2)

Re-expressing Eq(1.13) in terms of K, ω and ε we get:
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Any instrument whose response can be described by Eq(1.14) is known as a second-order instrument.

If Eq(1.14) is solved analytically, the shape of the step response obtained depends on the value of the
damping ratio parameter ε. The output responses of a second-order instrument for various value of ε
are shown in Figure 1.5. For the case where ε=0, there is no damping and the instrument output
exhibits constant amplitude oscillations when disturbed by any change in the physical quantity
measured. For light damping of ε=0.5, the response to a step change in input is still oscillatory but the
oscillations gradually die down. A further increase in the value of ε reduces oscillations and
overshoot still more, as shown by the case ε=1, and finally the response becomes very overdamped as
shown by the case ε=1.5 where the output reading creeps up slowly towards the correct reading.
Clearly, the extreme response curves for cases ε=0 and ε=1.5 are unsuitable for any measuring
instrument. Commercial second-order instruments are generally designed to have a damping ratio (ε)
somewhere in the range of 0.6-0.8.
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Figure 1.5 Response of a second-order instrument to a step change (-: ε = 0; --: ε = 0.5; -.: ε = 1; ..: ε
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Example 1.3 The differential equation describing a mercury-in-glass thermometer is

uy
dt

dy 310224 −×=+

where y is the height of the mercury column in meters and u is the input temperature in oC. Find out
the time constant and static sensitivity of the thermometer.

 Applying Laplace transform to the above equation with zero initial condition, we have

4Sy(S) + 2 y(S) = 2×10-3u(S)

Re-arranging the above equation gives
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Compare the above equation with Eq(1.11),

time constant τ = 2 s
static sensitivity K = 10-3 m/oC

2. Signal conditioning
2.1 What is signal conditioning?

The transduced signal is rarely in a form ready for display or recording and may need to be increased
in magnitude or modified in some way before display. The process of preparing the signal before
display or recording is referred to as signal conditioning.

A signal conditioning device may have one or all of the following functions:

1). Amplification. The weak signal from the transducer is increased in magnitude by a device called
as an amplifier, such as levers, gears, and electronic, pneumatic, and hydraulic amplifiers. The
amount by which the signal is increased in called the gain or amplification.

2). Signal modification. The form of the signal or amplified signal is changed by a signal modifier
such as bridge circuits and analogue-to-digital converters.

3). Impedance matching. The signal conditioner acts as a buffer stage between the transducing and
recording elements, the input and output impedances of the matching device being arranged to
prevent loading of the transducer and maintain a high signal level at the recorder.

2.2 Amplifiers

An amplifier is a device which increases the magnitude of its input signal. Its gain, G, input, u, and
the corresponding output, y, are related as

y = Gu (2.1)

Since the input and output of an amplifier have the same unit, the amplifier gain, G, is dimensionless.



For amplifiers in series, the overall gain is the product of the individual amplifier gains.

Example 2.1 A displacement amplifier has an amplification of 15000. If the output displacement is
3cm, find out the corresponding input displacement.

The input displacement, u = y/G = 3×10-2m/15000 = 2×10-6m

2.3 Operational amplifier circuit

An operational amplifier is shown in Figure 2.1 and it operates upon a direct voltage or current in
some mathematical way. It is widely used in instrumentation and control engineering due to its
following properties:
1). High gain, 200000 to 106;
2). Phase reversal, i.e. the output voltage is of opposite sign to the input;
3). High input impedance.
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Figure 2.1 An operational amplifier Figure 2.2 An operational amplifier circuit

These properties lead to the following very important implications:

1). With high voltage gain, for any sensible output voltage the input voltage will be so small that it
can be assumed virtually zero. Thus the input point B is referred to as a virtual earth (“virtual”
because it is not directly connected to the earth).
2). Since the input impedance is high and the input point is a virtual earth, the amplifier takes
negligible current which is therefore assumed to be zero for a simplified analysis.

For the operational amplifier circuit with two resistors shown in Figure 2.2, we have

i1 = if (since the input current to the amplifier is negligible)

That is
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The operational amplifier circuit shown in Figure 2.2 is also known as an inverting amplifier since
the output is out of phase by 180o (π radians) with respect to the input. This is indicated by the
negative sign in the above equation.

2.3 The summer amplifier
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Figure 2.3 A summer amplifier

Figure shows a summer amplifier. Since the input current to the amplifier is zero, we have

if = i1 + i2 + i3
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The output voltage is a weighted sum of the three input voltages.

If R1 = R2 = R3 = Rf , then  vo =  – (v1 + v2 + v3)

Example 2.2 If in Figure 2.3, R1 = 1 kΩ, R2 = 2 kΩ, R3 = 1.5 kΩ, Rf  = 10 kΩ, v1 = 1.5 V, v2 = 2 V,
and v3 = 3 V, determine the output voltage vo.
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Example 2.3 You have two operational amplifies, two resistors of 35 kΩ, and three resistors of 10
kΩ. Build an instrumentation circuit which provides an output voltage Vout related to the input voltage
Vin by

 Vout = 3.5Vin + 5



This can be achieved using a summer amplifier and an inverting amplifier shown in Figure 2.4.
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Figure 2.4 A circuit for Example 2.3

2.4 The non-inverting amplifier

A non-inverting amplifier is shown in Figure 2.5. Following the properties of an operational
amplifier, the voltage at the input point “–”  must be the same as that at the input point “+”  and the
operational amplifier takes negligible current. Therefore the current passing through R1 is the same as
that passing through R2 and can be calculated as
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Figure 2.5 A non-inverting amplifier



2.5 Bridge circuit

Electrical bridge circuits are widely used in industrial instrumentation.
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Figure 2.6 A resistance Wheatstone-bridge circuit

Consider the resistance Wheatstone-bridge circuit shown in Figure 2.6. For zero voltage output,
referred to as balanced condition, the following relationship holds.

vAB = vAD i.e. i1R1 = i2R4

and
vBC = vDC i.e. i1R2 = i2R3

Hence
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If one of the resistor varies with the measured variable, e.g. temperature, then the output voltage vo

will also vary with the measured variable. Thus the bridge output can be used to indicate the
measured variable.

In Figure 2.6, let the Wheatstone bridge be excited with a voltage V, assume that the bridge is initially
balanced and let

R1 = R2 = R3 = R4 = R
then

vAD = vAB = V/2
and

vo = vAB  – vAD = 0

Let R1 change by an amount ∆R to (R1 + ∆R), then
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By a similar analysis, it can be shown that, if two resistors R1 and R2 vary, the expression becomes
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Thus if the resistance changes are of the same sign and magnitude, they cancel each other out and the
output voltage is zero.

