
“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.1

Chapter 2

The Fourier Transform

2.1 Introduction
The sampled Fourier transform of a periodic, discrete-time signal is known as the discrete Fourier transform (DFT).
The DFT of such a signal allows an interpretation of the frequency domain descriptions of the given signal.

2.2 Derivation of the DFT
The Fourier transform pair of a continuous-time signal is given by Equation 2.1 and Equation 2.2.

∫
∞

∞−

−⋅= dtetxfX ftj π2)()((2.1)

∫
∞

∞−

⋅= dfefXtx ftj π2)()((2.2)

Now consider the signal x(t) to be periodic i.e. repeating. The Fourier transform pair from above can now be
represented by Equation 2.3 and Equation 2.4 respectively.

∫
−⋅=

0

0

0

2

0
0)(1)(

T
tkfj dtetx

T
kfX π

 (2.3)

∑
∞

−∞=

⋅=
k

tkfjekfXtx 02
0)()(π

 (2.4)

where
0

0
1

T
f = . Now suppose that the signal x(t) is sampled N times per period, as illustrated in Figure 2.1, with a

sampling period of T seconds. The discrete signal can now be represented by Equation 2.5, where δ is the dirac delta
impulse function and has a unit area of one.

)()(][nTttxnTx
n

−⋅= ∑
∞

−∞=

δ (2.5)

Now replace x(t) in the Fourier integral of Equation 2.3, with x[nT] of Equation 2.5. The Equation can now be re-
written as:

dtenTttx
T

kfX tfjk
T

n

0

0
2

00
0)()(1)(πδ −

∞

−∞=

⋅−⋅= ∫∑ (2.6)

Since the dirac delta function ()


 =

=−
otherwise
for

0

 1 nTt
nTtδ , Equation 2.6 can be modified even further to become

Equation 2.7 below:

∑
−

=

−⋅=
1

0

2
0

0][1][
N

n

nTfjkenTx
N

kfX π (2.7)

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.2

Time (t)
A

m
pl

itu
de

nT

δ(t-nT)

Sampled sequence

Figure 2.1: Sampled sequence for the DFT.

Since
0

0
1

T
f = and NTT =0 , Equation 2.8 is formed by combining these two together.

N
Tf 1

0 = (2.8)

By inserting Equation 2.8 into Equation 2.7, the DFT and its inverse, for a periodic signal, is represented by Equation
2.9 and Equation 2.10 respectively.

∑
−

=

−
⋅=

1

0

2

][][
N

n

N
nkj

enxkX
π

 (2.9)

∑
−

=

⋅=
1

0

2

][1][
N

n

N
nkj

ekX
N

nx
π

 (2.10)

2.3 Digital Frequency
The N spectral values correspond to frequencies of

N
kf

nT
k

T
kkf s===

0
0

and hence to digital frequencies (i.e. normalised to the sampling frequency) of:

F
N
kf

N
kf

s
s ==

Hence for an 8 point transform:

k= 0 1 2 3 4 5 6 7

f= 0
8

1 sf
8

2 sf
8

3 sf
8

4 sf
8

5 sf
8

6 sf
8

7 sf

F= 0
8
1

8
2

8
3

8
4

8
5

8
6

8
7

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.3

2.4 Matrix Interpretation of the DFT
When working with the DFT, it is quite common to make a substitution for the exponential term in Equation 2.9, such
that,

nk

N
j

N
nkj

nk
N eeW 








==

−− ππ 22

 (2.11)

Equation 2.9 can now be re-written and the DFT can be presented in a more user-friendly fashion, as illustrated by
Equation 2.12.

∑
−

=

⋅=
1

0

][][
N

n

nk
NWnxkX (2.12)

The term nk
NW is more commonly known as a root of unity and can be represented by an argand or phasor diagram. As

an example, Figure 2.2 illustrates the argand diagram for the case of an N = 8 point DFT.

16
8

8
8

0
8 WWW ≡≡

7
8W

6
8W

5
8W

20
8

12
8

4
8 WWW ≡≡

3
8W

2
8W

1
8W

Figure 2.2: Argand diagram illustrating the 8th roots of unity.

As the DFT is a linear operation, Equation 2.12 can therefore be represented by the matrix notation defined by Equation
2.13 below. Such that the output can be derived by multiplying the corresponding Nth root of unity, from the phasor
diagram, with the sampled signal x[n].



































−

↓

⋅



































↓↓↓↓

=



































−

↓

−−−

−

−

]1[

]2[

]1[

]0[

......

..................

...............

...............

...............

