#8 A Critique of ‘Are We All Less Risky and More Skilful Than Our Fellow Drivers?’ by

Ola Svenson.

Newcastle University

This paper was taken from the list provided by Mike Cox. The full reference can be found on the reference page.
Overconfidence in one's abilities and their judgements has been shown in many pieces of research covering a wide range of topics such as financial investment\(^1\), causes of war\(^2\) and driver self-assessment\(^3\). Overconfidence in some areas will not have a big consequence, however in other areas, such as driver self-assessment of their judgement and safety, overconfidence can be fatal. Despite the possible consequences of not having an accurate representation of one’s driving ability, overconfidence is incredibly common and has been found across different ages\(^4,5\) and in different continents, such as Europe and North America\(^6,7\). By using a questionnaire and asking participants to rate their driving skill level, or how safe their driving is, Svenson\(^8\) was able to investigate whether or not people really do think they are more skilled and safer than the average driver.

Research into possible cultural differences in driver self-assessment is varied. Goszczyńska and Roslana\(^9\) suggest that there are no cultural differences, however, Sivak, Soler and Tränkle\(^7\) found that, despite overconfidence being found in several countries, American drivers were the worst offenders. By using students from both Sweden (80) and America (81), Svenson\(^8\) was able to control for some cultural differences in peoples self-assessment. However, European and American cultures are similar in many aspects and neither differentiates from the other as much as they do other cultures – such as Asia and Africa. Therefore, to control better for cultural differences, this study would work better if universities from other countries, such as China and South Africa also took part. Svenson also doesn’t say anything about the differences in percentages for Americans vs. Swedish, only stating that they are both higher than the average. Taking into account the possible cultural differences, such as accident rates per person in the different countries, Svenson should have looked at the differences in the results, even if the outcome of this investigation was that there were no significant differences. Several pieces of research show that, as well as cultural differences, there may be gender differences in overconfidence\(^10\), as well as the
way males and females drive12. Svenson, however, does not even state how many males and females were recruited. This means that any statistical analysis into possible gender differences is impossible.

Each participant in Svenson’s experiment was given a questionnaire, in which they were asked to rank where they thought they fell, on a scale of 1-100, for their driving skill and their safety compared to the other participants in the room. The scale was split into ten equal blocks for each percentile – 1-10\%, 11-20\%, …, 91-100\%. 10\% interval scales are not perfect, as they rely on the assumption that each participant is equally good at judging percentages. It is possible that, seeing as how no specific number is given to the participants about the number of people in the room, that people who believe they have about the same levels of driving skill may end up in different categories. However, using percentages are still more preferable to allowing participants to just pick any number, as it would be incredibly difficult to conduct any statistical tests on that sort of data.

The aim of Svenson’s experiment was to measure driver overconfidence and the questionnaire she used does this to some extent. However, as she does not compare driver self-assessment with actual ability, it is impossible to distinguish the participants with overconfidence from those whose confidence is justified. Additional questions assessing actual driver behaviour would improve this experiment. By using these additional questions, such as ‘How many accidents have you been in?’ and ‘How many points do you have on your license?’ the experimenter will be able to rank participants based on their ability and then distinguish which participants are overconfident. Once it is known which participants are overconfident, it may then be possible to find the causes of this overconfidence, either by interviewing the participants or by using yet more questionnaires. Again, this method is not perfect, as you cannot guarantee that each individual will be truthful about things like the
number of points on their license. To create a truly accurate assessment of people’s driving ability, actual observations of people’s driving would be required. However, the time required and the economic costs of conducting such an experiment would be very high, and much more research would need to be conducted into possible methodologies than can be adequately described in this report.

For some undisclosed reason, an independent measure design was used for this experiment and not a repeated-measure design. Participants were only asked to assess how safe their driving was or how skilful they believed they were. By making sure half of each set of students got the safety question first and the other half got the skill level question first, order effects would be controlled for. Having all participants answer both questions would give us more data for both people’s judgement levels about their safety and their skill levels. More data will result in more accurate and reliable results. It would also be able to show us if there is a correlation between the two questions. If both questions are measuring the same thing then if the experiment is repeated participants will only need to answer one question.

If overconfidence can cause reckless driving, which can cause fatal accidents, then a way to lower driver overconfidence is necessary. One possible way of doing this is through the use of 360 degree feedback, whereby a person’s self-assessment is compared to an assessment by their peers. The feedback from these assessments allows the person to re-evaluate their own abilities and to address any discrepancies. This can be applied to drivers by observing their behaviour and then giving them feedback on what they do well and what they do incorrectly. Another problem with driver overconfidence is drivers believing that things such as accidents will not happen to them because they are more skilled than the average driver and therefore have more control of the situation. This means that road safety campaigns will not be effective if most drivers think that the advert is not aimed at them.
However, the use of professional drivers, such as Jenson Button, Lewis Hamilton or The Stig, may make more people take notice of the adverts. If professional drivers can crash on the road then so can anybody.

The possible causes of overconfidence in driver self-assessment can also be applied to overconfidence in other areas. It is possible that overconfidence in stock-markets can be due to who we compare ourselves to. If we compare our predicting skills to somebody who has never correctly predicted if stocks will go up or down, and assume that this person is the same as the average individual at predicting stocks, then we may believe that our own predicting skills are higher than average. This can lead to overconfidence, which can lead to investing in stocks that most other people would never invest in. Overconfidence can also be blamed for some investors overinvesting in certain products1. Investors believing that they will get a larger return that reasonably expected could be due to the investors not being able to accurately assess their own strengths and weaknesses. If an investor believes that their abilities in predicting profits from investments are very good then they may not ask the advice of other people who are either more skilful or just more objective, who can therefore see that an investment will not return as much profit as the original assessor estimates.

Despite its imperfections, this paper by Svenson is important. It was one of the first to study overconfidence in driver self-assessment in detail and to accurately record the findings. This paper, despite being nearly 30 years old, is still being cited today. The issues involving driver overconfidence is just as important as it was in 1981, if not more so, given the large number of cars on the roads today and the possible safety hazards that can arise from overconfident drivers. If the findings from this study are applied to things such as road-safety campaigns then it may just be possible to lower driver overconfidence and to hopefully make our roads a safer place.
References