Example 2.4 A resistance Wheatstone bridge circuit made up of four resistors each of 120Ω has an
excitation voltage of 5V. Determine the output voltage change when one resistor’s value changes by
1.2Ω.
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2.6 Load effects

Since most measuring devices require energy to operate, they absorb energy from the source. The
presence of the measuring device thus changes the characteristics of the quantity being measured.
Figure 2.7 illustrates this load effect. In Figure 2.7, the voltage source (e.g. a battery) has an internal
resistance Ri and a voltage meter has a resistance RL. When terminals A and B are open, i.e. no load,

vAB = V

Ri

V

RL

A

B

vAB

Figure 2.7 Load effect



When a meter having a resistance RL. is connected across terminals A and B, current I flows,
therefore

vAB = V – IRi

Since

I
V

R Ri L

=
+

We have

v V
R

R RAB
L

L i

=
+

( )

If RL is much larger than Ri, then vAB = V. To minimise the loading effects, the following conditions
must be satisfied:
a). the source resistance must be small, or
b). the resistance of the measuring device must be high.

3. Temperature sensors
3.1 Introduction

Temperature is an important parameter in engineering, especially in the chemical process industry,
and is very apparent to our senses. The International Practical Temperature Scale (IPTS) defines six
primary fixed points for reference temperatures which are given in Table 3.1.

Table 3.1 Primary fixed points for reference temperatures
the triple point of equilibrium hydrogen  – 259.34 oC
the boiling point of oxygen  – 182.962  oC
the boiling point of water 100 oC
the freezing point of zinc 419.58 oC
the freezing point of silver 961.93 oC
the freezing point of gold 1064.43 oC

The freezing points of certain other metals are also used as secondary fixed points to provide
additional reference points for the purpose of calibration, especially for calibrating instrument
measuring high temperature. Table 3.2 gives some secondary fixed points.

Table 3.2 Secondary fixed points for reference temperatures
the freezing point of tin  231.968 oC
the freezing point of lead  327.502  oC
the freezing point of antimony 630.74 oC
the freezing point of aluminium 660.37 oC
the freezing point of copper 1084.5 oC
the freezing point of nickel 1455 oC
the freezing point of palladium 1554 oC
the freezing point of platinum 1772 oC
the freezing point of rhodium 1963 oC
the freezing point of iridium 2447 oC
the freezing point of tungsten 3387 oC



3.2 Resistive temperature transducers

Resistive temperature sensors are probably the most common type in use. They are based on metals
or semiconductors. The semiconductor versions are the most common and probably the cheapest.
This type of temperature sensor is also known as the resistance temperature detector (RTD).

3.2.1 Metallic RTD

These transducers are similar in appearance to wire-wound resistors, and often take the form of a
non-inductively wound coil of suitable metal wire such as platinum, copper, or nickel. They may be
encapsulated within a glass rod to form a temperature probe, which can be very small in size.

The variation of resistance R with temperature T for most metallic materials can be represented by an
equation of the form:

R = R0(1 + a1T + a2T
2 + ... + anT

n) (3.1)

where R0 is the resistance at temperature T = 0. The number of terms in the summation depends on
the material, the accuracy required, and the temperature range to be covered. Platinum, nickel, and
copper are the most commonly used metals and they generally require summation containing at least
a1 and a2 for accurate representation. In engineering applications, it is often acceptable to model a
metallic RTD using only constant a1. For example, a1 ≈ 0.004 (R in Ω and T in K).

The normal resistance (R0) of a metallic RTD can vary from a few ohms to several kΩ. Generally
speaking, 100 Ω is a fairly standard value. The resistance change of a metallic RTD can be quite
large, typically up to 20% of the normal resistance over the design temperature range.

3.2.2 Thermistors

Thermistors are small semiconducting transducers, usually manufactured in the shape of beads, disc,
of rods. They are made by combining two or more metal oxides. If oxides of cobalt, copper, iron,
magnesium, manganese, nickel, tin, titanium, vanadium, or zinc are used, then the resulting
semiconductor is said to have a negative temperature coefficient (NTC) of resistance, which means
that as the temperature rises, the electrical resistance of the device falls. Most of the thermistors used
in engineering are of this type, and they can exhibit large resistance variations, for example, 10 kΩ at
0oC and 200 Ω at 100oC. This high sensitivity allows quite small temperature changes to be detected.
However, the accuracy of a thermistor is not as good as that of a metallic RTD, due to the
unavoidable variations in the composition of the semiconductor which occur during manufacture.
Most thermistors are manufactured and sold with tolerances of 10 to 20%. Any circuit using
semiconductor thermistors must therefore include some arrangement for adjusting out errors.

Thermistors are markedly nonlinear (unlike metallic RTDs). The resistance-temperature relation is
usually of the form:

R R e T T= −
0

1 1 0β( / / ) (3.2)

where R is the resistance (in Ω) at temperature T (in K), R0 is the normal resistance at temperature T0,
and β is a constant which depends on the thermistor material. The reference temperature T0 is usually
taken to be 298 K (25oC) and β is of the order of 4000.

Thermistors can be used within the temperature range –60 oC to 150 oC. Their accuracy can be as
high as ±0.1%. The main problem associated with thermistors is their nonlinearity.

Positive temperature coefficient (PTC) thermistors can also be made using compounds of barium,



lead, or strontium. PTC thermistors are usually used to provide thermal protection for wound
equipment such as transformers and motor. The resistance of a PTC thermistor is low and reasonably
constant below the switching temperature TR. Above this temperature, the thermistor resistance
increases spectacularly as shown in Figure 3.1. A PTC thermistor can be connected in series with the
power supply. If the temperature becomes too high, the resulting high resistance effectively cut off
the power supply.

TR
Temperature (K)

R
es

is
ta

n c
e 

(Ω
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Figure 3.1 The relationship between resistance and temperature in a PTC thermistor

3.2.3 Resistance temperature sensor bridge circuit

Thermistors are modulating transducers and are normally used in a Wheatstone bridge circuit as
shown in Figure 3.2. Since the resistances change in thermistors are quite large and nonlinear, special
precautions must be taken in the bridge design to minimise nonlinearities. The fixed resistors R1 and
R2 should be of considerable higher resistance (usually at least 10 times higher) than the sensing
resistor Rt in order to achieve reasonable linearity. If the bridge circuit is used remote from the sensor,
then the effects of wire resistance and temperature gradient across the connecting wires should be
considered using the four-wire arrangement shown in Figure 3.2.