]1[

]2[

]1[

]0[

2)1()1(2)1(0

)1(2420

)1(210

0000

Nx

x

x

x

WWWW

WWWW

WWWW

WWWW

NX

X

X

X

N
N

N
N

N
NN

N
NNNN

N
NNNN

NNNN

 (2.13)

Each of the terms in the square matrix are unit vectors with a particular angle. These are shown graphically below, and
it can be seen that each row consists of the samples of complex sine waves of different frequencies. The DFT output
can therefore be interpreted as the result of correlating the input samples with (complex) sine waves with frequencies
equal to multiples of the “fundamental” (i.e. the frequency of the second row).

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.4

[]
[]
[]
[]
[]
[]
[]
[]

[]
[]
[]
[]
[]
[]
[]
[]




























































=































7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

x
x
x
x
x
x
x
x

X
X
X
X
X
X
X
X

2.5 The Fast Fourier Transform
The fast Fourier transform (FFT) was invented by Cooley and Tukey in 1965. They discovered that the DFT operation
could be decomposed into a number of other DFTs of shorter lengths. They then showed that the total number of
computations needed for the shorter DFTs was smaller than the number needed for the direct computation. In fact, the
number of arithmetic operations (multiplications and additions) for the direct computation of the DFT is apaproximately
equal to N2, but for the FFT algorithm reduced to approximately N.log2N. To take an example, if N=1024, the DFT
would require approximately 106 multiplications and additions, whilst the FFT would require <103, more than 1000
times fewer.

2.5.1 Derivation of the FFT

The decomposition of the DFT is achieved by breaking a signal x[n] down into two shorter, interleaved subsequences.
This process is more commonly known as decimation–in-time (DIT). Suppose a signal exists with N sample values,
where N is an integer power of 2. The signal x[n] is first separated into two subsequences with N/2 samples. One
subsequence contains the samples with even-numbered values of n in x[n], and the other contains those with odd-
numbered values of n. Writing n(even) = 2m and n(odd) = 2m+1, the DFT from Equation 2.12 can be modified to:

∑∑

−

=

+

−

=

⋅++⋅=
1

2

0

)12(
1

2

0

2]12[]2[][

N

m

km
N

N

m

mk
N WmxWmxkX (2.14)

From the Argand diagram in Figure 2.2, it can also be shown that 1
2/

2
NN WW ≡ i.e. 1

4
2

8 WW ≡ etc. Hence, the DFT can
now be re-written to show that it can be expressed in terms of two N/2-point DFTs.

∑∑

−

=

−

=
⋅++⋅=

1
2

0 2

1
2

0 2

]12[]2[][

N

m

mk
N

N

m

k
N

mk
N WmxWWmxkX (2.15)

][][][21 kXWkXkX k
N ⋅+= (2.16)

X1[k] is the transform of the even numbered points in x[n], and X2[k] is the transform of the odd-numbered points in
x[n]. It is important to note that we must multiply X2[k] by the additional term k

NW before adding it to X1[k]. This is
because the sub-sequences into which we have decomposed x[n] are displaced from one another in time by one
sampling interval. This term k

NW is often known as the “twiddle factor” since it is a complex number of magnitude 1
but non-zero phase, and hence merely rotates the phase of []kX 2 .

The computation in equation (2.16) is generally broken down into 2N so called “butterfly operations”. To illustrate

this, suppose 8=N , and we consider by way of example the case for 1=k and 51
2

=+= Nk :

[] [] []
[] [] [] [] []11115

111

2
1

812
5

81

2
1

81

XWXXWXX

XWXX

−=+=

+=
 (2.16a)

where 1X is the DFT of 6420 ,,, xxxx and 2X is the DFT of 7531 ,,, xxxx . The pair of equations in (2.16a) represent the
“butterfly operation” whose signal flow diagram is:

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.5

2.5.2 Radix-2 FFT

If the N length transform is an integer power of 2, then the transform
can be split into two shorter N/2 subsequences. This process can
continue until, in the limit, the transform is represented by a series of
2-point subsequences, each of which requires a very simple 2-point
DFT. A complete decomposition of this type gives rise to the
commonly used time decimated radix-2 FFT algorithm. A
decimation-in-time FFT algorithm divides up the input data into
shorter interleaved subsequences. This type of FFT can be performed
using many butterfly operations, as illustrated in Figure 2.3 for the
case of N = 8. Here it can be seen that the operations are divided up
into N2log sections (i.e. 3 for N=8).

x[0]

x[4]

x[6]

x[2]

x[1]

x[5]

x[3]

X[0]

X[1]

x[7]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1
3

8W

2
8W

1
8W

2
8W

2
8W

()jW −= 1
2

11
8 ()jW +−= 1

2
13

8
jW −=2

8 14
8 −=W

Figure 2.3: Time-decimated radix-2 FFT, N=8.

