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0 Introduction
Timetable

SFY0001 Lectures

Monday 5.00 Merz Court L302
Wednesday 12.00 Merz Court L302
Thursday 1.00 Merz Court L303
Friday 4.00 Percy Building G.05

SFY0001 Weekly Tutorials

Friday 9.00 Stephenson Building T10 Engineering Foundation Year + G101
Friday 11.00 Daysh Building G.05 GIS / SMS

N.B. Each student attends only one weekly tutorial: see your personal timetable
to find your tutorial.

Exceptional arrangements
The lectures on Wednesday 7 and Thursday 8 October are replaced by lectures on

• Monday 5 October 2.00 in Merz Court L302,

• Friday 9 October at 10.00 in Merz Court L303.

Organisation

1. SFY0001 runs for the first six weeks of the first term. Weekly exercises are set
and marked but do not count towards the overall SFY0001 mark (though your
marks are copied to your department who will be monitoring your progress).
The marked exercises are to be collected during Office hours on Mondays (see
below). There are 2 tests: Test 1 at the end of week 3, and Test 2 at the end
of week 6. Calculators are not allowed in the first test but are allowed in the
second test and the exam.
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2. Tests and Exam

(a) If you pass both tests separately (the pass mark for each test is 40) then:
(i) you pass SFY0001; (ii) your SFY0001 mark is the average of the two
test marks; (iii) you don’t take the January exam.

(b) If you fail one or both tests, then you have to take the January exam, and
your SFY0001 mark will be the exam mark. If you still fail then you resit
the exam in August (and this will be your final attempt).

(c) If your first attempt at SFY0001 was in 2014/15 and 2015/16 counts as
your second attempt, then you must take the January exam (you cannot
pass the module just by passing both tests).

• Q: Suppose I fail Test 1 with a mark of 39 but do spectacularly well in Test
2, with a mark of 100. Do I still have to take the exam?

• A: Yes,you still have to take the exam.

• Q: Suppose I fail Test 1, so I will have to take the exam. Can I safely skip
Test 2?

• A: You should still take Test 2 because it will provide you with valuable
feedback on your progress and it will be practice for the exam.

3. You’ll find sample tests on Blackboard. Past exam papers are at www.ncl.ac.uk/exam.papers/.

4. The university has strict rules governing the use of calculators in examina-
tions. Candidates may use a calculator in an examination only if that particular
calculator appears on the University’s approved list. No other calculator or
electronic device may be used in an examination. The approved list currently
consists of the models listed below (but check for any changes between now
and the exam):-

Casio FX-83GTPLUS Casio FX-85GTPLUS Casio FX-115MS

plus any discontinued versions of the FX-83, FX-85 or FX-115.

N.B. You are not allowed to use a calculator in Test 1, but you are allowed (and
will need) to use one in Test 2.

5. You will notice that there are gaps in these lecture notes. This is deliberate.
You fill in these gaps during the lectures. The material omitted consists largely
of solutions to examples.
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6. This course is about solving problems and knowing relevant techniques. You
don’t need to explain the theory, but you should aim to write coherent answers.
There are some formulae you will need to remember, and often remembering a
diagram or construction will allow you to reconstruct the formula. Sometimes
we include an explanation of why a technique works. You will not have a
formula sheet for Test 1, but a very short list of formulae will be provided for
Test 2 and the exam.

7. HELP! I NEED HELP! Where can I get it? There are four sources of individual
help.

(a) If you have a question or a problem, you can ask about it at your weekly
tutorial.

(b) You can see me during my office hours. These are times when I guarantee
to be in my office to answer questions. You don’t need an appointment —
just drop in. You can collect your marked exercises and receive feedback
during the Monday office hours. My office is Room 3.08 on Level 3 of the
Herschel Building, and my office hours for SFY0001 will be:

Day Hour Room Building
Mon 1.00 - 2.00 Room 3.08 Herschel Building
Mon 3.00 - 4.00 Room 3.08 Herschel Building
Tue 9.00 - 10.00 Room 3.08 Herschel Building

(c) You can email me at Oli.King@ncl.ac.uk. Sometimes I can answer a short
point by email. At other times it will be more appropriate to arrange an
appointment to discuss the point in my office.

(d) You can use the University’s Maths-Aid drop-in centre. This is a terrific
service: you can get one-on-one help with a specific point or help with a
broad subject area; they can give you booklets and CD-ROMs that sup-
port the lectures. And the service is completely confidential. For details,
see http://www.ncl.ac.uk/students/mathsaid/ . You’ll get better service
if you make contact with Maths-Aid early in the semester. They get inun-
dated in the run-up to the end-of-semester exams.

8. Copies of lecture notes, exercise sheets, handouts, etc. will be posted on Black-
board.

9. Lectures will recorded on ReCap and will be made available for viewing a few
days after the lecture. You will be able to see the presentation slides (which
duplicate the notes handed out) and hear my spoken explanations, but you will
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not be able to see my writing on the board. For this reason, ReCap will not
replace lectures but will be suitable for listening to lectures a second time with
your notes in front of you.

10. You can practice using the Numbas system at https://moodle.mas.ncl.ac.uk/ .
You log in using your normal University user name and password. Assuming
that you are registered for SFY0001, you should find that you have access to a
Getting Started module and SFY0001. You can look at Getting Started, but the
mathematics is more advanced than SFY0001 for the most part. If you click
on SFY0001, you will find a number of assignments that correspond to written
assignments, but they are not assessments, you can practice as much as you
like.
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1 The Laws of Arithmetic

We shall go over the rules for evaluating arithmetic expressions. We shall consider
only examples involving whole numbers. This will keep the calculations simple
and allow us to concentrate on the rules. Fractions will be introduced in the next
chapter.

The evaluation rules are obeyed by calculators, so keep your calculator handy. You
can use it to give a quick check that you are performing a calculation correctly.

Note, by the way, that calculators are not allowed in Test 1. (We know that your
calculator can apply the rules correctly. The question is: Can you?) Calculators
will be allowed in Test 2.

1.1 Expressions Without Brackets
1.1.1 Expressions Involving Only Additions and Subtractions.

To work out the value of an expression containing only additions and subtractions,
you process it from left to right, keeping a running total (the total ‘so far’).

Example 1. Evaluate
12− 7 + 15− 26 + 2.

ANSWER

The final running total gives you the value of the original expression.

Feed this expression into your calculator and check that it gives the same answer.
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1.1.2 Expressions Involving Only Multiplications and Divisions

To work out the value of an expression containing only multiplications and divi-
sions, you process it from left to right, keeping a running total.

Example 2. Evaluate
12× 3÷ 4× 5÷ 9.

ANSWER

Therefore the value of the original expression is ANSWER .
Feed this expression into your calculator and check that it gives the same answer.

1.1.3 Expressions Involving Only Additions, Subtractions, Multiplications
and Division

Now ask your calculator to evaluate some expressions involving operations of
both types, for example
3× 4 + 5 — your calculator should give you the ANSWER ,
and
3 + 4× 5 — your calculator should give you the ANSWER .

Note that if you process the first expression from left to right you get the correct
answer, but if you do the same with the second expression you get 35, which is
the wrong answer! The moral?

YOU DON’T ALWAYS PROCESS SUCH EXPRESSIONS FROM LEFT
TO RIGHT!

What is going on here?

The golden rule is that DIVISIONS and MULTIPLICATIONS are worked out be-
fore ADDITIONS and SUBTRACTIONS. In technical language, we say that divi-
sion and multiplication TAKE PRECEDENCE over addition and subtraction. Thus
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3× 4 + 5 =
ANSWER
while
3 + 4× 5 =
ANSWER

Another example:

Example 3. Evaluate 20− 4× 3÷ 6 + 2× 2× 3

ANSWER

What we have observed is part of a larger rule called BIDMAS. It stands for

BRACKETS

before

INDICES

before

DIVISION and MULTIPLICATION

before

ADDITION and SUBTRACTION.

Let us ignore the brackets and indices for now; we shall come to them shortly. For
the moment the rule amounts to DMAS, i.e., divisions and multiplications take
precedence over additions and subtractions.

We might ask: what about precedence between division and multiplication? The
answer is that there is none, we simply process divisions and multiplications from
left to right, leaving additions and subtractions.
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A calculator sees the expression

20− 4× 3÷ 6 + 2× 2× 3

as 20 − 4× 3÷ 6 + 2× 2× 3 and evaluates the boxes as in Section 1.1.2. It
then evaluates 20− 2 + 12 as in Section 1.1.1.

1.1.4 Indices (Powers)

The I in BIDMAS stands for indices (also called powers or orders or exponents,
leading to BODMAS or BEDMAS). Indices became popular in the seventeenth
century as a convenient shorthand for multiplying a number by itself repeatedly.

For example we write
3× 3 as 32 (often read as ‘3 to the power 2’ or ‘3 squared’)
3× 3× 3 as 33 (‘3 to the power 3’ or ‘3 cubed’)
3× 3× 3× 3 as 34 (‘3 to the power 4’ or ‘3 to the 4th’)
3× 3× 3× 3× 3 as 35 (‘3 to the power 5’ or ‘3 to the 5th’)
3× 3× 3× 3× 3× 3 as 36 (‘3 to the power 6’ or ‘3 to the 6th’)
and so on . . . . . . The indices or powers are the superscripts.

Example 4. Calculate 2n for n = 2, 3, 4, 5, 6, 7, 8, 9, 10. [In other words, calculate
22, 23, 24, 25, 26, 27, 28, 29, 210.]

ANSWER

How do we evaluate expressions which contain indices? For instance, when we
encounter the expression 3× 42, do we perform the multiplication or the power 2
first?

If we perform multiplication first we get 122 = 144.

If we perform the square first we get 3× 16 = 48.

If we use a calculator we get ANSWER .

BIDMAS gives us the explanation. The I in BIDMAS takes precedence over
DMAS, so we square before we add, subtract, multiply or divide. The correct
answer is ANSWER .
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Example 5. Evaluate
36÷ 32

ANSWER

Example 6. Evaluate
5× 24 + 22 × 33.

ANSWER

Index notation comes into its own when we have to work with numbers which
are very big or very small - as happens in physics and chemistry. For example the
mass of the Sun in grams is

2000000000000000000000000000000000g.

That’s 2 followed by 33 zeros. We can write this more succinctly in index notation
as 2 × 1033 grams. Similarly, the mass of an electron can be written neatly as
9 × 10−28 grams. Don’t worry about the negative power – all will be explained
shortly.

1.2 Brackets

The B in BIDMAS stands for BRACKETS. We have seen how to evaluate expres-
sions like

2 + 3× 4.