Indicator

Resistance
thermometer

R3

R1 R2

Rt

Figure 3.2 A bridge circuit for temperature measurement



Resistance thermometer bridges may be excited with either AC or DC voltages. The current through
the sensor is typically in the range from 1 to 25 mA. This current causes I2R heating to take place,
rising the temperature of the thermometer above its surroundings. This leads to the self-heating error
to occur. The magnitude of this error depends on the heat transfer conditions around the sensor.

3.3 Thermocouples

A thermocouple is a self-generating transducer comprising two or more junctions between dissimilar
metals. The conventional arrangement is shown in Figure 3.3. One junction (the cold junction) has to
be maintained at a known reference temperature, for example by surrounding it with melting ice. The
other junction is attached to the object to be measured.

When a temperature difference is maintained across a given metal, the vibration and motion of
electrons is affected so that a difference in potential exists across the metal. This potential difference
is related to the fact that electrons in the hotter end of the material have more thermal energy than
those in the cooler end and, thus, tend to drift toward the cooler end. This drift varies for different
metals at the same temperature because of differences in their thermal conductivities.

Measurement
sensor

Constant
temperature
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Figure 3.3 Standard thermocouple arrangement
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Figure 3.4 Thermocouple arrangement with cold junction compensation



Thermocouple materials are broadly divided into two arbitrary groups, base metal and precious metal
thermocouples, based upon cost. The most commonly used industrial thermocouples are specified by
type letters as shown in Table 3.3 (Turner and Hill, 1999).

The arrangement of Figure 3.3 is inconvenient because of the layout of leads and the need for a
reference temperature. A more practical scheme is shown in Figure 3.4. The two wires are laid out
side by side, and are connected to a voltage measuring circuit. The junctions between the two wires
and the voltage do not cause any error signal to appear so long as they are at the same temperature.
Since there is no proper reference junction with this approach, the system is liable to give an
erroneous output if the temperature of the surrounding environment changes. This is avoided by the
use of so-called cold junction compensation, in which the characteristics of the signal conditioning
amplifier are modified by including a thermistor in the circuit.

The arrangement shown in Figure 3.4 is usually applied whenever thermocouples are used. The two
wires are often enclosed within a tube or flexible sleeve of stainless steel or copper for protection,
although this increases the time constant of the system.

To overcome the necessity for using long expensive lengths of thermocouple wire to connect the hot
junction to a remote measuring instrument, extension leads are used.  They should have thermo-
electric properties similar to the thermocouple wires over the operating temperature range. Copper
and copper-alloy leads are used with types S, R, and B thermocouples.

The main advantages of thermocouples are their wide temperature range, nominally from –180 to
+1200 oC for a Chromel/Alumel device, and their linearity.

Table 3.3 Thermocouple types
Type Conductors (positive conductor first) Accuracy Service

temperature
B Platinum: 30% rhodium alloy

Platinum: 6% rhodium alloy
0 – 1100oC: ±3 oC
1100 – 1550oC: ±4 oC

0 – 1500oC

E Nickel: chromium/constantan 0 – 400oC: ±3 oC –200 – 850oC
J Iron/constantan 0 – 300oC: ±3 oC

300 – 850oC: ±1 %
–200 – 850oC

K Nickel: chromium(Chromel)
Nickel: aluminium (Alumel)

0 – 400oC: ±3 oC
400 – 1100oC: ±1 %

–200 – 1100oC

R Platinum: 13% rhodium/platinum 0 – 1100oC: ±1 oC
1100 – 1400oC: ±2 oC
1400 – 1500oC: ±3 oC

0 – 1500oC

S Platinum: 10% rhodium/platinum as Type R 0 – 1500oC
T Copper/Constantan 0 – 100oC: ±1 oC

100 – 400oC: ±1 %
–200 – 400oC

Thermocouple compensation

As mentioned earlier, it is not normally practical to have thermocouple cold junctions maintained at a
controlled reference temperature. However, with the cold junctions at ambient temperature, which
may change, some form of cold junction compensation is required. Consider the arrangement shown
in Figure 3.5, which shows a thermocouple with its measuring junction at t oC and its cold junction at
ambient temperature. The thermocouple output is E(a-t), but what is required is the output that would
be obtained if the cold junction were at 0 oC, i.e. E(0-t). Thus a voltage E(0-a)  must be added to E(a-t) to
correct the output signal:



E E Et a t a( ) ( ) ( )0 0− − −= + (3.3)

The voltage E(0-a)  is called the cold junction compensation voltage, and it is provided automatically by the
circuit of Figure 3.5 which includes a thermistor Rt, R1, R2 and R3 are temperature-stable resistors. The
bridge is first balanced with all the components at 0 oC an unbalance voltage will appear across AB.
This voltage is scaled by selecting Rt such that the unbalance voltage across AB equals E(0-a)  in
Eq(3.3).

Measuring
junction (t oC)

Cold junction
R1 R2

R3Rt

A B

Figure 3.5 Bridge circuit with cold junction compensation

4. Displacement sensors

Measurement of the displacement of an object are of fundamental importance in experimental
science, and are the basis of measurements of velocity, acceleration, strain, and (by the use of elastic
elements) force and pressure.

eo
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Figure 4.1 Potentiometric displacement sensor

4.1 Potentiometers

A potentiometer consists essentially of a resistive element which is provided with a movable contact
as shown in Figure 4.1. The contact consists of a springy, conduction arm, which is arranged so that it



can be moved along the potentiometer track. A variable resistance is thus created between one end of
the track and the movable contact. The contact motion can be linear, rotary, or a combination of the
two, such as helical movement. Translational (also called linear) potentiometers are available with
strokes form about 5 to 1000mm. Rotary versions are available with strokes from about 10o to as
much as 60 turns ( > 20000o).

eo

e
xt

xi
Rm

Rp

Signal conditioning
system with input
impedance Rm

Figure 4.2 Potentiometric displacement sensor with impedance Rm

Potentiometer linearity

If the resistance of a potentiometer is linear with respect to its travel, the output voltage eo is a linear
function of displacement xi when an excitation voltage e is provided, the output is open-circuit and no
current is drawn. However, all circuit inputs draw some current, so any signal conditioning
arrangement connected to the potentiometer will degrade its linearity to some extent. For the
displacement circuit shown in Figure 4.2, it can be shown from simple circuit analysis that:
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Under ideal conditions Rp/Rm = 0 for an open circuit, and Eq(4.1) becomes:
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Thus when no current is drawn the input-output relationship is a straight line. In practice Rm ≠ ∞, and
there is a nonlinear relationship between eo and xi. If Rp = Rm, the maximum deviation from linearity
is about 12%. If Rp = 10% of Rm, the error drops to about 1.5%. For values of Rp/Rm  < 0.1 the
position of maximum error is in the region where xi/xt ≈ 0.67, and maximum error is approximately
15Rp/Rm % of full scale.