Decimation-in-frequency FFTs are in a sense the exact opposite of the decimation-in-time algorithms; they are simply
the consequence of the symmetry of the Fourier transform. A decimation-in-frequency FFT, illustrated in Figure 2.4 for
the case of N = 8, uses the opposite approach to the DIT. Here, the output sequence is decimated rather than the input
sequence.

2.5.3 In-Place Computation

Once the output variables for each section have been calculated, there is no longer any need for the input variables.
Therefore, the entire algorithm can be performed using in-place computation. When in-place computation is used, the
output sequence overwrites the input sequence in memory, for each section of the computation. When this is done, in
order for the outputs to be in the correct order, it is necessary arrange the inputs to be in bit reversed order. This can be
achieved by expressing n in x[n] in binary form, reversing the order of the bits, and using the new binary number as the
position in which to store that particular sample. Hence for x[6] we have n=6=110, so that the position of x[6] will
therefore be 011=3 (4th down from the top in figure 2.3 because the index starts from 0).

One of the problems of in place computation is that the order of addressing the data is different for each section of the
FFT. There are other methods of organising the storing of data such as the constant geometry method that require more
memory but which have the same addressing structure for each section.

-1 1
8W

[]11X

[]12X

[]1X

[]5X

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.6

x[0]

x[1]

x[3]

x[2]

x[4]

x[5]

x[6]

X[0]

X[4]

x[7]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1
3

8W

2
8W

1
8W

2
8W

2
8W

()jW −= 1
2

11
8 ()jW +−= 1

2
13

8
jW −=2

8 14
8 −=W

Figure 2.4: Frequency-decimated radix-2 FFT, N=8.

2.6 Windowing
When the DFT is applied to an aperiodic signal it is practical to just take a window of the sequence. A window region
can be defined by effectively multiplying the signal x(n) by a rectangular window w(n), as shown in Figure 2.5 below.

The windowed function of the signal xN(n) can be mathematically defined by Equation 2.17 below.

)()()(nwnxnxN ⋅= (2.17)

The rectangular window function is defined by the following parameters:

otherwise
)(21 nnn

nw
≤≤





=
0

 1

0 50 100 150
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Random signal x(n)

Am
pl

itu
de

n
0 50 100 150

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

n

Am
pl

itu
de

Windowed region of x(n)

w(n)

n1 n2

(b)(a)
Figure 2.5: (a) Random signal; (b) a rectangular windowed region of x(n).

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.7

In DSP theory, multiplication in the time domain of two signals is equivalent to convolution in the frequency domain.
Hence, Equation 2.17 can also be expressed by Equation 2.18, where W(ω) is the frequency spectrum of the window
function and X(ω) is the Fourier transform of the signal.

)(*)()(wWwXwX N = (2.18)

The time and frequency domain representation of a rectangular window function is illustrated in Figure 2.6 (a) and (b)
respectively. With reference to Figure (b), the Fourier transform of a rectangular window is the well known sinc
function.

0

Frequency domain
Am

pl
itu

de

Sinc function

Aτ

2π/τ-2π/τ

0

Time domain

Am
pl

itu
de

Rectangular window

A

τ/2-τ/2

(a) (b)

Figure 2.6: A rectangular window function; (a) Time domain. (b) Frequency domain.

2.7 Spectral Leakage
Spectral leakage is generally present when dealing with practical signals, and may lead to problems of interpretation.
When the only frequency components present are an integer multiple of the first harmonic of the DFT, then all of the
leakage components fall at the nulls of the sinc function. However, when at least one of the frequency components falls
midway between two bins, then spectral leakage occurs. It results in a smaller peak response, plus a whole series of
undesirable side lobe responses corresponding to the sidelobe peaks in the spectrum of the rectangular window.

To reduce the spectral leakage it is common practice to use a different window function from the rectangular window –
one that has a more suitable spectrum with lower side lobes. The ideal window function for W(w) is of course a delta
function, since the convolution operation will then not distort X(w) at all. However, the inverse Fourier transform of a
delta function is w(n) = 1, which is of infinite duration Choosing a suitable window always involves some kind of a
trade-off between the width of the main lobe and the level of the side lobes. In practice it is desirable to have a narrow
main lobe and a low side lobe level. It is also important to realise that the two cannot be achieved simultaneously and a
practical trade-off between the two must be tolerated. In addition to the rectangular window there are also other window
functions, such as those in the table below. These window functions are covered in more detail in Chapter 4, and their
characteristic shapes are illustrated in Figure 4.5.