You DON’T do the addition first:

2 + 3× 4 = 5× 4 = 20 WRONG

You do multiplication first:

2 + 3× 4 = 2 + 12 = 14 RIGHT
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But let’s suppose that you DO want to add 3 and 2 and multiply the resulting sum
by 4. How do you indicate that? You use brackets. The golden rule with brackets
is

OPERATIONS INSIDE A BRACKET

TAKE PRECEDENCE OVER

OPERATIONS OUTSIDE THE BRACKET

Examples 7. Evaluate the following:

(a) (2 + 3)× 4
ANSWER

(b) 2 + (3× 4)
ANSWER

(c) (2× 3) + 4
ANSWER

(d) 2× (3 + 4)
ANSWER

(e) 4× (8− 3)
ANSWER
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(f) 5 + 6÷ 2
ANSWER

We restate the complete BIDMAS rule:

BRACKETS

before

INDICES

before

DIVISION and MULTIPLICATION

before

ADDITION and SUBTRACTION.

Sometimes brackets occur inside other brackets. When this happens we say that
the brackets are nested. Here the rule is: WORK FROM THE INSIDE OUT.

Examples 8. Evaluate the following:

(a) ((6− 4)× 5) + 8
ANSWER

(b) 2× [(4 · 2− 3 · 4)(2 · 4− 1 · 7) + (0 · 88× 0 · 5)] + 3 · 0
ANSWER
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Sometimes brackets are absent but implied: for example,
7 + 5

2
is understood to

be
(7 + 5)

2
, so

7 + 5

2
= (7 + 5)÷ 2 = 12÷ 2 = 6.

[Note that
7 + 5

2
is not the same as 7 + 5/2 = 7 + 2 · 5 = 9 · 5.]

We shall talk about square roots a little later on. However it is worth noting for
future reference that brackets are implied under square root signs:

√
4 + 5 =

√
(4 + 5) =

√
9 = 3.

If we calculate
√

4+
√

5 we get 2+2·236 . . . = 4·236 . . .. This is clearly different.

1.3 Two Minuses Make A Plus

This rule refers to three different situations.

(A) SUBTRACTING A NEGATIVE
a− (−b) = a+ b

2− (−3) = 2 + 3 = 5
3− (4− 5) = 3− 4 + 5 = 4. (Here −− 5 = +5.)

(B) MULTIPLYING TWO NEGATIVES
(−a)(−b) = ab

(−6)× (−3) = 6× 3 = 18.

(C) DIVIDING ONE NEGATIVE BY ANOTHER
(−a)/(−b) = a/b

(−6)÷ (−3) = 6÷ 3 = 2.
(Here the minus signs cancel.)
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Example 9. Evaluate (−2)3, (−2)4 and −24.

ANSWER

N.B. Note that we never write expressions like 15 × −3 or 15 ÷ −3. That is, we
never put a multiplication or division sign alongside a negative sign. We always
wrap the negative sign in brackets. So we write 15× (−3) or 15÷ (−3).
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2 Fractions

2.1 Introduction

A numerical fraction is a number expressed in the form

p

q

where p and q are whole numbers (and of course q 6= 0). We call p the numer-
ator and q the denominator (or sometimes just top and bottom). The formal
mathematical term for a number that can be written as a fraction is a rational
number.

Here are some fractions:

5

8
,
−3

8
,

2

8
,

4

16
,
−1

−4
,
−8

1
,

1

1
,

0

1
,

6

2
.

Each of the numbers listed can be written in decimal form, for example by dividing
the top number by the bottom:

5

8
= 0 · 625,

−3

8
= −0 · 375,

2

8
= 0 · 25,

4

16
= 0 · 25,

−1

−4
= 0 · 25,

−8

1
= −8,

1

1
= 1,

0

1
= 0,

6

2
= 3.

Notice the following:

• Depending on our calculator, entering −3 ÷ 8 might or might not present
problems. Entering 0 − 3 ÷ 8 should not present any problems because
from Section 1 we know that this is 0− 0 · 375 (division first), which equals
−0 · 375. But we should really calculate (−3)÷ 8.

• Not every fraction can be easily written as a decimal. For example
1

3
would

be an infinite (unending) decimal 0 · 3333 . . . .

• Calculating
−1

−4
as −1 ÷ −4 is illegal because we have ÷ followed by −.

However we can either calculate (−1)÷ (−4) or we can use our knowledge

that
−1

−4
is the same as

1

4
.
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• Notice that
2

8
,

4

16
,
−1

−4
all represent the same number 0 · 25, and indeed

3

12
,

5

20
,

6

24
,
1

4
also represent 0 · 25.

This leads us to an important principle:
If you multiply (or divide) the numerator and denominator by the same (non-zero)
number then you don’t change the value of the fraction.

If we wish to have a single way of expressing a number as a fraction, we can use a
standard form for a fraction. The usual standard form is the lowest terms form.
We say that a fraction

p

q

is in lowest terms if p and q are whole numbers, q is positive and q is as small as
possible. We can always reduce a fraction to lowest terms by cancelling ‘common
factors’ from the numerator and denominator. It is a good idea to reduce all your
fractions to lowest terms!

Example 10. write
30

42
in lowest terms.

ANSWER

Fractions obey the same BIDMAS rules as the whole numbers, but addition, sub-
traction, multiplication and division are more complicated. We consider each in
turn.

2.2 Addition of Fractions

If two fractions happen to have the same denominator, then we can add the frac-
tions by adding the numerators:

19



a

c
+
b

c
=
a+ b

c
.

Examples 11. Express each of the following as a fraction in lowest terms:

(a)
2

7
+

3

7
.

ANSWER

(b)
4

9
+

11

9
.

ANSWER

If two fractions do not have the same denominator, then we have to convert them
to fractions with a common denominator. There are two ways of doing this.

METHOD ONE (CROSS-MULTIPLICATION): This method always works, but
it sometimes results in large numbers in the numerator and denominator and we
might need to do a bit of work in order to end up with lowest terms. Suppose we

wish to write as a single fraction
a

b
+
c

d
. We observe that

a

b
=
ad

bd
and

c

d
=
bc

bd
.

Thus
a

b
+
c

d
=
ad

bd
+
bc

bd
=
ad+ bc

bd
.

We obtain the rule:

a

b
+
c

d
=
ad+ bc

bd

20



Examples 12. Express each of the following as a single fraction in lowest terms:

(a)
3

4
+

5

6
.

ANSWER

(b)
2

7
+

3

11
.

ANSWER

METHOD TWO: Pick a number that is a common multiple of both denominators
and convert each fraction to one with this new number as the denominator.

Examples 13. Express each of the following as a single fraction in lowest terms:

(a)
3

4
+

5

6
.

ANSWER
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(b)
7

6
+

8

10
.

ANSWER

2.3 Subtraction of Fractions

If two fractions happen to have the same denominator, then we can subtract one
from the other bysubtracting one numerator from the other:

a

c
− b

c
=
a− b
c

.

Examples 14. Express each of the following as a fraction in lowest terms:

(a)
5

8
− 3

8
.

ANSWER

(b)
11

12
− 5

12
.

ANSWER

If two fractions do not have the same denominator, then we have to convert them
to fractions with a common denominator. There are two ways of doing this, es-
sentially the same procedures as for addition. In particular the cross-multiplying
rule is:
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a

b
− c

d
=
ad− bc
bd

Examples 15. Express each of the following as a fraction in lowest terms:

(a)
2

7
− 3

11
.

ANSWER

(b)
5

6
− 1

4
.

ANSWER

(c)
11

108
− 5

72
.

ANSWER

2.4 Multiplication of Fractions

Multiplication of fractions is straightforward. In fact it is easier than addition and
subtraction. You just multiply the two numerators and multiply the two denomi-
nators:
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a

b
× c

d
=
ac

bd

Examples 16. Express each of the following as a fraction in lowest terms:

(a)
5

8
× 1

3
.

ANSWER

(b)
5

9
× 3

20
.

ANSWER

(c)
1

2
× 3

8
.

ANSWER

Reasons to be careful. If we misremember the adition rule and calculate

4

7
+

3

5
=

4 + 3

7 + 5
=

7

12

which cannot be correct since each of
4

7
and

3

5
is bigger than

1

2
, so their sum is

bigger than 1. In fact
4

7
+

3

5
=

20

35
+

21

35
=

41

35
.
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2.5 Division of Fractions

To divide by a fraction, “invert the divisor and multiply”:

a

b
÷ c

d
=
a

b
× d

c
=
ad

bc

Examples 17. Express each of the following as a fraction in lowest terms:

(a)
5

8
÷ 1

3
.

ANSWER

(b)
2

3
/

3

4
.

ANSWER

(c)
14

3
÷ 1

3
.

ANSWER
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Example 18. Express the following as a fraction in lowest terms:

2

3
− 1

5
1

6
+

1

8

.

ANSWER

2.6 Cancellation of Fractions

Recall the important principle:
If you multiply (or divide) the numerator and denominator by the same (non-zero)
number then you don’t change the value of the fraction.

This is the principle we have been using in reducing fractions to lowest terms:

ab

ac
=
b

c
.

We often refer to this procedure as cancellation. Each step in the following is an
example of cancellation:

−120

−180
=

120

180
=

20

30
=

2

3
.
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3 Algebra

3.1 Introduction

Algebra is an extension of arithmetic in which we allow letters to stand for num-
bers. It is governed by the same BIDMAS rules as arithmetic. The only difference
is in the notation. In algebra it is traditional to indicate multiplication by juxtapo-
sition (“placing alongside”) instead of using × or ∗; however we still use × for
the multiplication of two numbers. Thus we write

3x instead of 3× x
ab instead of a× b

3x2 instead of 3× x2
3× 2x instead of 3× 2× x.

Example 19. Evaluate the expression 3x2 − 4xy + xyz when x = 3, y = −2,
z = 1.

ANSWER

We apply our knowledge of BIDMAS and fractions to algebraic expressions. In
principle everything can appear straightforward until we start working on exam-
ples. The difficulty is that although an algebraic expression such as x + y, x2 or√
x2 + y2 stands for a number, we don’t know what the number is, and there-

fore operations such as cancellation become more complicated. If we perform an
operation on algebraic expressions, the result should be something that is always
correct (i.e., remains correct whatever numbers the letters stand for.

3.2 How To Expand a Bracket

So far all our expressions inside brackets have been built up using numbers, so we
could perform the calculations and end up with a single number. This approach
will not work with brackets containing algebraic expressions in which there are
letters as well as numbers because we do not know what the letters stand for. We
need a different technique. We expand the brackets, i.e., replace the bracket
expressions by equivalent non-bracketed ones.
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An important principle is that we can replace a multiple of a bracket with multiples
of the individual terms:

x(a+ b+ c+ d+ . . .) = xa+ xb+ xc+ xd+ . . .

and
(a+ b+ c+ d+ . . .)x = ax+ bx+ cx+ dx+ . . . .