To achieve good linearity therefore the input impedance Rm of any circuit connected to a
potentiometer should be high compared with the potentiometer impedance Rp, which should be kept
as law as possible. Unfortunately this requirement conflicts with the almost invariable need for high
sensitivity. Since the output eo is directly proportional to the excitation voltage e, at first sight it
appears to be possible to get any desired output simply by increasing e. However, potentiometers
have a fixed power rating which is determined by their heat-dissipating capability. If the limiting heat
dissipation is H watts, the maximum allowable excitation voltage is:



e HRp(max) =

Thus, a low value of Rp allows only a small e, and therefore a reduced sensitivity. The choice of Rp

must be a compromise between considerations of loading and sensitivity.

4.2 Capacitive displacement sensors

The basic operation principle of a capacitive displacement sensors can be seen from the equation for
a parallel-plate capacitor:

d

A
KC 0ε=

where K is the dielectric constant, ε0 = 8.85pF/m, A is the plate common area, and d is the plate
separation.

The capacity can be changed by a). variation of the distance between the plates; b). variation of the
shared area of the plates; and c). variation of the dielectric constant. Figure 4.3 shows the variations
in distance and common area for displacement sensing. An AC bridge or other active electronic
circuit is employed to convert the capacity change into voltage or current signal.
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Figure 4.3 Capacity varies with plate distance and common area

4.4 Inductive displacement transducers

Inductive position transducers do not suffer from the problems associated with a sliding contact, since
they are inherently non-contact devices. The resolution available from a good-quality linear variable
differential transformer (or LVDT) is equal to that obtained from a potentiometer. However, for many
applications inductive sensors suffer from one inherent disadvantage: they are essentially AC devices,
and cannot be run from DC battery supplies without extra complications.

An LVDT consists of a transformer with a single primary winding and two secondary windings
connected in series opposing manor as shown in Figure 4.4. The object whose displacement is to be
measured is physically attached to the centre iron core of the transformer. For an excitation voltage Vs

= Vpsin(ωt), the emf induced in the secondary winding are given by

Va = Kasin(ωt – ϕ)



Vb = Kbsin(ωt – ϕ)

where the parameters Ka and Kb depend on the coupling between the respective secondary and
primary windings, which is determined by the position of the iron core. When the core is in the centre
position, Ka = Kb, and we have Vo = Va – Vb = 0.
Suppose now that the core is displaced upward by a distance x resulting Ka = K1 and Kb = K2, then we
have

Vo = Va – Vb = (K1 – K2) sin(ωt – ϕ)

If the core were displace downward by a distance x resulting Ka = K2 and Kb = K1, then we have

Vo = Va – Vb = (K2 – K1) sin(ωt – ϕ) = (K1 –  K2) sin(ωt – ϕ + π)

Therefore, for equal magnitude displacement x and –x of the core from the centre, the magnitude of
the output voltage Vo is the same, but the phase of the output voltage is different. From the magnitude
and phase of the output voltage the magnitude and direction of displacement can be measured. The
relationship between the magnitude of the output voltage and the core position is approximately
linear over a reasonable range of core movement and can be represented as

Vo = Cx

where C is a constant.
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Figure 4.4 A linear variable differential transformer

5. Pressure sensors
5.1 Introduction

When a fluid (liquid or gas) comes into contact with a surface, it produces a force perpendicular to
the surface. The force per unit area is called the pressure. The SI unit for pressure is the Pascal (Pa)
and 1 Pa = 1 N/m2.

Pressure measurements may be divided into three categories: absolute pressure, gauge pressure, and
differential pressure. The absolute pressure is the difference between the pressure at a particular point
in a fluid and the absolute zero of pressure, i.e. a complete vacuum. A mercury barometer is an



example of an absolute pressure sensor, since the height of the column of mercury measured the
difference between atmospheric pressure and the “zero”  pressure of the vacuum that exists above the
column of mercury.

If a pressure sensor measures the difference between an unknown pressure and local atmospheric
pressure, the measurement is known as gauge pressure. If the pressure transducer measures the
difference between two unknown pressures, neither of which is atmospheric, then the measurement is
known as differential pressure.

There are three fundamental means by which a pressure may be measured. The simplest approach
involves balancing the unknown pressure against the pressure produced by a column of liquid of
known density. Instruments using this principle are called manometers. Figures 5.1 to 5.3 show the
manometers for measuring the absolute pressure, gauge pressure, and differential pressure
respectively. If the density of liquid is ρ, then the absolute pressure in Figure 5.1 is ρgh, the gauge
pressure in Figure 5.2 is ρgh, and the differential pressure in Figure 5.3 is ρgh.

Unknown 
pressure

Vacuum

h

Figure 5.1 Sealed U-tube measuring absolute pressure
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Figure 5.2 U-tube measuring gauge pressure
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Figure 5.3 U-tube measuring differential pressure

The second method of pressure measurement involves allowing the unknown pressure to act on a
known area. The resulting force is measured either directly or indirectly. Devices of this type are
called dead-weight testers, and they are normally only used for calibrating other forms of pressure
sensor.

In the third approach the unknown pressure is allowed to act on an elastic structure of known area
and properties. Most commercial pressure sensors adopt this approach. The resulting stress, stain, or
deflection is measured in a variety of ways.

5.2 Diaphragms

Diaphragms are probably the most popular elastic structure used in pressure sensors. They can be
subdivided into two types; thin membranes under radial tension, which form part of an inductive or
capacitive pressure sensor, and thicker diaphragms or plates, used in conjunction with resistive or
piezoelectric transducers.

P1
P2

P1 = P2
P1 ≠ P2

Figure 5.4 A diaphragm pressure sensor



Figure 5.4 shows a diaphragm pressure sensor. If pressure p1 exists on one side of the diaphragm and
p2 on the other side, then the net force F on the diaphragm is given by

F = (p2 –p1)A

where A is the diaphragm area in m2, p1 and p2 are pressures in N/m2. A diaphragm is like a spring and
extends or contracts until a Hooke’s force is developed balancing the pressure difference force. Thus
the pressure difference is translated into diaphragm displacement, which can be measured by a
displacement sensor.