Typical examples of window functions and their specification are as follows:

Name of window

function w[n]
Width of main

lobe (bin)
Side-lobe

level in (dB)
Rectangular 0.9 -13

Bartlett 3.0 -27
Hanning 3.1 -32

Hamming 3.3 -43
Blackman 5.5 -57

 Kaiser β=4
 β=8
 β=12

2.7
5.0
7.5

-30
-58
-90

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.8

Name of window function w(n) Mathematical definition

Rectangular 1

Hanning 






−
−

1
2cos5.05.0
N

nπ

Hamming 






−
−

1
2cos46.054.0

N
nπ

Blackman 






−
+






−
−

1
2cos08.0

1
2cos5.042.0

N
n

N
n ππ

Kaiser

)(

1
12

1
2

0

β

β

oI

N
Nn

I

−


























−
+−

−

Where,
2

0
0 !2

)(∑
∞

=








=

k
k

k

k
xxI

Example:

Calculate the spectral leakage of x(t), with a rectangular window truncated to N = 512 samples at a sampling frequency
fsam = 2.56k Hz. Given that:

() ()tttx ππ 2330sin1.025.317sin1)(×⋅+×⋅=

The frequency normalised to the bin width for each component is given by
samf
Nf ⋅

Hence, for the frequency component f1, 5.63
1056.2
5125.317

31 =
×
×

=b

And for the frequency component f2, 66
1056.2
512330

32 =
×
×=b

The frequency spectrum of a rectangular window W(w) is given by the sinc function.

π
π

k
kwW)sin()(=

Where the normalised bin width k = (b2 – b1). Hence the contribution of spectral leakage for the 317.5 Hz signal into
bin 66 is given by:

127.0
)5.6366(

)5.6366sin(=
−

−
π

π

The frequency spectrum of the resulting leakage is illustrated in Figure 2.7 below.

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upo

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10
Spectrum of Rectangular Window

Bin Number

dB

Width of main lobe
Maximum
sidelobe level

63.5 66 0
0.2
0.4
0.6
0.8

1
1.2 Spectral leakage

Bin number (b)

Amplitude

k=66-63.5=2.5

0.1

1

64 6563 62

Figure 2.7: Spectral leakage of the 317.5 Hz signal into bin 66.
n Tyne Page 2.9

“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 2: The Fourier Transform

University of Newcastle upon Tyne Page 2.10

2.8 Frequency Domain Interpolation Using Zero Padding
If we want to interpolate the DFT output between the frequencies corresponding to the “bins”, then we need to evaluate
the DFT for more values of Ω . One way of achieving this, but still using the standard DFT or FFT is to add zeros to
the end of a data sequence x[n], and just apply the DFT. If we append (M-N) zeros to end of data sequence x[n] to get
xa[n], and compute the M-length DFT, then this results in an output that is equivalent to computing the frequency
content at M equally spaced frequency points where M>N. This is shown below.

The normal DFT is:

∑
−

=
⋅=

1

0
][][

N

n

nk
NWnxkX (2.19)

and the zero padded DFT is:

∑∑
−

=

−

=
⋅=⋅=

1

0

1

0
][][][

N

n

nk
Ma

M

n

nk
Maa WnxWnxkX (2.20)

where the second summation has been derived by realising that 0][=nxa for 1−≤≤ MnN . In equation (2.20), we
are now evaluating the DFT at a frequency spacing of Mfs rather than at Nfs for the original sequence.

This process can be useful if we are trying to determine a signal component that lies between two bins, and is only a
little larger than the underlying noise or spectral leakage floor – illustrated below with the example in section 2.7.

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35
0

5

10

15

20

25

30

35

40

45

50

Frequency (kHz)

M
ag

ni
tu

de

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35
0

5

10

15

20

25

30

35

40

45

50

Frequency (kHz)

M
ag

ni
tu

de

 (a) Rectangular window, N=M=512 (b) Rectangular window, N=512, M=4096

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35
0

5

10

15

20

25

30

35

40

45

50

Frequency (kHz)

M
ag

ni
tu

de

0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35
0

5

10

15

20

25

30

35

40

45

50

Frequency (kHz)

M
ag

ni
tu

de

 (a) Hamming window, N=M=512 (b) Hamming window, N=512, M=4096

Figure 2.8: Simulink output for example in section 2.7.

	Introduction
	Derivation of the DFT
	Digital Frequency
	Matrix Interpretation of the DFT
	The Fast Fourier Transform
	Derivation of the FFT
	Radix-2 FFT
	In-Place Computation

	Windowing
	Spectral Leakage
	Frequency Domain Interpolation Using Zero Padding