Examples 20. Expand the following brackets and simplify as far as possible.

(a) 3(x+ y)

ANSWER

(b) 4(x− y)

ANSWER

(c) (2x− 3y + 4z)6− 5(3x− 5y − 6z)

ANSWER

(d) 3(x− 2y)− 4(y − 4x)

ANSWER

To expand the product of two brackets, multiply every term in the first bracket
with every term in the second bracket, e.g.,
(a+ b)(c+ d+ e)
= ac+ ad+ ae (←− multiply terms in second bracket by a)
+bc+ bd+ be. (←− multiply terms in second bracket by b)
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Examples 21. Expand the following brackets and simplify as far as possible.

(a) (x+ y − 2z)(2x− 3y + z)

ANSWER

(b) (x− y − 1)(x+ y − 1) + (x+ 2)(x+ 3)

ANSWER

COMMON ERROR

Applying a minus sign to the first term of a bracket but not to the terms that follow.

WRONG! −4(x− 2y + 3z) = −4x− 8y + 12z.

RIGHT! −4(x− 2y + 3z) = −4x+ 8y − 12z.
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3.3 Factorisation

Sometimes we need to create brackets via factorisation. We shall see this par-
ticularly in the context of solving equations. In the following examples we spot
factors that are common to each term. In essence we are seeing terms as if they
arose from removing brackets, and we are reinserting the brackets.

Examples 22. Factorise the following:

(a) 2a+ 6b.

ANSWER

(b) x2 + xy.

ANSWER
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(c) 2x3 − 7x2y + x4y2 − x2

ANSWER

3.4 Algebraic Fractions

Algebraic fractions are fractions in which the numerator and denominator are al-
gebraic expressions rather than simply numbers. The rules we have for combin-
ing fractions are exactly the same as with numbers. In particular, for addition
and subtraction, we need to construct common denominators (usually by cross-
multiplying). A complication is that it less clear what we mean by ‘lowest terms’
- we come back to this shortly.

Examples 23. Express each of the following as a single fraction (not necessarily
in lowest terms).

(a)
x

x− 1
+
x− 2

x+ 1
.

ANSWER
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(b)
x

x− 1
− x− 2

x+ 1
.

ANSWER

(c)
x

x− 1
× x− 2

x+ 1
.

ANSWER

(d)
x

x− 1
÷ x− 2

x+ 1
.

ANSWER
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3.5 Cancellation (Simplifying Fractions)

Recall again the important principle for numerical fractions:
If you multiply (or divide) the numerator and denominator by the same (non-zero)
number then you don’t change the value of the fraction.

The same principle applies to algebraic fractions:
If you multiply (or divide) the numerator and denominator by the same (non-zero)
algebraic expression then you don’t change the value of the fraction.

The concept of multiplying top and bottom by the same expression is easier than
division. An example would be the following:

x+ 1

x+ 2
=

(x− 1)(x+ 1)

(x− 1)(x+ 2)
=

x2 − 1

x2 + x− 2
.

(You should check that you get the same answers when multiplying out (x−1)(x+
1) and (x− 1)(x+ 2).)

The concept of dividing top and bottom by the same (non-zero) algebraic expres-

sion amounts to the following. Given a fraction of the form
AB

AC
, where A,B,C

are algebraic expressions, we can divide top and bottom by A to give:

AB

AC
=
B

C
.

We shall often refer to this process as cancellation. The expression
B

C
is simpler

than
AB

AC
, so we also call the process simplification.

Example 24. Simplify the following expression:
x2 + xy

x+ xy + xz
.

ANSWER
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Example 25. Show that (x−2)(x+3) = x2+x−6 and (x−2)(x−3) = x2−5x+6.

Hence simplify the following expression:
x2 + x− 6

x2 − 5x+ 6
.

ANSWER

The following appears to be a different approach. We are going to simplify
2x2 + 4y

6 + 6x
. We identify a number or algebraic expression that divides each term

of both the numerator and the denominator. The only possibility is the number 2.
We get

2x2 + 4y

6 + 6x
=

1 6 2x2 + 2 6 4y
3 6 6 + 3 6 6x

=
x2 + 2y

3 + 3x
.

We cannot simplify any further. In fact this is essentially the same as the first
approach, except that we are not explicitly writing down factorisations. We could
have written

2x2 + 4y

6 + 6x
=

2(x2 + 2y)

2(3 + 3x)
=
x2 + 2y

3 + 3x
.
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It is generally safest to factorise top and bottom as
AB

AC
and cancel to give

B

C
,

but it is acceptable to divide top and bottom by a number or algebraic expression,
provided that we divide each term.

Examples 26. Identify the error(s) in each of the following:

(a)
1 + 2

2 + 6
=

1 + 1 6 2
1 6 2 + 3 6 2

=
2

4
=

1

2
.

ANSWER

(b)
2 + 4

10 + 6
=
6 2 + 2 6 4

5 6 16 0 + 3 6 2
=

2

8
=

1

4
.

ANSWER

(c)
1 + x+ xy

x2 + y2
=

1+ 6x+ 6xy
x 6x2 + y2

=
1 + y

x+ y2
=

1 + 1 6y
x+ y 6y2

=
2

x+ y
.

ANSWER

35



3.6 Three Formulae You Must Memorise

(A) (x+ y)2 = x2 + 2xy + y2.

EXPLANATION

(B) (x− y)2 = x2 − 2xy + y2.

EXPLANATION

(C) (x+ y)(x− y) = x2 − y2.
EXPLANATION

Examples 27. Expand the following brackets using the formulas above:

(a) (2x+ 3y)2

ANSWER

36



(b) (3x− 4y)2

ANSWER

(c) (2x+ 3y)(2x− 3y)

ANSWER

Example 28. Calculate 103× 97 by using the third formula above.
ANSWER

3.7 Indices (Powers) and the Index Laws

Recall from Section 1 that

25 = 2× 2× 2× 2× 2 = 32

and
34 = 3× 3× 3× 3 = 81.

If n is a positive whole number then we write the product of n copies of x as

x.x.x. . . . .x (n factors)

or simply as
xn.
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We call x the base and we call n the index or power (or exponent). Note that x1

is just x. Computation with powers is simplified by using the INDEX LAWS.

FIRST INDEX LAW

xm.xn = xm+n

e.g., 22 × 23 = 22+3 = 25 (i.e., 4× 8 = 32).
EXPLANATION

SECOND INDEX LAW

(xm)n = xmn

e.g., (22)3 = 22×3 = 26 = 64 (i.e., 43 = 64).
EXPLANATION

THIRD INDEX LAW

(xy)n = xn.yn
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e.g., 63 = (2× 3)3 = 23 × 33 = 8× 27 = 216.
EXPLANATION

Examples 29. (a) Using the Index Laws (as appropriate), express 53 × 58 as a
single power of 5.

ANSWER

(b) Using the Index Laws (as appropriate), express (34)5 as a single power of 3.

ANSWER

(c) Using the Index Laws (as appropriate), express 27 × 57 as a power of a single
number.

ANSWER

We shall extend the idea of powers of x to allow for negative and fractional expo-
nents, i.e., we will consider powers xn where n is negative or fractional, or both.
We shall be careful to do this so that BIDMAS and the Index Laws still apply in
this wider context.
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NEGATIVE AND ZERO POWERS
If a 6= 0 and n is a positive integer, then

a−n means
1

an

e.g., 2−3 =
1

23
=

1

8
and

a

bn
= ab−n. Also, if a 6= 0 then

a0 means 1

Thus we have defined an for every whole number n. With these definitions, the
three Index Laws apply.

A particular application is that

am

an
= am × a−n = am+(−n) = am−n.

Examples 30. Express each of the following as a single power and evaluate that
power.

(a)
38

35

ANSWER

(b) (2−2)−2

ANSWER
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(c) 35 ÷ 3−5

ANSWER

FRACTIONAL POWERS
If n is a nonzero whole number, what meaning should we attach to a1/n? In fact,
the guiding principle is to define a1/n so that the Index Laws still apply.

For that, we must have

(a1/n)n = a(1/n)×n = a1 = a.

In other words a1/n is the nth root of a, often written n
√
a. For example, 91/2 =√

9 = 3 (because 32 = 9) and 81/3 = 3
√

8 = 2 (because 23 = 8).
If there is an apparent choice, then a1/n is positive. For example 32 = 9 and
(−3)2 = 9, but

√
9 = 3 (not −3).

Examples 31. Evaluate each of the following.

(a) 1211/2

ANSWER

(b) (−125)1/3

ANSWER
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(c) 321/5

ANSWER

(d) 16−1/2

ANSWER

More generally, in accordance with the Index Laws, we have

am/n = (a1/n)m = (am)1/n = ( n
√
a)m = n

√
(am)

Examples 32. Express each of the following as a single power of 2.

(a) 22 × 4−3 ×
√

8

ANSWER
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(b)
23/2 × 16× (1/2)2

3
√

4
ANSWER

Examples 33. Express each of the following as a single power of a.

(a)

√
a3.a−5/3

a−2

ANSWER

(b) 3

√
a5.(a3)2

a2

ANSWER
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Examples 34. (a) Simplify
183 ×

√
24

124 × 162
(i.e., write it in the form 2α3β).

ANSWER

(b) Simplify
(xy)5

(x2)2y
(i.e., write it in the form xαyβ).

ANSWER
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3.8 BIDMAS Revisited

Brackets
Indices
Division
Multiplication
Addition
Subtraction

• If an expression involves just + and −, process from left to right.

e.g., 3 + 4− 5− 6 + 7 + 9 = 12.

• If an expression involves just × and ÷, process from left to right.

e.g., 3÷ 4× 5× 12 = 45.

• If an expression involves +,−,× and÷, first process× and÷, then process
+ and −.

e.g., 3× 4− 7× 12÷ 14 + 5÷ 2× 6 = 12− 6 + 15 = 21.

• If an expression involves +, −, ×, ÷ and powers, process the powers first,
then × and ÷, and finally + and −.

e.g., 4× 32 = 4× 9 = 36 (and not 122).

e.g., 3x2 means “3 times the square of x”, and not the square of 3x, which
is (3x).(3x) = 9x2.

• If an expression contains brackets, simplify each bracket before combining
it with other terms.

e.g., 6× (2 + 3× 5)2 − (5× 3− 3)÷ 6
= 6× (2 + 15)2 − (15− 3)÷ 6
= 6× 172 − 12÷ 6
= 6× 289− 2 = 1734− 2
= 1732.
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4 Equations

4.1 One Linear Equation in One Unknown

An equation in the ‘unknown’ x takes the form

E1 = E2

where E1 and E2 are algebraic expressions and one or both involves x. We some-
times call x a ‘variable’. We could use a different letter. We could have more than
one variable (so more than one letter).

Examples are:

• x+ 1 = 3.