5.3 Bourdon tubes

The Bourdon tube is the basis of many mechanical pressure sensors (particularly the familiar circular
moving-pointer type). Bourdon tubes are also used in some electrical transducers, particularly those
where the output displacement is to be sensed by potentiometers or differential transformers, both of
which normally require rotary actuation. The basis of all forms of Bourdon tube is a tube of non-
circular (and usually flat-sided or oval) cross-section. The resulting distortion tends to straighten the
tube. The end of a C-type Bourdon tube undergoes a curved displacement as shown in Figure 5.5.
Bourdon tube pressure sensors can be markedly non-linear, and often display an unwanted thermal
sensitivity. They also suffer from hysteresis errors, which are usually of the order of 1-2% of full
scale deflection.

Unknown
pressure

Figure 5.5 A Bourdon tube pressure sensor

C-type Bourdon tubes have been used for pressures up to about 7×108N/m2 (100 000psi). The spiral
and twisted versions produce larger displacements, and are mainly used below 7×106 N/m2 (1000psi).
The best accuracy that can be achieved is usually around 0.1%.

5.4 Bellows

Figure 5.6 shows a bellows pressure sensor. The deflection of a bellows is usually more linear than
that of a Bourdon tube. They are reversible with low hysteresis, and are often found in pneumatic
systems where they act as pressure/displacement transducers. However, the most common application
is undoubtedly in the production of low-cost aneroid barometers for atmospheric pressure
measurement.

Bellows are manufactured in a variety of materials. The spring rate (modulus of compression) is
proportional to the modulus of elasticity of the material from which the bellows is formed, and to the
cube of the wall thickness.
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Figure 5.6 A bellows pressure sensor

6. Flow sensors
6.1 Introduction

Flow measurement is extremely important in process industries. The manner in which the flow rate is
quantified depends on whether the quantity flowing is solid, liquid or gas. In the case of solids, it is
appropriate to measure the rate of mass flow, whereas in the case of liquids and gases, flow is usually
measured in terms of the volume flow rate.

Mass flow rate

Measurement of the mass flow rate of solids in the process industries is normally concerned with
solids which are in the form of small particles produced by a crushing or grinding process. Such
materials are usually transported by some form of conveyor, and this allows the mass flow rate to be
calculated in terms of the mass of the material on a given length of conveyor multiplied by the speed
of the conveyor. The mass flow rate of a fluid is usually determined by simultaneous measurement of
the volume flow rate and the fluid density.

Volume flow rate

Volume flow rate is the appropriate way of quantifying the flow of all materials which are in a
gaseous, liquid or semi-liquid slurry form (where solid particles are suspended in a liquid host).
Materials in these forms are carried in pipes, and the common classes of instrument used for
measuring the volume flow rate can be summarised as follows:

1. Differential pressure meters
2. Variable area meters
3. Positive-displacement meters
4. Turbine flowmeters
5. Electomagnetic flowmeters
6. Vortex-shedding flowmeters
7. Gate-type meters
8. Ultrasonic flowmeters
9. Cross-correlation flowmeters
10. Laser Doppler flowmeters



6.2 Differential pressure meters

Differential pressure meters involve the insertion of some device into a fluid-carrying pipe which
causes an obstruction and creates a pressure difference on either side of the device. Such devices
include the orifice plate, the venturi tube, the flow nozzle and the Dall flow tube. When such a
restriction is placed in a pipe, the velocity of the fluid through the restriction increases and the
pressure decreases. The volume flow rate is then proportional to the square root of the pressure
difference across the obstruction.

Q K P= ∆ (6.1)

where Q is the volume flow rate, K is a constant for the pipe and liquid type, and ∆P is the pressure
drop across the restriction. The manner in which this pressure difference is measured is important.
The normal procedure is to use a diaphragm-based differential pressure transducer.

All applications of this method of flow measurement assume that flow conditions upstream of the
obstruction device are in steady state, and a certain minimum length of straight run of pipe ahead of
the measurement point is specified to ensure this. The minimum lengths required for various pipe
diameters are specified in British Standards tables, but a useful rule of thumb widely used in the
process industries is to specify a length of ten times the pipe diameter. If physical restrictions make
this impossible to achieve, special flow-smoothing vanes can be inserted immediately ahead of the
measurement point.

Flow-restriction-type instruments are popular because they have no moving parts and are therefore
robust, reliable and easy to maintain. One disadvantage of this method is that the obstruction causes a
permanent loss of pressure in the flowing fluid. The magnitude and hence importance of this loss
depends on the type of obstruction element used, but where the pressure loss is large, it is sometimes
necessary to recover the lost pressure by an auxiliary pump further down the flow line. This class of
device is not normally suitable for measuring the flow of slurries as the tappings into the pipe to
measure the differential pressure are prone to blockage, although the venturi tube can be used to
measure the flow of dilute slurries.

It is particularly important in applications of flow restriction methods to choose an instrument whose
range is appropriate to the magnitudes of flow rate being measured. This requirement arises because
of the square-root type of relationship between the pressure difference and the flow rate, which
means that as the pressure difference decreases, the error in flow rate measurement can become very
large. In consequence, restriction-type flowmeters are only suitable for measuring flow rates between
30% and 100% of the instrument range.

6.3 Orifice plate

The orifice plate, as shown in Figure 6.1, is a metal disk with a hole in it, which is inserted into the
pipe carrying a flowing fluid. This hole is normally concentric with the disk. Over 50% of the
instruments used in industry for measuring volume flow rate are of this type. The use of the orifice
plate is so widespread because of its simplicity, cheapness and availability in a wide range of sizes.
However, the best accuracy obtainable with this type of obstruction device is only ±2% and the
permanent pressure loss caused in the flow is very high, being between 50% and 90% of the pressure
difference (P1 – P2) in magnitude. Other problems with the orifice plate are a gradual change in the
discharge coefficient over a period of time as the sharp edges of the hole wear away, and a tendency
for any particles in the flowing fluid to stick behind the hole and gradually build up and reduce its
diameter. The latter problem can be minimised by using an orifice plate with an eccentric hole. If this
hole is close to the bottom of the pipe, solids in the flowing fluid tend to be swept through, and the
build-up of particles behind the plate is minimal.



A very similar problem arises if there are any bubbles of vapour or gas in the flowing fluid when
liquid flow is involved. These also tend to build up behind an orifice plate and distort the pattern of
flow. This difficulty can be avoided by mounting the orifice plate in a vertical run of pipe.

