Grammar Competition in Neutral Learning:
A Reply to Han et al. (2016)

Henri Kauhanen1, Caroline Heycock2 & Joel C. Wallenberg3

1University of Manchester & Universität Konstanz, henri.kauhanen@manchester.ac.uk
2University of Edinburgh, caroline.heycock@ed.ac.uk
3Newcastle University, joel.wallenberg@ncl.ac.uk

FWAV 2017, University of York
Introduction

- Grammar Competition (Kroch, 1989, 1994; Pintzuk and Taylor, 2006, inter alia) and Variational Learning (VL; Yang, 2000, 2002)
 - Is grammar competition a generally expected property of (syntactic) acquisition?

- Poverty of the Stimulus

- Test Case: verb-raising in Korean, where the input radically underdetermines a parameter setting.
Introduction

(1) sua sal ye _yure sinnes_ les.
so shal you your sins lose
“In this way, you will let go of your sins.”
(Rule of St. Benet, Yorkshire, date: 1425)

(2) þabbes sal quaintelike drahe _hir_ to hir
the-abbess shall wisely draw her to herself
(Rule of St. Benet, Yorkshire, date: 1425)
Introduction

• Grammar Competition (Kroch, 1989, 1994; Pintzuk and Taylor, 2006, inter alia) and Variational Learning (VL; Yang, 2000, 2002)
 • Is grammar competition a generally expected property of (syntactic) acquisition?

• Poverty of the Stimulus

• Test Case: verb-raising in Korean, where the input radically underdetermines a parameter setting.
 • Hypothesis (Han et al., 2016): if competing grammars is a last resort conclusion for acquirers, and then they will not acquire competing verb-raising grammars in Korean.
We show that – given Variational Learning and finite population dynamics –

- Competing grammars can and do arise under neutral conditions.
- This has consequences for the actuation problem (Weinreich et al., 1968).
Outline

Introduction

Background

 V-to-T Raising

Han et al. (2007, 2016)

 Experiment and Results
 Interpretations

Neutral Variational Learning

 Model
 Estimating Model Parameters
 Comparison

Conclusions
Left-headed TP

(3) … Ulla ofta äter kanelbullar.
Ulla often eats cinnammon rolls (*Swedish*)
Right-headed TP

(4) Yuri-ka cacwu Toli-lul ttayli-n-ta
Yuri-NOM often Toli-ACC hit-PRES-DECL
Outline

Introduction

Background

V-to-T Raising

Han et al. (2007, 2016)

Experiment and Results

Interpretations

Neutral Variational Learning

Model

Estimating Model Parameters

Comparison

Conclusions
Experiments and Results

- Han et al. (2016):
 1. TVJT for adults.
 2. TVJT for children and mothers of those children.

 eat-PST-DECL
 “Cookie monster didn’t eat every cookie.”

- Main Findings: in the absence of clear input...
 - Parents’ grammar doesn’t predict children’s.
 - The Korean population is split wrt to this syntactic parameter.
Result (2016): No generational transmission
Result (2016): competing grammars?

Chung-hye Han et al. PNAS 2016;113:942-947
Interpretation

- **Their interpretation**: in the absence of unambiguous input, acquirers choose one grammar or the other at random.
 - They do not learn both, so no competing grammars in this situation.
 - Competing grammars only arises in the presence of unambiguous evidence for multiple syntactic-parameter settings.

- **Our interpretation**: these learners are showing competing grammars in the experiments.
 - They just *tend* to cluster in states of dominance for one grammar as a result of variational learning on finite populations of neutral utterances.
Outline

Introduction

Background
 V-to-T Raising

Han et al. (2007, 2016)
 Experiment and Results
 Interpretations

Neutral Variational Learning
 Model
 Estimating Model Parameters
 Comparison

Conclusions

• Variational Learner (VL): syntactic acquisition consists of learning a set of grammar probabilities.