• 3x+ 2 = 5x− 2y.

• x2 + x = 6.

• xy + 3x+ y + 1 = fx+ gh.

In Chapter 3 we looked at algebraic expressions where the letters stood for num-
bers, generally any numbers or combination of numbers. Now we ask what num-
bers or combination of numbers give the same value for the two expressions in the
equation.

For example x + 1 and 3 have the same value if x = 2 (and in fact not for other
values of x).

If we start from 3x + 2 = 5x − 2y we would find that x = y + 1: this means
that the combinations of values of x and y for which the equation holds are those
arrived at by choosing any value for y and then choosing x as y + 1 (for example,
y = 0, x = 1 or y = 2, x = 3); we could alternatively arrive at y = x−1, meaning
that the combinations of values of x and y for which the equation holds are those
arrived at by choosing any value for x and then choosing y as x− 1 (for example,
x = 1, y = 0 or x = 3, y = 2).

For x2 +x = 6, we might observe that x = 2 works, but actually so does x = −3:
are they the only possibilities?

In the fourth example we might aim to write x in terms of y, f, g and h without
knowing the values taken by these letters. In other words, if we knew the values
of y, f, g and h, do we know what x would have to be?
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To solve an equation in x means to determine the values of x for which the equa-
tion is true. These values could be algebraic expressions. In many cases, we can
achieve this by “making x the subject”, that is, by rearranging the equation so
that it takes the form x = E, where E is a number or an algebraic expression not
involving x. For example, from the equation xy+3x+y+1 = fx+gh we would

obtain x =
gh− y − 1

y + 3− f
.

A linear equation in one unknown x is of the form

ax+ b = cx+ d

where a, b, c, d are fixed numbers or expressions not involving x.

To solve a linear equation (or indeed any other sort of equation), we may do the
following:

(I) Add the same value to each side.

(II) Subtract the same value from each side.

(III) Multiply each side by the same (non-zero) value.

(IV) Divide each side by the same (non-zero) value.

In performing these operations we obtain an equivalent linear equation, one which
has the same solution.

From ax+ b = cx+ d:

Subtract cx from each side: ax+ b− cx = cx+ d− cx, i.e., ax+ b− cx = d. We
have moved the term involving x on the right to the left (and changed sign in the
process). All the terms involving x are now on the left.

Subtract b from each side: ax + b − cx − b = d − b, i.e., ax − cx = d − b. We
have moved the term not involving x on the left to the right (and changed sign in
the process). All the terms not involving x are now on the right.

On the left, take out x as a factor: x(a− c) = d− b.

Divide both sides by a− c (assuming it is 6= 0). We end up with

x =
d− b
a− c

.
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Example 35. Solve the equation 5x+ 7 = 3− x for x.
ANSWER

Example 36. Solve the equation 17− 2T = 3T + 2 for T .
ANSWER

Example 37. Solve the equation 3x+ 2 = 5x− 2y for x.
ANSWER
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Example 38. Solve the equation 7θ + r − 2h = 4θ − 3r + 2h+ rh for θ.
ANSWER

Examples 39. Solve the following equations for x.

(a) 4(x− 3) = 3(x− 2)

ANSWER

(b) (2x+ 1)(x− 2) = (x+ 3)(2x− 3)

ANSWER
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(c)
2x+ 4

4
=
x− 2

3
ANSWER

(d)
2

x+ 2
=

1

x− 17

ANSWER
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(e)
3x+ 1

x+ 2
=

6x− 5

2x+ 1
ANSWER

4.2 Two Simultaneous Linear Equations in Two Unknowns

We now consider simultaneous equations in two unknowns (or we might say ‘two
variables’). An example would be

3x + 4y = 11 (1)
2x + 3y = 8 (2)

.

We find the values of x and y that satisfy both equations at the same time. The
numbers (1) and (2) are just labels. Such systems can be solved by elimination:
eliminate one of the unknowns to get a single equation in the other unknown —
and we saw in the last section how to solve that.
The variables are not always necessarily x, y. They could just as easily be a, b or
r, h or P,Q or x1, x2.

ELIMINATION METHOD (Eliminating y)
We shall explain this method by reference to the example above.

3x + 4y = 11 (1)
2x + 3y = 8 (2)

.
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Step One: Multiply (1) and (2) by suitable numbers so that the coefficients of y
have the same size (though possibly of opposite sign).
Here we multiply (1) by 3 and (2) by 4:

9x + 12y = 33 (3) = (1)× 3
8x + 12y = 32 (4) = (2)× 4

.

Notice that each equation has three terms (two on the left and one on the right).
We have multiplied each term by 3 in equation (1) and each term by 4 in equation
(2).
Notice also that we have new numbers for the new equations.
The principle is that equations (3) and (4) are equivalent to (1) and (2) in that there
are exactly the same solutions for x, y.

Step Two: If coefficients of y have the same sign, subtract (3) from (4); if they
have opposite sign, add (3) to (4). Here we subtract to get:

9x + 12y = 33 (3)
−x = −1 (5) = (4)− (3)

.

Notice that we have subtracted corresponding terms.
Again the principle is that equations (3) and (5) have the same solutions as (1) and
(2).

Step Three: Solve (5) for x. Here −x = −1 so x = 1.
Step Four: Substitute this value for x in (3), and solve the resulting equation for
y:
9× 1 + 12y = 33
whence 12y = 33− 9 = 24, so y = 2.
Solution: x = 1, y = 2.
Check! Substitute these values into the original equations (1) and (2) to check
that they work.

ELIMINATION METHOD (Eliminating x)
We shall look at the same example, but instead eliminate x. We should get the
same answer!

3x + 4y = 11 (1)
2x + 3y = 8 (2)

.

Step One: Multiply (1) and (2) by suitable numbers so that the coefficients of x
have the same size (though possibly of opposite sign).
Here we multiply (1) by 2 and (2) by 3:

6x + 8y = 22 (3) = (1)× 2
6x + 9y = 24 (4) = (2)× 3

.

52



Step Two:
6x + 8y = 22 (3)

y = 2 (5) = (4)− (3)
.

Step Three: Solve (5) for y. Here y = 2.
Step Four: Substitute this value for y in (3), and solve the resulting equation for
x:
6x+ 8× 2 = 22
whence 6x = 22− 16 = 6, so x = 1.
Solution: x = 1, y = 2.
Check!

Examples 40. Solve the following simultaneous equations:

(a)
4x + 5y = 8 (1)
3x − 2y = 29 (2)

.

ANSWER
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(b)
2x + 3y = 17
−x + 5y = 11

.

ANSWER
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(c)
s + 4t = 7
5s − 2t = 13

.

ANSWER
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4.3 The Two Degenerate Cases

We have seen how to solve one linear equation in one unknown. To find the
values of two unknowns we need two equations. Normally, there will be a unique
solution. But there are two degenerate cases, where there are two equations but
there is not a unique solution.

First Degenerate Case
Consider the equations:

2x + 3y = 6 (1)
4x + 6y = 12 (2)

.

Step 1:
4x + 6y = 12 (3) = (1)× 2
4x + 6y = 12 (2)

.

We have the same equation twice. This system has infinitely many solutions: for
each number c, if we take x = c, then we have 4c+ 6y = 12, so 6y = 12− 4c and

therefore y =
12− 4c

6
=

6− 2c

3
. In other words we have a ‘general solution’:

x = c, y = (6− 2c)/3.

Second Degenerate Case
Consider the equations:

2x + 3y = 6 (1)
2x + 3y = 5 (2)

.

We don’t need Step 1. Step 2:

2x + 3y = 6 (1)
0 = −1 (3) = (2)− (1)

.

The outcome 0 = −1 is not possible. This system has no solutions. Looking at
the original equations we see that any solutions x and y would have to make the
left hand side add up to 5 and also to 6, which is impossible.
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5 Coordinate Geometry

5.1 The Coordinate Plane

The coordinate plane is a flat surface, like a tabletop, but extending to infinity in
all directions. On it are drawn two straight lines, called the x-axis and the y-axis,
which meet at right angles as shown in a point O, called the origin.

PICTURE:

The position of any point P in the coordinate plane can be completely specified
by 2 numbers:

x = the distance of P in the direction of the x-axis from the origin
y = the distance of P in the direction of the y-axis from the origin,

where x is taken to be positive to the right of the y-axis and negative to the left,
with y taken to be positive above the x-axis and negative below the x-axis. Some
examples are plotted on the picture above. The point P is denoted by (x, y), and
the plane is also called the xy-plane. These coordinates are sometimes called
Cartesian coordinates.

5.2 The Distance Formula

We are going to calculate the distance between two points. Recall Pythagoras’
Theorem: In a right-angled triangle the square of the hypotenuse (the side opposite
the right angle) is equal to the sum of the squares of the other two sides.
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a

b

c

a2 + b2 = c2

We want a formula for the distance d between two points P = (x1, y1) and Q =
(x2, y2) in the plane. We plot the two points and then construct a third point so
that we have a right-angled triangle.

PICTURE

Denoting the distance between P and Q by d (the length of the hypotenuse), we
calculate the other two side lengths as x2 − x1 and y2 − y1. Then, by Pythagoras’
Theorem,

d2 = (x2 − x1)2 + (y2 − y1)2

and so (taking square roots on both sides)

d =
√

(x2 − x1)2 + (y2 − y1)2.

Note that we do not have to remember the distance formula – if necessary we can
reconstruct it using Pythagoras’ Theorem.
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Examples 41. Find the distances between the following pairs of points.

(a) (4, 2) and (7, 6).

ANSWER

(b) (−1,−3) and (4, 9).

ANSWER

5.3 The Equation of a Straight Line

An equation of the form

ax+ by = c, (*)

where a, b, c are numbers, is the equation of a straight line, in the sense that if
we take all the pairs of numbers x, y satisfying the equation (*), then the points
(x, y) lie on a straight line.

Consider the straight line 4x+ 3y = 11. We can say that the points (2, 1), (5,−3)
and (−7, 13) all lie on the line, since
4× 2 + 3× 1 = 8 + 3 = 11,
4× 5 + 3× (−3) = 20− 9 = 11, and
4× (−7) + 3× 13 = −28 + 39 = 11;
but (−6, 2) does not, since 4× (−6) + 3× 2 = −24 + 6 = −18 6= 11.

5.4 The Form y = mx+ c

It is often convenient to recast (*) in the form

y = mx+ c

i.e., to rearrange (*) so that y is the subject of the equation. (N.B.: We can’t always
do this! See later.) The number c here is not generally the same as the number c
in (*).
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Examples 42. Rearrange each of the following into the form y = mx+ c.

(a) 3x+ y = 5

ANSWER

(b) 7y − 3x = 5

ANSWER

(c) ax+ by = c

ANSWER

The form y = mx + c is unique: you can’t write the equation in this form in two
different ways. This means that the numbersm and c tell you something about the
line. We call m the gradient or slope of the line y = mx+ c.