P1 P2

 
Figure 6.1 Orifice plate

6.4 Flow nozzle

The form of a flow nozzle is shown in Figure 6.2. This is not prone to solid particles or bubbles of
gas in a flowing fluid sticking in the flow restriction, and so in this respect it is superior to the orifice
plate. Its useful working life is also greater because it dose not get worn away in the same way as an
orifice plate. These factors give the instrument a greater measurement accuracy. However, as the
engineering effort involved in fabricating a flow nozzle is greater than that required to make an
orifice plate, the instrument is somewhat more expensive. In terms of the permanent pressure loss
imposed on the measured system, the flow nozzle is very similar to the orifice plate. A typical
application of the flow nozzle is in measurement of steam flow.

P1 P2

Figure 6.2 Flow nozzle flow measurement

6.5 Venturi

The venturi is a precision-engineered tube of a special shape, as shown in Figure 6.3. It is a very
expensive instrument but offers very good accuracy (approximately ±1%) and imposes a permanent
pressure loss on the measured system of only 10-15% of the pressure difference (P1–P2) across it. The
smooth internal shape of this type of restriction means that it is unaffected by solid particles or



gaseous bubbles in the flowing fluid, and in fact can even cope with dilute slurries. It has almost no
maintenance requirements and its working life is very long.

P1 P2

Figure 6.3 Venturi flow measurement

6.6 Pitot tube

The pitot tube is mainly used for making temporary measurements of flow. It measures the local
velocity of flow at a particular point within a pipe rather than the average flow velocity as measured
by other types of flowmeters. This is quite useful for situations where the local flow rates across the
cross-section of a pipe need to be measured as in the case of non-uniform flow. For this purpose,
multiple pitot tubes are normally used.
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Figure 6.4 The pitot tube

The instrument works on the principle that a tube placed with its open end in a stream of fluid, as
shown in Figure 6.4 will bring to rest that part of the fluid which impinges on it, and the loss of
kinetic energy will be converted to a measurable increase in pressure inside the tube. This pressure,
P1, and the static pressure of the undisturbed free stream of flow, P2, are measured. The flow velocity
can then be calculated as

v = C[2g(P1 – P2)]
1/2 (6.2)



where C is the pitot-tube coefficient.

Once v is calculated, the volume flow rate can then be calculated by multiplying v by the cross-
sectional area of the flow pipe.

Pitot tubes have the advantage that they cause negligible pressure loss in the flow. They are also
cheap and easy to install. Their main disadvantage is that the measurement accuracy is normally only
about ±5%, and sensitive pressure measuring devices are needed to achieve even this level of
accuracy, since the pressure difference created is very small.

6.8 Variable area flowmeters

In this class of flowmeter, the differential pressure across a variable aperture is used to adjust the area
of the aperture. The aperture area is then a measure of the flow rate. This type of instrument normally
only gives a visual indication of flow rate. Therefore, it is not useful in automatic control schemes.
However, it is cheap and reliable and widely used in industry.

Figure 6.5 shows such a flowmeter. It consists of a tapered glass tube containing a float which takes
up a stable position where it submerged weight is balanced by the upthrust due to the differential
pressure across it. The position of the float is a measure of the effective annular area of the flow
passage and hence of the flow rate. The accuracy of the cheapest instruments is only ±3%, but more
expensive versions offer measurement accuracies as high as ±0.2%. The normal measurement range
is between 10% and 100% of the full-scale reading for any particular instrument.
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Figure 6.5 The variable area flowmeter

7. Level sensors

A wide variety of instruments are available for measuring the level of liquids. The simplest one is a
dipstick. An ordinary dipstick is a metal bar with scales etched on it. By dipping it into a vessel, and
then remove, the liquid level can be measured from how far up the scale the liquid has wetted. A
human operator is required to remove and read the dipstick.

7.1 Float system

Measuring the position of a float on the surface of a liquid is another simple and cheap method of



liquid level measurement. Figure 7.1 shows a float level measuring system with a potentiometer.
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Figure 7.1 Float system

7.2 Pressure measuring devices

The hydrostatic pressure due to liquid is directly proportional to its depth and hence to the level of its
surface. In the case of open-topped vessels (or covered ones which are vented to the atmosphere), the
level can be measured by inserting an appropriate pressure transducer at the bottom of the vessel as
shown in Figure 7.2. The liquid level h is related to the measured pressure P by the following
equation

h
P

g
=

ρ
(7.1)

where ρ is the liquid density and g is the acceleration due to gravity.

One source of error in this method can be imprecise knowledge of the liquid density. This can be a
particular problem in the case of liquid solutions and mixtures (especially hydrocarbons), and in some
cases only an estimate of density is available. Even with single liquids, the density is subject to
variation with temperature, and therefore temperature measurement may be required if very accurate
level measurements are needed.

Where liquid-containing vessels are totally sealed, the liquid level can be calculated by measuring the
differential pressure between the top and bottom of the tank, as shown in Figure 7.2(b). The liquid
level is related to the differential pressure measured, ∆P, according to:

h
P

g
= ∆

ρ
(7.2)

The same comments as for the case of the open vessel apply regarding uncertainty in the value of ρ.
An additional problem which can occur is an accumulation of liquid on the side of the differential
pressure transducer which is measuring the pressure at the top of the vessel. This can arise because of
temperature fluctuations, which allow liquid alternately to vaporise from the liquid surface and then
condense in the pressure tapping at the top of the vessel. The effect of this on the accuracy of the
differential pressure measurement is severe, but the problem is easily avoided by placing a drain pot
in the system. This should of course be drained regularly.
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Figure 7.2 Level measurement by pressure measuring devices

A final pressure-related system of level measurement is the bubbler unit shown in Figure 7.2(c). This
uses a dip pipe which reaches to the bottom of the tank and is purged free of liquid by a steady flow
of gas through it. The rate of flow is adjusted until gas bubbles are just seen to emerge from the end
of the tube. The pressure in the tube, measured by a pressure transducer, is then equal to the liquid
pressure at the bottom of the tank. It is important that the gas used is inert with respect to the liquid in
the vessel. Nitrogen or sometimes just air is suitable in most cases. Gas consumption is low, and a
cylinder of nitrogen may typically last for 6 months. The method is suitable for measuring the liquid
pressure at the bottom of both open and sealed tanks. It is particularly advantageous in avoiding the
large maintenance problem associated with leaks at the bottom of tanks at the site of the pressure
tappings required by alternative methods.

