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Chapter 2 
 

The Fourier Transform 

2.1 Introduction 
The sampled Fourier transform of a periodic, discrete-time signal is known as the discrete Fourier transform (DFT). 
The DFT of such a signal allows an interpretation of the frequency domain descriptions of the given signal. 

2.2 Derivation of the DFT 
The Fourier transform pair of a continuous-time signal is given by Equation 2.1 and Equation 2.2. 
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Now consider the signal x(t) to be periodic i.e. repeating. The Fourier transform pair from above can now be 
represented by Equation 2.3 and Equation 2.4 respectively. 
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where 
0

0
1

T
f = .  Now suppose that the signal x(t) is sampled N times per period, as illustrated in Figure 2.1, with a 

sampling period of T seconds. The discrete signal can now be represented by Equation 2.5, where δ is the dirac delta 
impulse function and has a unit area of one. 
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Now replace x(t) in the Fourier integral of Equation 2.3, with x[nT] of Equation 2.5. The Equation can now be re-
written as: 
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Figure 2.1: Sampled sequence for the DFT. 

Since 
0

0
1

T
f =  and NTT =0 , Equation 2.8 is formed by combining these two together. 

N
Tf 1

0 =  (2.8) 

By inserting Equation 2.8 into Equation 2.7, the DFT and its inverse, for a periodic signal, is represented by Equation 
2.9 and Equation 2.10 respectively. 
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2.3 Digital Frequency 
The N spectral values correspond to frequencies of  
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2.4 Matrix Interpretation of the DFT 
When working with the DFT, it is quite common to make a substitution for the exponential term in Equation 2.9, such 
that, 
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Equation 2.9 can now be re-written and the DFT can be presented in a more user-friendly fashion, as illustrated by 
Equation 2.12. 
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The term nk
NW  is more commonly known as a root of unity and can be represented by an argand or phasor diagram. As 

an example, Figure 2.2 illustrates the argand diagram for the case of an N = 8 point DFT. 
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Figure 2.2: Argand diagram illustrating the 8th roots of unity. 

As the DFT is a linear operation, Equation 2.12 can therefore be represented by the matrix notation defined by Equation 
2.13 below. Such that the output can be derived by multiplying the corresponding Nth root of unity, from the phasor 
diagram, with the sampled signal x[n]. 
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Each of the terms in the square matrix are unit vectors with a particular angle.  These are shown graphically below, and 
it can be seen that each row consists of the samples of complex sine waves of different frequencies.  The DFT output 
can therefore be interpreted as the result of correlating the input samples with (complex) sine waves with frequencies 
equal to multiples of the “fundamental” (i.e. the frequency of the second row). 
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2.5 The Fast Fourier Transform 
The fast Fourier transform (FFT) was invented by Cooley and Tukey in 1965. They discovered that the DFT operation 
could be decomposed into a number of other DFTs of shorter lengths. They then showed that the total number of 
computations needed for the shorter DFTs was smaller than the number needed for the direct computation. In fact, the 
number of arithmetic operations (multiplications and additions) for the direct computation of the DFT is apaproximately 
equal to N2, but for the FFT algorithm reduced to approximately N.log2N.  To take an example, if N=1024, the DFT 
would require approximately 106 multiplications and additions, whilst the FFT would require <103, more than 1000 
times fewer. 

2.5.1 Derivation of the FFT 

The decomposition of the DFT is achieved by breaking a signal x[n] down into two shorter, interleaved subsequences. 
This process is more commonly known as decimation–in-time (DIT). Suppose a signal exists with N sample values, 
where N is an integer power of 2. The signal x[n] is first separated into two subsequences with N/2 samples. One 
subsequence contains the samples with even-numbered values of n in x[n], and the other contains those with odd-
numbered values of n. Writing n(even) = 2m and n(odd) = 2m+1, the DFT from Equation 2.12 can be modified to: 
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From the Argand diagram in Figure 2.2, it can also be shown that 1
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now be re-written to show that it can be expressed in terms of two N/2-point DFTs. 
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X1[k] is the transform of the even numbered points in x[n], and X2[k] is the transform of the odd-numbered points in 
x[n]. It is important to note that we must multiply X2[k] by the additional term k

NW  before adding it to X1[k]. This is 
because the sub-sequences into which we have decomposed x[n] are displaced from one another in time by one 
sampling interval.  This term k

NW  is often known as the “twiddle factor” since it is a complex number of magnitude 1 
but non-zero phase, and hence merely rotates the phase of [ ]kX 2 . 