(i) If m > 0 then the line slopes upward.

(ii) If m = 0 then the line is level.

(iii) If m < 0 then the line slopes downward.

We call c the intercept. It tells you where the line crosses the y-axis, i.e., at the
point (0, c). (So the gradient of the line ax + by = c is −a/b and it crosses the
y-axis at the point (0, c/b).)
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Examples 43. (a) Find the gradient of the line 2y + 7x = 3 and the point where
it crosses the y-axis.

ANSWER

(b) Find the equation of the line with gradient 4 which passes through the point
(1,−2).

ANSWER

(c) Find the equation of the line with gradient −2 which passes through the point
(−17, 23).

ANSWER
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(d) Find the equation of the line with gradient 0 which passes through the point
(4, 5).

ANSWER

5.5 Vertical Lines

Some lines can’t be put in the form y = mx+ c. These are the vertical lines.

Example 44. Draw the straight line through the points (2,−1) and (2, 3).
ANSWER

We see that all the points lie on a vertical line, and they all have the same x-
coordinate, 2. Thus each point on the line satisfies the equation x = 2. In general
a vertical line has equation of the form x = k (where k is a number). We don’t
define a gradient for such lines, i.e., they don’t have a gradient.

5.6 The Gradient of the Line Through P = (x1, y1) and Q =
(x2, y2)

Case 1: x1 6= x2 so x1 − x2 6= 0
Let PQ have equation y = mx+ c. Then, since both P and Q lie on the line, we
have

y1 = mx1 + c (1)
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y2 = mx2 + c (2).

Therefore (2)− (1) gives us y2 − y1 = mx2 −mx1 = m(x2 − x1). Thus

m =
y2 − y1
x2 − x1

=
y1 − y2
x1 − x2

=
difference in y
difference in x

always provided the differences are calculated in the same order. (Note that we
can only divide by x2 − x1 because x2 − x1 6= 0.)

Examples 45. Find the gradients of the lines passing through the following pairs
of points.

(a) (2,−3) and (1, 4)

ANSWER

(b) (4, 3) and (1, 2)

ANSWER

(c) (2, 5) and (−1, 5)

ANSWER

(d) (−3,−8) and (−1,−2) .

ANSWER
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Case 2: x1 = x2
The line is vertical and the gradient is undefined.

5.7 The Equation of the Line Through P = (x1, y1) and Q =
(x2, y2)

Case 1: x1 6= x2.

• Calculate m =
y2 − y1
x2 − x1

.

• We shall find the equation of the line in the form y = mx + c. We have
found m, now we have to find c.

• We can use either of the points P = (x1, y1) or Q = (x2, y2) to find c.

Examples 46. Obtain the equations of the lines passing through the following
pairs of points.

(a) (1, 5) and (−2,−1)

ANSWER

(b) (2,−1) and (6, 1)

ANSWER
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Case 2: x1 = x2
Then the line is vertical and has equation x = x1 (or x = x2, which is the same
thing).

Example 47. Obtain the equation of the line passing through the pair of points:
(4, 3) and (4,−1).
ANSWER

5.8 The Equation of the Line Through a Given Point and Par-
allel to a Given Line

Two lines are said to be parallel if they have the same gradient or if both are
vertical. Alternatively, we could say that two lines are parallel if either they never
meet or if they are the same line.

Example 48. Find the equation of the line that is parallel to 2x + 3y = 7 and
passes through (1, 4).
ANSWER

65



5.9 When Are Two Lines Perpendicular?

Two lines are perpendicular if they cross at right angles. Consider the perpendic-
ular lines `1 and `2 below.

O

(a, b)

(−b, a)

b

a

−b
a

`1

`2

The gradient of `1 is
b

a
and the gradient of `2 is

a

−b
=
−a
b

. Notice that when we

multiply these together we get
b

a
× −a

b
= −1.

In general, if we are given a line ` of gradient m 6= 0, then any line perpendicular

to ` will have gradient
−1

m
. If ` has gradient 0, then any perpendicular line will be

vertical. If ` is a vertical line, then any perpendicular line will be horizontal.

5.10 The Equation of the Line Through a Given Point and Per-
pendicular to a Given Line

Example 49. Find the equation of the line that is perpendicular to y = 4x+ 3 and
passes through (−1, 3).
ANSWER
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5.11 The Point of Intersection of Two Lines

Suppose we are given the equations of two lines: 3x + 4y = 5 and 2x − 3y = 9,
and we wish to find the point at which they meet. In other words we want to find
the values of x and y that satisfy both equations at the same time. Then we need
to solve a pair of simultaneous equations:

3x + 4y = 5 (1)
2x − 3y = 9 (2)

.

The solution is as follows:
ANSWER

67



5.12 The Degenerate Cases Explained

When we considered pairs of simultaneous equations, we found that there were
two degenerate cases. The degenerate cases can now be explained geometrically.

(I) INFINITELY MANY SOLUTIONS For example,
x+ y = 1
2x+ 2y = 2.

The “two” lines are really the same line. Therefore EVERY point on this
line is a “point of intersection” (i.e., lies on both lines). So there are in-
finitely many points of intersection.

(II) NO SOLUTIONS For example,
x+ y = 1
x+ y = 2.

The two lines are distinct and parallel, so they never meet. There is no point
of intersection.

5.13 Distance of a Point from a Line

Suppose that we wish to find the (shortest) distance of a point from a line. We
consider an example.

Example 50. Find the distance of the point (1, 1) from the line 5y + 2x = 10.
ANSWER (Part 1) Sketch the line 5y + 2x = 10, the point (1, 1) and the line
through (1, 1) that is perpendicular to 5y + 2x = 10.
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ANSWER (Part 2) Calculate the equation of the perpendicular line constructed
above and its point of intersection P with 5y + 2x = 10. Then calculate the
distance from (1, 1) to P .
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6 Quadratic Equations

6.1 Introduction

Quadratic equations in x are equations of the form

ax2 + bx+ c = 0

where a 6= 0. (If a = 0, the equation is linear.) The word “quadratic” indicates
that the square is the highest power of the variable that occurs in the equation.

We shall see that there are several possible approaches to solving quadratic equa-
tions. The choice of approach depends to some extent on the nature of the equa-
tion, and to some extent on personal preference.

6.2 Completing the Square (1)

We start with a technique known as “Completing the Square”. Later we shall see
a formula – it is obtained by completing the square.

Completing the Square is a technique for converting an expression of the form

x2 + bx+ c,

where b and c are constants, to one of the form

(x+B)2 + C,

where B and C are constants.

First recall the formula: (x + y)2 = x2 + 2xy + y2. If we apply this to (x + B)2

we get x2 + 2Bx+B2. Similarly (x−B)2 = x2 − 2Bx+B2.

An example
Suppose we are given x2 + 4x and we wish to write it in the form (x+B)2 + C.

• We might remember that (x+ 2)2 = x2 + 4x+ 4.

• That means that x2 + 4x = (x+ 2)2 − 4.

• In other words B = 2 and C = −4.
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Another look at the example
Suppose we are given x2 + 4x and we wish to write it in the form (x+B)2 + C.

• Calculate (x+B)2 = x2 + 2Bx+B2. Compare this to x2 + 4x: both start
with x2 and we compare 2Bx with 4x. This tells us 2B = 4, i.e., B = 2.

• As before we have (x+ 2)2 = x2 + 4x+ 4, so x2 + 4x = (x+ 2)2 − 4.

THE TECHNIQUE PART 1: x2 + bx

(I) Supose we are given x2+bx and we wish to write it in the form (x+B)2+C.

(II) Calculate (x+B)2 = x2 + 2Bx+B2. Compare this to x2 + bx: both start

with x2 and we compare 2Bx with bx. This tells us 2B = b, i.e., B =
b

2
.

(III) Now
(
x+

b

2

)2

= x2 + 2× b

2
x+

(
b

2

)2

= x2 + bx+

(
b

2

)2

, so x2 + bx =(
x+

b

2

)2

−
(
b

2

)2

.

Examples 51. Complete the square for each of the following.

(a) x2 + 6x

ANSWER

(b) x2 − 8x

ANSWER
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(c) x2 − 13x

ANSWER

THE TECHNIQUE PART 2: x2 + bx+ c
Complete the square for x2 + bx and add the number c to the result.

Examples 52. Complete the square for each of the following.

(a) x2 + 4x+ 6

ANSWER

(b) x2 − 6x+ 8

ANSWER

(c) x2 − 4x− 1

ANSWER
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(d) x2 + 3x+ 2

ANSWER

(e) x2 − 7x+ 11

ANSWER

6.3 Completing the Square (2)

We often need to complete the square with expressions of the more general form
ax2 + bx + c, i.e., convert to the form a(x + B)2 + C. We take out factor a and
then proceed as before. The process is best seen by means of examples.
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Examples 53. Complete the square for each of the following.

(a) 2x2 + 3x+ 4

ANSWER

(b) 3x2 + 10x− 5

ANSWER
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Completing the square is a technique which has many applications. Here is just
one. Suppose we need to find the smallest value that 3x2 + 10x− 5 can take, as x
ranges across all possible values.

By completing the square, we can rewrite it as

3

(
x+

5

3

)2

− 40

3
.

The square part is always ≥ 0, so the smallest possible value is −40

3
, and this

value is attained when x = −5

3
.
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6.4 The Quadratic Equation Formula

We shall now see how to obtain a formula for the roots of the quadratic equation
ax2 + bx+ c = 0. We shall consider the relatively easy case where a = 1, i.e., the
equation x2 + bx+ c = 0. If we complete the square for x2 + bx+ c, our equation
becomes (

x+
b

2

)2

− b2

4
+ c = 0.

Starting from (
x+

b

2

)2

− b2

4
+ c = 0

we rearrange this equation to get(
x+

b

2

)2

=

(
b2

4
− c
)

=
b2 − 4c

4
.

Taking square roots we get

x+
b

2
= ±

√
b2 − 4c

4
= ±
√
b2 − 4c√

4
= ±
√
b2 − 4c

2
.

Hence

x = − b
2
±
√
b2 − 4c

2
=
−b±

√
b2 − 4c

2
.

For the general quadratic equation ax2 + bx + c = 0, the procedure is similar
but more complicated. It ends up with the following formula. It is simplest to
MEMORISE THE FORMULA!

x =
−b±

√
b2 − 4ac

2a

“Minus b plus or minus the square root of b2 − 4ac

ALL OVER 2a”

Note the ALL OVER.

76



Examples 54. Solve the following quadratic equations using the formula.