7.3 Capacitive devices

Capacitive devices are now widely used for measuring the level of both liquids and solids in
powdered or granular form. They are suitable for use in extreme conditions measuring liquid metals
(high temperatures), liquid gases (low temperatures), corrosive liquids (acids, etc.) and high-pressure
processes. Two versions are used according to whether the measured substance is conducting or not.
For non-conducting (less than 0.1 µmho/cm3) substances, two bare-metal capacitor plates in the form
of concentric cylinders are immersed in the substance, as shown in Figure 7.3. The substance behaves
as a dielectric between the plates according to the depth of the substance. For concentric cylinder
plates of radius a and b (b > a), and total height L, the depth of the substance h is related to the
measured capacitance C by:
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where ε is the relative permittivity of the measured substance and ε 0 is the permittivity of free space.

In the case of conducting substances, exactly the same measurement techniques are applied, but the
capacitor plates are encapsulated in an insulating material. The relationship between C and h in
Eq(7.3) then has to be modified to allow for the dielelctric effect of the insulator.

a

b

L
h

Figure 7.3 Capacitive level sensor

Capacitive devices are useful in many applications, but become inaccurate if the measured substance
is prone to contamination by agents which change its dielectric constant, for example, the ingress of
moisture into powders.
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Figure 7.4 Ultrasonic level sensor

7.4 Ultrasonic level gauge

The principle of the ultrasonic level gauge is illustrated in Figure 7.4. Energy from an ultrasonic
source above the liquid is reflected back from the liquid surface into an ultrasonic energy detector.



Measurement of the time of flight allows the liquid level to be inferred. In alternative versions, the
ultrasonic source is placed at the bottom of the vessel containing the liquid, and the time of flight
between emission, reflection off the liquid surface and detection back at the bottom of the vessel is
measured.

Ultrasonic techniques are especially useful in measuring the position of the interface between two
immiscible liquids contained in the same vessel, or measuring the sludge or precipitate level at the
bottom of a liquid-filled tank. In either case, the method employed is to fix the ultrasonic transmitter-
receiver transducer at a known height in the upper liquid, as shown in Figure 7.5. This establishes the
level of the liquid/liquid or liquid/sludge level in absolute terms.
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Figure 7.5 Measuring liquid/liquid interface

When using ultrasonic instruments, it is essential that proper compensation is made for the working
temperature if this differs from the calibration temperature. The speed of ultrasound through air
varies with temperature at the rate of 0.607 m/s per 0C . The speed of ultrasound also has a small
sensitivity to humidity, air pressure and carbon dioxide concentration, but these factors are usually
insignificant.

Temperature compensation can be achieved in two ways. First, the operating temperature can be
measured and an appropriate correction made. Secondly, and preferably, a comparison method can be
used in which the system is calibrated each time it is used by measuring the transit time of ultrasonic
energy between two known reference points. This second method takes account of variations in
humidity, pressure and carbon dioxide concentration as well as providing temperature compensation.

8. pH sensors
8.1 Introduction

pH is a parameter which quantifies the level of acidity or alkalinity in a chemical solution. It defines
the concentration of hydrogen atoms in the solution in grams/litre and is expressed as:

pH H= +log /10 1

where H +  is the hydrogen ion concentration in the solution.



The value of pH can range from 0, which describes extreme acidity, to 14, which describes extreme
alkalinity. Pure water has a pH of 7.

pH measurement is required in many process industries, especially those involving food and drink
production. The most known method of measuring pH is to use litmus paper or some similar chemical
indicator which changes colour according to the pH value. Unfortunately, this method gives only a
very approximate indication of pH unless used under highly controlled laboratory conditions.
Furthermore, this type of pH measurement can only be taken manually. On-line pH sensors are
required in process automation. The glass electrode is at present the most common on-line pH sensor.

8.2 The glass electrode

The glass electrode consists of a glass probe containing two electrodes, a measuring one and a
reference one, separated by a solid glass partition. Neither of the electrodes is in fact glass. The
reference electrode is a screened electrode, immersed in a buffer solution, which provides a stable
reference e.m.f. which is usually 0 V. The tip of the measuring electrode is surrounded by a pH-
sensitive glass membrane at the end of the probe which permits the diffusion of ions according to the
hydrogen ion concentration in the fluid outside the probe. The measuring electrode therefore
generates an e.m.f. proportional to pH which is amplified and fed to a display meter. The
characteristics of the glass electrode are very dependent on ambient temperature, with both zero drift
and sensitivity drift occurring. Thus temperature compensation is essential. This is normally achieved
through calibrating the system output before use by immersing the probe in solutions at reference pH
values. Whilst the system is theoretically capable of measuring the full range of pH values between 0
and 14, the upper limit in practice is generally a pH value of about 12 because electrode
contamination at very high-alkaline concentrations becomes a serious problem and also glass starts to
dissolve at such high pH values. Glass also dissolves in acid solutions containing fluoride, and this
represents a further limitation of use. If required, the latter problems can be overcome to some extent
by using special types of glass.

Great care is necessary in the use of the glass electrode type of pH probe. First, the measuring probe
has a very high resistance (typically 108 Ω) and a very low output. Hence, the output signal from the
probes must be electrically screened to prevent any stray pick-up and electrical insulation of the
assembly must be very high. The assembly must also be very efficiently sealed to prevent the ingress
of moisture.

A second problem with the glass electrode is the deterioration in accuracy which occurs as the glass
membrane becomes coated with the various substances it is exposed to in the measured solution.
Cleaning at prescribed  intervals is therefore necessary and this must be carried out carefully, using
the correct procedures, to avoid damaging the delicate glass membrane at the end of the probe. The
best cleaning procedure varies according to the nature of the contamination. In some cases careful
brushing or wiping is adequate, whereas in other cases spraying with chemical solvents is necessary.
Ultrasonic cleaning is often a useful technique, though it tends to be expensive. Steam cleaning
should not be  attempted, as this damages the pH-sensitive membrane. Mention must also be made
about storage. The glass electrode must not be allowed to dry out during storage, as this would cause
serious damage to the pH-sensitive layer.

Finally, caution must be taken with the response time of the instrument. The glass electrode has a
relatively large time constant of 1 to 2 minutes, and so it must be left to settle for a long time before
the reading is taken. If this causes serious difficulties, special forms of low-resistivity glass electrode
are now available which have smaller time constants.



9. Signal conversion and data acquisition
9.1 Introduction

In industrial processes, historical plant operation information is stored in a database. Measurements
taken over time form a ‘ time history’ . This time history may be analogue, such as the output from an
accelerometer or may be inherently digital, such as the output from an optical shaft encoder, in which
the signal is one of a finite number of discrete states. As digital data is highly immune to corruption
and suitable for computer-based processing, many analogue signals must be transformed into a
digital, or sampled data form, before storing and processing, even those which are continuously
measured in time.