• A formalization of learning with “competing grammars” (i.e. syntactic parameter-settings), within individuals and across populations.
 - Here we assume just two competing settings G_1 and G_2 (i.e. one binary syntactic parameter)

• Reinforcement learning (the linear reward–penalty learner of Bush and Mosteller, 1958)
 - γ: learning rate
 - N: number of input sentences heard
 - c_i: prob. encountering a sentence not parsed by G_i

• ICBS: with small γ and $N \to \infty$, learner ends up with

$$p_1 = \frac{c_2}{c_1 + c_2} \quad \text{and} \quad p_2 = \frac{c_1}{c_1 + c_2} \quad (1)$$
VL in a neutral setting

- If learner’s input contains no unambiguous evidence, $c_1 = c_2 = 0$
 - \Rightarrow Equation (1) won’t work!
- How does VL behave in such a **neutral** setting?
- Insight: the learner becomes a random walk whose characteristics will be given by the two model parameters γ and N.
- Here, we explore neutral VL with simulations assuming finite numbers of neutral utterances (iterations of learning).
Random walks

The graph shows the probability p_1 over the learning step. The x-axis represents the learning step, ranging from $0e+00$ to $1e+05$, while the y-axis represents the probability p_1, ranging from 0.0 to 1.0. The data points fluctuate, illustrating the random walk behavior over time.
Random walks
Random walks

![Random walks graph](image-url)
Random walks
Random walks

- Learning outcome varies from learner to learner.
 - Finite iterations of learning means the stop point is crucial.
- Want to find out the overall average behaviour:
 - What is the **expected** learning outcome?
 - How much **variance** is there about this expectation?
- Strategy: set up a large number (100 ∼ 1000) of such learners; perform a sweep over the γ, N parameter space; observe learners’ terminal states.
Variation in γ ($N = 10^5$; 1000 learners per γ)
Variation in γ ($N = 10^5$; 1000 learners per γ)
Variation in γ ($N = 10^5$; 1000 learners per γ)
Variation in γ ($N = 10^5$; 1000 learners per γ)
Variation in γ: Recap

• The average outcome (over an entire population) is $p_1 = 0.5$
 • It is equally likely that a randomly encountered sentence in a population was generated by either grammar

• However, **individual** learner behaviour varies tremendously in response to variation in the learning rate parameter γ

 (1) with low γ, individual learners end up with $p_1 \approx 0.5$ (**random** speakers)
 (2) with intermediate γ, individual learners end up with some p_1 from the entire interval $[0, 1]$ (**variable** speakers)
 (3) with large γ, individual learners end up with either $p_1 = 0$ or $p_1 = 1$ (**categorical** speakers)

• Empirically, the results of Han et al. (2016) lie somewhere between (2) and (3)
Variation in N
Variation in N
Variation in N
Variation in N: Recap

- The smaller γ is, the longer it takes for a learner to become categorical.
- However, the states $p_1 = 0$ and $p_1 = 1$ are absorbing, and a random walk is guaranteed to visit one of these states at some point.
- Thus, increasing N will have the effect of making more and more learners categorical.
 - Conjecture: for any $\gamma > 0$, there exists an N such that learner ends up categorical with probability $1 - \epsilon$, for any small $\epsilon > 0$
Estimating Model Parameters

- To find out whether VL is consistent with the Korean data, we need empirical estimates of
 - the learning rate (γ)
 - the number of sentences children hear (N)
- N is (in principle) not too difficult to estimate, γ is trickier
Estimating N, Method 1

- Shneidman and Goldin-Meadow (2012): ~900 utterances per hour (US, suburban, middle class) ~400 utterances per hour (Mayan, rural).
- Han et al. (2016) claim fixation on a grammar by age 4 years. Let’s assume 3 years (esp. given production lag).
- Assuming 12 hours waking time per day, we estimate 11,826,000 utterances for US-type and 5,256,000 for Mayan-type.
Estimating N, Method 2

- **Human Speechome Project**: 12 million words of speech, continuously recorded around a single child from ages 9-24 months.
- Vosoughi et al. (2010); Vosoughi and Roy (2012): 2.5 million utterances represent 70% of the child’s input for that time range.
- Therefore, total input for 9-24 months = 3,571,420 utterances, or ~223,213.8 utterances per month.
- Over three years = $8,035,697$ utterances.
 - Very close to the average of the Method 1 Mayan and US estimates, 8,541,000.
So, we run our final simulations with $5 \text{ million} \leq N \leq 12 \text{ million}$ sentences.
Estimating γ