(a) 6x2 + x− 1 = 0

ANSWER

(b) x2 − 4x− 21 = 0

ANSWER

6.5 How Many Roots Does a Quadratic Equation Have?

The quadratic equations above have two roots (i.e., two solutions), since you can
take either the positive or the negative of the square root: ±

√
b2 − 4ac. Let us

consider two other examples.

77



Examples 55. Solve the following quadratic equations using the formula.

(a) 3x2 + 6x+ 3 = 0

ANSWER

(b) x2 − x+ 2 = 0

ANSWER

We see that sometimes there are two solutions, but there are two other possibilities:
some equations have just one solution and others have no solution at all. It all
depends on the number inside the square root.

The number b2 − 4ac is called the discriminant of the quadratic and is often
denoted by ∆. Thus:

• If b2 − 4ac > 0, there are two solutions to the quadratic equation.

• If b2 − 4ac = 0, there is one solution to the quadratic equation (sometimes
thought of as a repeated solution).

• If b2 − 4ac < 0, there are no (real) solutions to the quadratic equation.
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6.6 Geometrical Interpretation

Given a quadratic expression ax2+bx+c, the graph y = ax2+bx+c is obtained by
plotting points: for each value of x, we calculate the value of y = ax2+bx+c and
plot the point (x, y). For example, if y = x2, we plot the points (0, 0), (1, 1), (2, 4),
(−1, 1), (−2, 4) and so on and we get

In general, if a > 0 we get a graph with the same general shape.

The line y = 0 is the x-axis. The points where y = ax2 + bx+ c and y = 0 at the
same time correspond to the values of x where ax2 + bx + c = 0. Geometrically
they are the points that lie on the parabola y = ax2 + bx+ c and on the line y = 0,
i.e., where the parabola and the line meet.

The following pictures illustrate ways in which the parabola and the line might
occur (we assume that a > 0).

In the graph above there are two points of intersection, corresponding to two so-
lutions to the quadratic equation ax2 + bx+ c = 0.
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In the graph above there is one point of intersection, corresponding to one solution
to the quadratic equation ax2 + bx+ c = 0.

In the graph above there is no intersection, corresponding to no solutions to the
quadratic equation ax2 + bx+ c = 0.

6.7 Solution by Factorisation

Sometimes we can solve a quadratic equation more quickly by factorisation. Let
us start with the quadratic equation

x2 + bx+ c = 0,

where b and c are numbers. We suppose that x2 + bx + c can be written as (x +
m)(x+ n), where m and n are numbers that we do not yet know the values of.

If this is the case, then x2 + bx+ c and (x+m)(x+ n) are the same expressions.
Therefore if we multiply out (x+m)(x+ n) = x2 + (m+ n)x+mn we should
still have x2 + bx + c. Thus m + n = b and mn = c. We look for numbers m,n
that have these properties – we use intelligent trial and error.
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Examples 56. Solve the following quadratic equations using factorisation.

(a) x2 + 8x+ 15 = 0

ANSWER

(b) x2 + 2x− 15 = 0

ANSWER

If we are given a more general quadratic equation equation ax2 + bx+ c = 0, then
we can divide both sides of the equation by a – remember that we have to divide
each term on the left by a. However this is only worth doing if it results in an easy
factorisation.
For example, if we are given the equation: 3x2 + 6x − 45 = 0, we could divide
through by 3 to get x2 + 2x− 15 = 0 (see above for the solution).
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7 Circles

7.1 Equation of a Circle

Given a point (a, b) and a positive number r, a circle with centre (a, b) and radius
r is the set of points (x, y) at distance r from (a, b).

To say that (x, y) is at distance r from (a, b) is equivalent to
√

(x− a)2 + (y − b)2 =
r, i.e.,

(x− a)2 + (y − b)2 = r2.

This is one form of the equation of a circle.

If we expand the brackets, we get
x2 − 2ax+ a2 + y2 − 2by + b2 = r2.
i.e., x2 + y2 − 2ax− 2by + (a2 + b2 − r2) = 0.

This is of the general form x2 + y2 + 2gx+ 2fy + c = 0 which is the standard
form of the equation of a circle.

Example 57. Derive the equation of the circle with centre (2, 3) and radius 5,
expressing your answer in standard form.
ANSWER
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Example 58. Find the centre and radius of the circle: x2 + y2− 2x− 4y− 4 = 0.
ANSWER

We might ask: does an equation x2 + y2 + 2gx+ 2fy + c = 0 always respresent
a circle?
The answer is: no, not always. For example, there are no points satisfying the
equation x2 + y2 + 1 = 0 (because x2 + y2 + 1 ≥ 1). There are other examples,
but you just need to be aware that there is not always a circle.

7.2 How to Find the Points Where a Line Meets a Circle

We wish to find the points of intersection of the straight line y = mx+ d and the
circle x2 + y2 + 2gx+ 2fy + c = 0.
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Thus we seek the points (x, y) which satisfy both of the equations

y = mx+ d and x2 + y2 + 2gx+ 2fy + c = 0.

If we substitute mx + d for y in the circle equation, we get a quadratic equation
in x:

x2 + (mx+ d)2 + 2gx+ 2f(mx+ d) + c = 0.

The roots of this quadratic equation are the x-coordinates of the points of inter-
section of the straight line and the circle.
We can then use the equation y = mx+ d to get the corresponding y-coordinates.

N.B. If the quadratic equation has NO SOLUTIONS, then this means that the
straight line never meets the circle. If it has A SINGLE SOLUTION then the line
is tangent to the circle.

Example 59. Find the points of intersection of the straight line y = x+ 3 and the
circle x2 + y2 − 2x− 4y + 1 = 0.
ANSWER
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7.3 How To Find The Intersection Points of Two Circles

There are a number of ways in which two circles might or might not meet, as
shown in the following pictures:

What we observe is that two circles meet in 2 points, in no points, or in 1 point.

We shall see how to find the points of intersection of two circles by means of an
example.

Example 60. Find the points of intersection of the circles
x2 + y2 + x− 3y − 10 = 0
2x2 + 2y2 − x− 2y − 15 = 0
ANSWER
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8 Trigonometry

8.1 What is Trigonometry?

Trigonometry is the study of triangles, the lengths of their sides and the sizes of
their angles.

It builds on the fact that if two triangles have the same shape then (i) corresponding
angles are equal, (ii) corresponding sides are in proportion.

In fact, the word “trigonometry” comes from the Greek: “tri”=three, “gon”=side,
“metry”=measurement.

Trigonometry has its origins in ancient Babylon (modern Iraq). The Babylonians
were the first to measure angles in degrees. They probably divided the circle into
360◦ because the annual progress of the Sun in its (apparent) orbit round the earth
seemed to them to be divided into 360 days.

The ancient Egyptians were interested in triangles because they wanted to measure
land for tax purposes.

Trigonometry as we know it began with the ancient Greeks, who used it in their
astronomical and geographical studies (nothing in this chapter would be news to
an ancient Greek, though the notation would certainly be unfamiliar).

Trigonometry is now an essential tool for physicists, chemists and surveyors. In
1852, it was used to calculate the height of Mount Everest to within 30 feet, al-
though the mountain was not climbed until 1953. In fact the measurements used
in the calculation were taken at a distance of 150 miles. And when human beings
land on Mars, you can be sure that trigonometrical calculations will be involved.

We shall concentrate on one of the basic techniques of trigonometry: solving a
triangle, that is, working out the lengths of its three sides and the sizes of its three
angles.

8.2 Degrees or Radians?

Traditionally, angles were measured in degrees:
360◦ ←→ circle 180◦ ←→ half-circle 90◦ ←→ quarter-circle

But measurement in degrees is ultimately based on the fact that the Earth takes ap-
proximately 360 days to orbit the Sun, so it would appear completely unnatural to
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anyone who was not an Earth dweller, for instance a Martian. We shall henceforth
work with radians, a universal measure which does not depend on local condi-
tions in the Solar System, but merely on the ratio of the circumference of a circle
to its diameter.

The rule is
2π radians = 1 circle = 360◦,

so 1 radian is about 57.3◦. A circle of radius 1 has circumference of length 2π
units.

A circle of radius r has circumference of length 2πr units. Therefore a sector with
angle θ radians has an arc length that is θ/2π of the circumference of the circle,
so has arc length

θ

2π
× 2πr = θr.

r

r

θ

CONVERSION RULES

θ◦ −→ θ × π

180
radians.

θ radians −→ θ × 180

π

◦
.

N.B. It is common to express radians as multiples of π.
360◦ = 2π radians 180◦ = π radians (so the angles in a triangle add up to π)
90◦ = π/2 radians 60◦ = π/3 radians 45◦ = π/4 radians 30◦ = π/6 radians
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Examples 61. Convert each of the following to radians:

(a) 300◦

ANSWER

(b) 160◦

ANSWER

(c) −15◦

ANSWER

Examples 62. Convert each of the following from radians to degrees:

(a) 2π/3

ANSWER

(b) −3π/8

ANSWER

(c) 17π/15

ANSWER
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N.B. In the exams we will assume that all calculators are set to radians and all
angle sizes will be measured in radians, so SET YOUR CALCULATOR TO RA-
DIANS NOW. Every year some students lose valuable marks because their cal-
culators are set to degrees. Why work in radians rather than in degrees? Because
when you do calculus (in SFY0003), you must work in radians. It is impossible
to work in degrees.

8.3 The Three Principal Trig Functions

Consider a right-angled triangle with angles θ, φ and π/2, as shown.

π/2

φ

θ

opp

adj

r

In the picture above, ‘adj’ is length of the side adjacent to θ, ‘opp’ is the length of
the side opposite θ and r is the length of the hypotenuse.
Since the angles in a triangle add up to π, we have θ+φ+π/2 = π, so θ+φ = π/2.
Thus

θ = π/2− φ and φ = π/2− θ.

By Pythagoras’ Theorem we have r2 = adj2 + opp2. Note though that it only
applies to right-angled triangles.

The three main trig functions are the sine, the cosine and the tangent. (The word
“sine” comes from the Latin “sinus”, meaning “bay”, which is in turn derived
from a Sanskrit word “jiva”.) They are defined as follows:

sin(θ) =
opp
r
, cos(θ) =

adj
r
, tan(θ) =

opp
adj

.

It is usual to write simply sin θ, cos θ and tan θ. Notice that if the bottom line is
horizontal, then tan θ is the gradient of the hypotenuse.

There is a mnemonic that some people find useful :

SOHCAHTOA “Sin=Opp/Hyp; Cos=Adj/Hyp; Tan=Opp/Adj.”
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Note that, since the hypotenuse is the longest side in a right-angled triangle, we
have 0 < sin θ < 1 and 0 < cos θ < 1. But 0 < tan θ <∞.

Rearranging sin θ =
opp
r

and cos θ =
adj
r

, we get opp = r sin θ and adj = r cos θ.
In other words the length of the adjacent side is r cos θ and the length of the
opposite side is r sin θ. This allows us to calculate side lengths in a right-angled
triangle when we know the length of the hypotenuse and an angle.