The transformation of continuous data to digital data is known as ‘analogue to digital (A/D)
conversion’ and the opposite process as ‘digital to analogue (D/A) conversion’ .

9.2 Analogue to digital conversion

It can be helpful to think of A/D conversion as consisting of two processes: sampling and
quantization. When the continuous signal is sampled, a ‘snapshot’ is taken of the signal in time. This
sample, which will probably be a voltage, must then be quantized: translated into a binary number.

While A/D converters do not generally use such distinct processes it is a useful way of picturing the
process as it highlights the two types of approximation inherent in the conversion. The first is an
approximation in time, in that a continuous signal is sampled at discrete intervals, and this, as we will
see later, limits the frequency range of that data. The second approximation is due to forcing a signal
with an infinite number of possible values into one with a limited number of binary digits. This is a
quantization error and restricts the dynamic range of the signal after conversion.

The quantization error caused by A/D conversion can be illustrated by a simple example. An
analogue signal v(t) which varies from 0 to 6V is to be converted to a 4-bit digital signal. The number
of different output states into which the signal is divided is given by 24=16 and the relationship
between the analogue input and the digital output is shown in Table 9.1. The effect of quantization
can be seen in Figure 9.1 which shows an analogue signal and a four bit digital conversion of that
signal (a four bit signal allows 16 different values).

Table 9.1 Analogue to digital conversion
Analogue Digital Analogue Digital

[-0.2 – 0.2) 0000 [3.0 – 3.4) 1000
[0.2 – 0.6) 0001 [3.4 – 3.8) 1001
[0.6 – 1.0) 0010 [3.8 – 4.2) 1010
[1.0 – 1.4) 0011 [4.2 – 4.6) 1011
[1.4 – 1.8) 0100 [4.6 – 5.0) 1100
[1.8 – 2.2) 0101 [5.0 – 5.4) 1101
[2.2 – 2.6) 0110 [5.4 – 5.8) 1110
[2.6 – 3.0) 0111 [5.8 – 6.2] 1111
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Figure 9.1 Analogue signal and its four bit binary equivalent

This quantization error can be made small by suitable choice of and correct use of modern equipment.
Once a signal is in digital form it is highly immune to noise and degradation. A practical point to
avoid serious problems with quantization errors is the correct matching of the analogue range to the
input range of the A/D Converter. The first graph in Figure 9.2 shows that an eight-bit digitization
(allowing 256 discrete values) provides a good approximation to the signal in Figure 9.1. The second
graph in Figure 9.2 shows the same signal, also digitised using eight bits, but without using the full
range of the A/D converter. The A/D converter here is set to ±10V, while the signal itself is only ±1V.
This demonstrates the importance of considering quantization errors, especially in signals with a wide
dynamic range.
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Figure 9.2 Eight bit digitisation and incorrect use of range

Quantization errors

From Table 9.1 it can be seen that a single digitised number is associated with a range of analogue
values, any of which could have been quantized to that number. The width of a ‘step’ in Table 9.1
represents the range of analogue values which could potentially lead to each digital output and this



will be equal to the full analogue input range of the device, divided by the number of discrete digital
states. The device represented in Table 9.1 has a normal input range of 0-6V, and the step width will
be (6.0+2(0.2)/16=0.4. The ‘0.2s’ are due to the fact that we have chosen to place the maximum and
minimum analogue values in the middle of a digital step. The uncertainty caused by this quantization
means, for example, that the digitised number 0010 could have been caused by any value between 0.6
and 1.0.  This uncertainty may be thought of as a possible error of magnitude ±δ/2, where δ is the
analogue value equating to the least significant bit in the digital representation. For most signals, this
error can be assumed to be a random process uncorrelated with the signal having a uniform
probability distribution, p(e), about the true value. The number of bits required in an A/D converter is
determined by the dynamic range (the ratio, in dBs, between the largest and smallest amplitudes)
which has to be measured. This, in turn, is governed by the signal to noise ratio (SNR), where:
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The relationship between the variance of the signal to be measured and the number of bits used is a
trade-off and will need careful consideration if an application is close to the limit of the equipment to
be used. The greater the variance the higher the SNR due to quantization but also the higher the
likelihood of clipping. To ensure a very low probability of clipping in a random signal we may choose
to ensure that the maximum range of a system with b bits, given by 2bδ, is greater than five times the
rms value of the signal:
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Substituting into Eq(9.1) gives:
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Other errors which may be present in an A/D converter include (Turner and Hill, 1999):

Linearity – this is usually specified by the manufacturer of the A/D device as the maximum deviation
from a straight line drawn between the full scale output and zero.

Gain error – most devices have a nulling input to deal with this effect. However, it is often found that
the null setting required is temperature dependent, and there is no easy solution to this problem.

Offset error – similar to the above. Once again temperature dependence can be a problem.

9.3 Computer based data acquisition

In many industrial process applications, it is most convenient to simply use a purpose built card or



external adapter designed to allow a computer to directly acquire data. In such cases, the users need
not worry about the details of the A/D conversion method used. The users should concentrate on cost,
user-friendliness, and the following issues (Turner and Hill, 1999):

Sampling rate. The sampling rate at each input channel should be well over twice the maximum
frequency contained in the signal to be sampled at that channel.

Signal type. Signal types include current, voltage, charge, and impedence. The cards are usually
designed to present a relatively high impedence to a voltage source.

Signal amplitude. The range of the input signal will have to be matched to that of the card. An
additional amplification stage may need to be included.

Signal dynamic range. The dynamic range of the signal determines the number of bits required in the
data encoding. In some cases data compression may be required to get the most out of a data
acquisition system.

Triggering. If the signal to be measured is a transient one, it may be required to start acquiring the
data automatically. This can be done using a trigger which starts data acquisition when a particular
condition is met, for example when the input voltage is higher than the threshold voltage. There are
commonly two types of triggers, software triggers and hardware triggers. A hardware trigger uses a
pin on the data acquisition card as an external trigger. When the trigger pin sees a high input, it starts
read in data from the input lines. The users need to design a circuit which feeds the correct signal to
the trigger pin at the correct time.

Signal length. The amount of data that you can acquire in one go depends on computer memory and
disk space.

Environment. A conventional PC, fitted with a data acquisition card, may well be an appropriate cost-
effective way of logging data in the laboratory. If data acquisition task has to be carried out in open
air, or over a long period time in an industrial environment, specialist data logger or industrial PC
may be appropriate.
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