The computation in equation (2.16) is generally broken down into 2N  so called “butterfly operations”. To illustrate 

this, suppose 8=N , and we consider by way of example the case for 1=k  and 51
2
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where 1X  is the DFT of 6420 ,,, xxxx  and 2X  is the DFT of 7531 ,,, xxxx .  The pair of equations in (2.16a) represent the 
“butterfly operation” whose signal flow diagram is: 
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2.5.2 Radix-2 FFT 

If the N length transform is an integer power of 2, then the transform 
can be split into two shorter N/2 subsequences. This process can 
continue until, in the limit, the transform is represented by a series of 
2-point subsequences, each of which requires a very simple 2-point 
DFT. A complete decomposition of this type gives rise to the 
commonly used time decimated radix-2 FFT algorithm. A 
decimation-in-time FFT algorithm divides up the input data into 
shorter interleaved subsequences. This type of FFT can be performed 
using many butterfly operations, as illustrated in Figure 2.3 for the 
case of N = 8. Here it can be seen that the operations are divided up 
into N2log  sections (i.e. 3 for N=8). 
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Figure 2.3: Time-decimated radix-2 FFT, N=8. 

Decimation-in-frequency FFTs are in a sense the exact opposite of the decimation-in-time algorithms; they are simply 
the consequence of the symmetry of the Fourier transform. A decimation-in-frequency FFT, illustrated in Figure 2.4 for 
the case of N = 8, uses the opposite approach to the DIT. Here, the output sequence is decimated rather than the input 
sequence. 

2.5.3 In-Place Computation 

Once the output variables for each section have been calculated, there is no longer any need for the input variables. 
Therefore, the entire algorithm can be performed using in-place computation. When in-place computation is used, the 
output sequence overwrites the input sequence in memory, for each section of the computation.  When this is done, in 
order for the outputs to be in the correct order, it is necessary arrange the inputs to be in bit reversed order.  This can be 
achieved by expressing n in x[n] in binary form, reversing the order of the bits, and using the new binary number as the 
position in which to store that particular sample. Hence for x[6] we have n=6=110, so that the position of x[6] will 
therefore be 011=3 (4th down from the top in figure 2.3 because the index starts from 0). 

One of the problems of in place computation is that the order of addressing the data is different for each section of the 
FFT.  There are other methods of organising the storing of data such as the constant geometry method that require more 
memory but which have the same addressing structure for each section. 
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Figure 2.4: Frequency-decimated radix-2 FFT, N=8. 

2.6 Windowing 
When the DFT is applied to an aperiodic signal it is practical to just take a window of the sequence. A window region 
can be defined by effectively multiplying the signal x(n) by a rectangular window w(n), as shown in Figure 2.5 below. 

The windowed function of the signal xN(n) can be mathematically defined by Equation 2.17 below. 
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Figure 2.5: (a) Random signal; (b) a rectangular windowed region of x(n). 
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In DSP theory, multiplication in the time domain of two signals is equivalent to convolution in the frequency domain. 
Hence, Equation 2.17 can also be expressed by Equation 2.18, where W(ω) is the frequency spectrum of the window 
function and X(ω) is the Fourier transform of the signal. 

)(*)()( wWwXwX N =           (2.18) 

The time and frequency domain representation of a rectangular window function is illustrated in Figure 2.6 (a) and (b) 
respectively. With reference to Figure (b), the Fourier transform of a rectangular window is the well known sinc 
function. 
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Figure 2.6: A rectangular window function; (a) Time domain. (b) Frequency domain. 