Example 63. Find the lengths adj and opp in the triangle below when θ = 0 · 45
(radians).

π/2θ

opp

adj

7

ANSWER

Observe that
sin θ

cos θ
=

opp
r
÷ adj

r
=

opp
r
× r

adj
=

opp
adj

= tan θ

so

tan θ =
sin θ

cos θ

Let us look again at the triangle below, but this time consider the angle φ.

π/2

φ

θ

opp

adj

r
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The side adjacent to φ has length opp, while the side opposite φ has length adj.
Therefore

sinφ =
adj
r
, cosφ =

opp
r
, tanφ =

adj
opp

.

It follows that

sinφ = cos θ, cosφ = sin θ, tanφ =
1

tan θ
.

Recall that φ =
π

2
− θ, so

sin
(π

2
− θ
)

= cos θ and cos
(π

2
− θ
)

= sin θ.

There are two triangles for which sin, cos and tan have nice values.

The 1–
√

3–2 triangle.

π/2

π/3

π/6

1

√
3

2

This triangle has angles of sizes π/6, π/3, π/2.

We see that

sin
π

6
= ANSWER ; cos

π

6
= ANSWER ; tan

π

6
= ANSWER .

sin
π

3
= ANSWER ; cos

π

3
= ANSWER ; tan

π

3
= ANSWER .
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The 1–1–
√

2 triangle.

π/2

π/4

π/4

1

1

√
2

This triangle has angles of sizes π/4, π/4, π/2. We see that

sin
π

4
= ANSWER ; cos

π

4
= ANSWER ; tan

π

4
= ANSWER .

8.4 Pythagoras Revisited

When we square sin θ, cos θ, and tan θ, there is a special notation:

(sin θ)2 is often written sin2 θ

(cos θ)2 is often written cos2 θ

(tan θ)2 is often written tan2 θ.

The same principle applies to higher powers, for example (sin θ)3 is often written
sin3 θ, but we shall not need that in SFY0001.

Suppose we have a right-angled triangle with the hypotenuse of length 1 and angle
θ as shown below. Then adj = cos θ and opp = sin θ.

π/2θ

sin θ

cos θ

1

From Pythagoras’s Theorem we obtain sin2 θ + cos2 θ = 1 .
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8.5 Trigonometric Functions for General Angles

So far we’ve only considered right-angled triangles and so we have defined sin θ,
cos θ and tan θ only for angles with 0 < θ < π/2. We shall now consider other
values of θ and consider what sin θ, cos θ and tan θ might mean.

We start with a circle of radius 1 about the origin in the xy-plane, and a point
(x, y) on the circle, chosen with x, y > 0. Construct a right angled traingle as
shown in the picture. We can label the lengths of the sides as shown, and calculate
sin θ, cos θ and tan θ in terms of the coordinates.

(x, y)

θ

1

x

0 < θ <
π

2

y
sin θ = y

cos θ = x

tan θ =
y

x

This suggests how we might think of θ more generally. Essentially we take sin θ
and cos θ as the coordinates of a point on the unit circle.
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In the following pictures we shall assume that x, y > 0. Consider an angle θ with
π

2
< θ < π and let ψ = π − θ:

(−x, y)

θψ

1

x

y

θ is measured anti-clockwise
from the positive x-axis

sin θ = y > 0

cos θ = −x < 0

tan θ =
y

−x
=
−y
x

< 0

sinψ = y = sin θ

cosψ = x = − cos θ

tanψ =
y

x
= − tan θ

Next consider π < θ <
3π

2
and let ψ = θ − π:

(−x,−y)

θ

ψ

1

x

y

θ is measured anti-clockwise
from the positive x-axis

sin θ = −y < 0

cos θ = −x < 0

tan θ =
−y
−x

=
y

x
> 0

sinψ = y = − sin θ

cosψ = x = − cos θ

tanψ =
y

x
= tan θ
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Now consider
3π

2
< θ < 2π and let ψ = 2π − θ:

(x,−y)

θ

ψ

1

x

y

θ is measured anti-clockwise
from the positive x-axis

sin θ = −y < 0

cos θ = x > 0

tan θ =
−y
x

< 0

sinψ = y = − sin θ

cosψ = x = cos θ

tanψ =
y

x
= − tan θ

The following picture describes which trig functions are positive and where:

AS

CT

A =All

S = sin

T = tan

C = cos

All Stations To Carlisle
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Finally we consider points on the x and y axes:

(1, 0)

(0, 1)

(−1, 0)

(0,−1)

sin 0 = 0, cos 0 = 1, tan 0 = 0

sin π/2 = 1, cosπ/2 = 0

tanπ/2 not defined

sin π = 0, cosπ = −1, tan π = 0

sin 3π/2 = −1, cos 3π/2 = 0

tan 3π/2 not defined

Now suppose that we have any number θ. The main principle is that

sin θ = sin(θ + 2π), cos θ = cos(θ + 2π), tan θ = tan(θ + 2π).

This allows us to add or subtract 2π until we get a number between 0 and 2π.
Remember that

• 0 : sin 0 = 0, cos 0 = 1, tan 0 = 0

• π

6
: sinπ/6 =

1

2
, cos π/6 =

√
3

2
, tanπ/6 =

1√
3

• π

4
: sinπ/4 = cos π/4 =

1√
2
, tanπ/4 = 1

• π

3
: sinπ/3 =

√
3

2
, cosπ/3 =

1

2
, tanπ/3 =

√
3

• π

2
: sinπ/2 = 1, cos π/2 = 0, tanπ/2 is not defined.

Remember also that

• sin(π − θ) = sin θ, cos(π − θ) = − cos θ, tan(π − θ) = − tan θ

• sin(π + θ) = − sin θ, cos(π + θ) = − cos θ, tan(π + θ) = tan θ

• sin(2π − θ) = − sin θ, cos(2π − θ) = cos θ, tan(2π − θ) = − tan θ
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Examples 64. Evaluate each of the following.

(a) cos 5π/6

ANSWER

(b) sin 5π/4

ANSWER

(c) tan 11π/6

ANSWER

(d) sin 25π/6

ANSWER

8.6 The Inverse Trigonometric Functions

Suppose that we know sin θ or cos θ, but not θ itself. How can we work ‘back’ to
θ? For example, suppose we are given the following right-angled triangle:

π/2θ

3
6

98



How can we find θ, given that sin θ =
3

6
= 0 · 5? The answer is that we know

sin π/6 = 0 · 5 so we conclude that θ = π/6. We say that sin−1 0 · 5 = π/6. More
generally, if we are given a number x (with 0 ≤ x ≤ 1), the angle whose sin is x
is written sin−1 x.

To find the angle using a calculator, we use the sin−1 button. On a typical (Casio)
calculator, the function is obtained by pressing SHIFT followed by sin .

Similarly if we are given a number x (with 0 ≤ x ≤ 1), the angle whose cos is x is
written cos−1 x, and (for 0 ≤ x <∞) the angle whose tan is x is written tan−1 x.
These are accessed on a calculator in a similar way as sin− 1.

Examples 65. Evaluate each of the following using a calculator. Express the
answer to 4 dp.

(a) sin 1, cos 1, tan 1.

ANSWER

(b) sin−1 0 · 8415, cos−1 0 · 5403, tan−1 1 · 5574.

ANSWER

Examples 66. In each of the following, determine θ.

(a)

π/2θ

4
10

ANSWER
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(b)

π/2θ

7

12

ANSWER

(c)

π/2θ

8

5

ANSWER

Now sin−1 is meant to be the opposite function to sin.
Choose any number θ with 0 ≤ θ ≤ π/2. For example take θ = 0 · 75. Using the
calculator:

• sin 0 · 75 = 0 · 68163876
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• sin−1 0 · 68163876 = 0 · 75.

It works the other way round to. Choose any number x with 0 ≤ x ≤ 1. For
example take x = 0 · 65. Using the calculator:

• sin−1 0 · 65 = 0 · 7075844367.

• sin 0 · 7075844367 = 0 · 65.

There is a problem though. For example, sin 2π = sin 0 = 0, but sin−1 0 = 0: we
don’t get back to 2π. Indeed we have specifically said that sin 0 = sin 2π = sin 4π
etc. and similarly sin π/2 = sin 5π/2 = sin 9π/2 etc. This is not often a problem
when working with triangles.

• For −1 ≤ x ≤ 1, sin−1 x is defined to be the unique number θ in the range
−π/2 ≤ θ ≤ π/2 for which sin θ = x.

• For −1 ≤ x ≤ 1, cos−1(x) is defined to be the unique number θ with
0 ≤ θ ≤ π for which cos θ = x.

• For any x, tan−1(x) is defined to be the unique number θ with−π/2 < θ <
π/2 for which tan θ = x.

We shall see that cos−1 is sometimes more useful than sin−1 when we are working
with triangles with an angle greater than π/2.

8.7 Area of a Triangle

THE AREA OF A RECTANGLE
Consider a rectangle ABCD with base length ` and height h.

A

B

D

C

h

`

The area of a rectangle is the base times the height: h× `.
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THE AREA OF A RIGHT-ANGLED TRIANGLE
Suppose we are given a right-angled triangle ∆ABC. Then we can construct a
rectangle ABCD with the same base and height is made up of two copies of the
triangle, as shown in the picture above.

Therefore the area of ∆ABC is half the area of the rectangle, i.e.,
1

2
h× `. Thus

THE AREA OF A RIGHT-ANGLED TRIANGLE = 1
2

BASE × HEIGHT

THE AREA OF A GENERAL TRIANGLE
Now consider a general triangle. It is usual to let A,B,C denote both the ver-
tices and also the sizes of the angles at these vertices, and to let a, b, c denote
the corresponding opposite sides. We shall, in addition, let the line through C
perpendicular to AB meet AB in the point D. Thus, AB = c is the base of the
triangle and CD = h is its height.

C

A D B

b a

c

h

e f

Then the area of ∆ABC = Area of ∆ADC + Area of ∆BCD

=
1

2
e× h +

1

2
f × h =

1

2
(e+ f)× h =

1

2
c× h =

1

2
base × height.

Thus

THE AREA OF A GENERAL TRIANGLE =
1

2
BASE × HEIGHT
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Example 67. Find the area of the triangle ABC shown below.

C

A B

15

21

h

0 · 85

ANSWER

Warning:
The formulae

sin θ =
opp
hyp

, cos θ =
adj
hyp

, tan θ =
opp
adj

apply only in right-angled triangles, for the simple reason that the word “hy-
potenuse” (= side opposite the right angle) is meaningless in other triangles.

8.8 A Trigonometric Formula for the Area of a Triangle

Our consideration of the area of a general triangle leads to a trigonometric formula
for the area of a triangle.