- It is currently not known how large an update to p a VL makes per each learning event.
- An indirect strategy:
 1. Take a well-understood historical change which has been modelled with VL.
 2. See what range of learning rates γ is consistent with that modelling.
 - Too small and too large values of γ make learners fail to converge, and the change is predicted not to have happened, contra facts.
 3. Assume true human γ must lie somewhere within that range.
Estimating γ

- Heycock and Wallenberg (2013) apply VL to the loss of V-to-T in Faroese and Mainland Scandinavian

- **Strategy:**
 - Take the parsing advantage parameters estimated by Heycock and Wallenberg (2013) for the V-to-T and V-in-situ grammars.
 - Assume ≈ 350 years (≈ 20 generations) for the change to go to completion (Sundquist, 2002).
 - Run a simulation for a range of γ values, starting from $p_1 = 0.01$ (1% use of V-in-situ at point of actuation)
 - Observe the final state after 20 iterated learners; if this is $p_1 = 0.99$ (99% V-in-situ) or more, declare change has gone to completion
 - Repeat 100 times for reliable statistics
Prob. of V-in-situ after 20 generations (100 runs per γ)
Proportion of "successful" simulations

learning rate γ

1e-08 1e-06 1e-04 1e-02 1e+00
Proportion of "successful" simulations

learning rate γ
Parameter Estimate Bounds

- From the above, we estimate:

\[
\begin{array}{c|cc}
\text{Parameter} & \text{lower bound} & \text{upper bound} \\
\hline
N & 5.0 \times 10^6 & 1.2 \times 10^7 \\
\gamma & 10^{-5} & 10^{-1} \\
\end{array}
\]

- How does neutral VL behave within these bounds?
 - Use criterion from Han et al. (2016): speaker is categorical if he/she uses one option at least 75% of the time
proportion categorical (75% cutoff)

- \(N \) makes little difference (makes sense, since \(5.0 \times 10^6 \) and \(1.2 \times 10^7 \) are roughly the same order of magnitude)
- Sharp transition from noncategoricity to categoricity in response to variation in \(\gamma \)
Comparison

- For definiteness, assume $0.0005 \leq \gamma \leq 0.005$
- And assume Han et al.’s (2016) criteria for categoricity:
 - reject: $\leq 25\%$ sentences
 - ambivalent: $25\% < x < 75\%$ sentences
 - accept: $\geq 75\%$ sentences
- How do our neutral VL learners compare to Han et al.’s empirical data?
Our learners compared to Han et al. (2016)’s

![Bar chart comparing rejection, ambivalence, and acceptance rates between different groups: children, long negation, children, short negation, adults, long negation, adults, short negation, neutral VL, N = 5,000,000, neutral VL, N = 12,000,000. The chart shows statistical significance with p-values ≤ 0.005.]
Conclusions

- Han et al’s results do not show an absence of competing grammars in Korean speakers.
- Variational learning in a neutral setting of finite utterances produces speakers with competing grammars.
- Realistic learning-parameter values lead to most speakers having a highly dominant grammar.
- Han et al’s results are compatible with neutral VL for a range of learning rates γ (over an order of magnitude), which are independently plausible based on non-neutral VL modelling.
- The emergence of competing grammars in neutral settings can be thought of as the actuation of new syntactic variants.
Conclusions

Further Work

- Gather stronger empirical bases for estimating N and γ.
- Explore how robust our results are wrt larger variation in γ.
- Incorporate further factors, such as population structure, in the modelling, to look at the spread of actuated grammars.
- Analytical results, to confirm our simulation results.
Acknowledgements

Thanks to

- Ella and Georg Ehrnrooth Foundation for funding (HK).
- the University of Manchester HTCondor pool for CPU time.
- Betsy Sneller and Charles Yang for helpful discussion.
References I

References II

References III

References IV