2.7 Spectral Leakage 
Spectral leakage is generally present when dealing with practical signals, and may lead to problems of interpretation. 
When the only frequency components present are an integer multiple of the first harmonic of the DFT, then all of the 
leakage components fall at the nulls of the sinc function. However, when at least one of the frequency components falls 
midway between two bins, then spectral leakage occurs. It results in a smaller peak response, plus a whole series of 
undesirable side lobe responses corresponding to the sidelobe peaks in the spectrum of the rectangular window. 

To reduce the spectral leakage it is common practice to use a different window function from the rectangular window – 
one that has a more suitable spectrum with lower side lobes. The ideal window function for W(w) is of course a delta 
function, since the convolution operation will then not distort X(w) at all. However, the inverse Fourier transform of a 
delta function is w(n) = 1, which is of infinite duration Choosing a suitable window always involves some kind of a 
trade-off between the width of the main lobe and the level of the side lobes. In practice it is desirable to have a narrow 
main lobe and a low side lobe level. It is also important to realise that the two cannot be achieved simultaneously and a 
practical trade-off between the two must be tolerated. In addition to the rectangular window there are also other window 
functions, such as those in the table below. These window functions are covered in more detail in Chapter 4, and their 
characteristic shapes are illustrated in Figure 4.5. 

Typical examples of window functions and their specification are as follows: 

 
Name of window 

function w[n] 
Width of main 

lobe (bin) 
Side-lobe 

level in (dB) 
Rectangular 0.9 -13 

Bartlett 3.0 -27 
Hanning 3.1 -32 

Hamming 3.3 -43 
Blackman 5.5 -57 

       Kaiser β=4 
                  β=8 
                  β=12 

2.7 
5.0 
7.5 

-30 
-58 
-90 
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Example:  

Calculate the spectral leakage of x(t), with a rectangular window truncated to N = 512 samples at a sampling frequency 
fsam = 2.56k Hz. Given that: 

( ) ( )tttx ππ 2330sin1.025.317sin1)( ×⋅+×⋅=  

The frequency normalised to the bin width for each component is given by 
samf
Nf ⋅

 

Hence, for the frequency component f1,       5.63
1056.2
5125.317

31 =
×
×

=b  

And for the frequency component f2,       66
1056.2
512330

32 =
×
×=b  

The frequency spectrum of a rectangular window W(w) is given by the sinc function. 

π
π

k
kwW )sin()( =  

Where the normalised bin width k = (b2 – b1). Hence the contribution of spectral leakage for the 317.5 Hz signal into 
bin 66 is given by: 

127.0
)5.6366(

)5.6366sin( =
−

−
π

π  

The frequency spectrum of the resulting leakage is illustrated in Figure 2.7 below. 
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Figure 2.7: Spectral leakage of the 317.5 Hz signal into bin 66.
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2.8 Frequency Domain Interpolation Using Zero Padding 
If we want to interpolate the DFT output between the frequencies corresponding to the “bins”, then we need to evaluate 
the DFT for more values of Ω .  One way of achieving this, but still using the standard DFT or FFT is to add zeros to 
the end of a data sequence x[n], and just apply the DFT.  If we append (M-N) zeros to end of data sequence x[n] to get 
xa[n], and compute the M-length DFT, then this results in an output that is equivalent to computing the frequency 
content at M equally spaced frequency points where M>N.  This is shown below. 

The normal DFT is: 
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and the zero padded DFT is: 
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where the second summation has been derived by realising that 0][ =nxa  for 1−≤≤ MnN .  In equation (2.20), we 
are now evaluating the DFT at a frequency spacing of Mfs  rather than at Nfs  for the original sequence. 

This process can be useful if we are trying to determine a signal component that lies between two bins, and is only a 
little larger than the underlying noise or spectral leakage floor – illustrated below with the example in section 2.7. 
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 (a) Rectangular window, N=M=512 (b) Rectangular window, N=512, M=4096 
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 (a) Hamming window, N=M=512 (b) Hamming window, N=512, M=4096 

Figure 2.8: Simulink output for example in section 2.7. 
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