C

A
D

B

b a

c

h
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We saw that the area is
1

2
ch.

Using trigonometry we see that h = b sinA (and also a sinB). Therefore the area

is
1

2
cb sinA. It is also

1

2
ca sinB.

This gives us the required formula:

THE AREA OF A GENERAL TRIANGLE =
1

2
bc sinA

If we drew the triangle with AC as the base we would obtain a formula for the

area as
1

2
ba sinC (and also

1

2
bc sinA). We therefore have three (equally good)

formulae for the area of a triangle:

1

2
bc sinA =

1

2
ca sinB =

1

2
ba sinC.

8.9 The Sine Rule

We suppose we have a triangle ∆ABC:

C

A B

b a

c

The Sine Rule is:

a

sinA
=

b

sinB
=

c

sinC

EXPLANATION
We know that

1

2
bc sinA =

1

2
ca sinB =

1

2
ab sinC.
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Multiply through by 2 and then divide through by abc. We get

bc sinA

abc
=
ca sinB

abc
=
ba sinC

abc
,

i.e.,
sinA

a
=

sinB

b
=

sinC

c
.

Inverting these fractions (turning them upside down), we get the Sine Rule as
stated above.

Suppose that we know: Two Angles and a Side. Then we can use the Sine Rule
to solve the triangle, i.e., to calculate the remaining angles and sides.

Example 68. In the triangle below, determine the length b, the angle C and the
length c. Work to 4 decimal places.

C

A B

b 6

c
0 · 8 1 · 2

ANSWER
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Suppose that we know: Two Sides and a Angle. Then we can sometimes use the
Sine Rule to solve the triangle, i.e., to calculate the remaining angles and sides.

Example 69. In the triangle below, determine the angle B, the angle C and the
length c. Work to 4 decimal places. Assume that the diagram is accurate in that
B,C < π/2.

C

A

9

B

13

c

0 · 7227

ANSWER
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Remark.
Recall that sin(π − θ) = sin θ. In particular sin 1 · 2710 = sin(π − 1 · 2710), i.e.,
sin 1 · 2710 = sin 1 · 8706 = 0 · 9554. Thus in the example above we can only be
sure of the value of B by knowing that it lies between 0 and π/2. The following
picture shows a second triangle having a = 9, b = 13, A = 0 · 7227, but with
B > π/2. So, if we had not been told that B < π/2, there would have been two
answers to the problem.

C

A
B

13

c

0 · 7227

9

8.10 The Cosine Rule

We suppose we have a triangle ∆ABC:

C

A B

b a

c

The Cosine Rule is: a2 = b2 + c2 − 2bc cosA
Notice that if A is a right-angle, then cosA = 0 and the Cosine Rule becomes
a2 = b2 + c2, i.e., Pythagoras’s Theorem.
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If we rotate the triangle so that first BC and then CA is the base, we obtain
alternative versions: b2 = c2 + a2 − 2ac cosB and c2 = a2 + b2 − 2ab cosC.

EXPLANATION
Recall the picture below.

C

A
D

B

b a

c

h

e f

We note four pieces of information:

• e = b cosA.

• b2 = h2 + e2 (by Pythagoras’s Theorem).

• a2 = h2 + f 2 (by Pythagoras’s Theorem).

• c = e+ f .

Then
a2 = h2 + f 2 = h2 + (c− e)2 = h2 + c2 + e2 − 2ec

= (h2 + e2) + c2 − 2ce = b2 + c2 − 2cb cosA.

If we know: Two Sides and a Angle where the sides are “b” and “c”, and the angle
“A” is between them, then the Cosine Rule tells you the size of the remaining side
“a”.
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Example 70. In the triangle below, determine the length a. Work to 4 decimal
places.

C

A B

6 a

7

0 · 7

ANSWER

8.11 Using the Cosine Rule to find Angles

If we want to find an angle, we can rearrange the expression in the Cosine Rule to
make cosA the subject:

• Start from a2 = b2 + c2 − 2bc cosA (add 2bc cosA to each side)

• a2 + 2bc cosA = b2 + c2 (subtract a2 from each side)

• 2bc cosA = b2 + c2 − a2 (divide each side by 2bc)

• We get cosA =
b2 + c2 − a2

2bc
.

109



From the other two versions of the Cosine Rule, the same procedure gives us:

cosB =
a2 + c2 − b2

2ac
and cosC =

a2 + b2 − c2

2ab
.

Having calculated the value of cosA (or cosB or cosC) we can use cos−1 to find
A (or B or C).

Example 71. In the triangle below, determine the angles A,B and C. Work to 4
decimal places.

C

A B

8 10

14

ANSWER
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Note that for each number x between −1 and 1, there is a unique angle θ between
0 and π with cos θ = x. This is different from the situation with sin.

Examples 72. (a) In ∆ABC, a = 4, b = 10, c = 13. Find A,B,C. (Work to 4
decimal places.)

ANSWER
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(b) In ∆ABC, a = 4, b = 5, C = 2.3. Find A,B, c.

ANSWER
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(c) In ∆ABC, A = π/3, B = 3π/7 and a = 6. Find C, b, c.

ANSWER
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8.12 The Compound Angle Formulas - Private Reading

This section will not be assessed in Test 2 or in the January exam. Read it to
prepare for further study.

There are formulae for sin(x+ y), sin(x− y), cos(x+ y), cos(x− y) in terms of
sinx, cosx, sin y and cos y; and for tan(x+ y), tan(x− y) in terms of tanx and
tan y. (These formulae have many uses.) Consider the usual diagram, with the
angles x and y as shown:

C

A
D

B

b a

c

h

e f

x y

We have

sinx cos y + cosx sin y =
e

b
· h
a

+
h

b
· f
a

=
h

ab
(e+ f) =

hc

ab

=
h

b
· c
a

=
b sinA

b
· c
a

=
sinA

a
× c =

sinC

c
× c = sinC = sin(x+ y).

Thus

sin(x+ y) = sin x cos y + cosx sin y

If we replace y by −y, we get

sin(x− y) = sin x cos(−y) + cos x sin(−y).

But cos(−y) = cos y and sin(−y) = − sin y, so

sin(x− y) = sin x cos y − cosx sin y

These two formulas are often summarised as

sin(x± y) = sinx cos y ± cosx sin y
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Now recall that sin(π/2− x) = cos x and cos(π/2− x) = sinx. It follows that

cos(x+ y) = sin(π/2− x− y) = sin[(π/2− x)− y]

= sin(π/2− x) cos y − cos(π/2− x) sin y

= cos x cos y − sinx sin y.

Thus

cos(x+ y) = cos x cos y − sinx sin y

If we replace y by−y, we get

cos(x− y) = cos x cos y + sinx sin y

These two formulas are often summarised as

cos(x± y) = cos x cos y ∓ sinx sin y

Finally

tan(x+ y) =
sin(x+ y)

cos(x+ y)
=

sinx cos y + cosx sin y

cosx cos y − sinx sin y

Now divide numerator and denominator by cosx cos y to get[
sinx cos y

cosx cos y
+

cosx sin y

cosx cos y

]
[

cosx cos y

cosx cos y
− sinx sin y

cosx cos y

] =

[
sinx

cosx
+

sin y

cos y

]
[
1− sinx sin y

cosx cos y

] =
tanx+ tan y

1− tanx tan y
,

i.e.,

tan(x+ y) =
tanx+ tan y

1− tanx tan y
.

Replacing y by −y we obtain

tan(x− y) =
tanx− tan y

1 + tan x tan y
.

These two formulas are often summarised as

tan(x± y) =
tanx± tan y

1∓ tanx tan y
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8.13 Multiple Angle Formulas - Private Reading
This section will not be assessed in Test 2 or in the January exam. Read it to pre-
pare for further study.

If we take the particular case y = x in the formulae

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cos x cos y − sinx sin y,

tan(x+ y) =
tanx+ tan y

1− tanx tan y

we obtain
sin 2x = 2 sin x cosx,

cos 2x = cos2 x− sin2 x,

tan 2x =
2 tanx

1− tan2 x
.

Remember that sin2 + cos2 x = 1, so rearranging, we also have sin2 x = 1−cos2 x
and cos2 x = 1 − sin2 x. Substituting each of these into the formula for cos 2x
gives two more formulae:

cos 2x = 2 cos2 x− 1,

cos 2x = 1− 2 sin2 x.

As an example of applications of these formulae, we use them to calculate sin π12

and cos π/12. Recall that cos π/6 =

√
3

2
. If we take x = π/12, so that 2x = π/6,

then √
3

2
= 2 cos2 x− 1 = 1− 2 sin2 x,

so 2 cos2 x = 1 +

√
3

2
=

2 +
√

3

2
, which gives us cos2 x =

2 +
√

3

4
and there-

fore cosx =

√
2 +
√

3

4
(we take the positive square root because we know that

cos π/12 will be positive). Similarly 2 sin2 x = 1 −
√

3

2
=

2−
√

3

2
, which gives

us sin2 x =
2−
√

3

4
and therefore sinx =

√
2−
√

3

4
(again, we take the positive

square root because we know that sin π/12 will be positive).
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8.14 The Addition Formulae - Private Reading
This section will not be assessed in Test 2 or in the January exam. Read it to pre-
pare for further study.

Let u =
x+ y

2
and v =

x− y
2

, so x = u+ v and y = u− v. Then

sinx+sin y = sin(u+v)+sin(u−v) = [sinu cos v+cosu sin v]+[sinu cos v−cosu sin v]

= 2 sinu cos v = 2 sin

(
x+ y

2

)
cos

(
x− y

2

)
.

this gives us the first of four ‘addition’ formulae. The other three are obtained in
a similar manner.

(a) sinx+ sin y = 2 sin

(
x+ y

2

)
cos

(
x− y

2

)
.

(b) sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
.

(c) cosx+ cos y = 2 cos

(
x+ y

2

)
cos

(
x− y

2

)
.

(d) cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
.

8.15 The Other Trig Functions - Private Reading
This section will not be assessed in Test 2 or in the January exam. Read it to pre-
pare for further study.

Thrse are three more trig functions that you are likely to come across:

• the cosecant: cscx =
1

sinx

• the secant: secx =
1

cosx

• the cotangent: cotx =
1

tanx
.

They can be seen as abbreviations, so you can always get by without them, but
they often make formulae simpler.
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8.16 Graphs of the Main Trig Functions - Private Reading
This section will not be assessed in Test 2 or in the January exam. Read it to pre-
pare for further study.

The following pictures show the graphs of sinx, cosx and tanx.

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–2 2 4 6

x

Figure 1: y = sinx
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–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–2 2 4 6

x

Figure 2: y = cosx

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–2 2 4 6

x

Figure 3: y = tanx
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