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Abstract 

GPS has been used to estimate ocean tide loading (OTL) height displacement amplitudes to 

accuracies of within 0.5 mm at the M2 frequency, but such estimation has been problematic at luni-

solar K2 and K1 frequencies because they coincide with the GPS orbital period and revisit period, 

leading to repeating multipath and satellite orbit errors. We therefore investigate the potential of using 

the GLONASS constellation (with orbital period 11.26 hours and true site revisit period of 8 sidereal 

days distinct from K2 and K1) for OTL displacement estimation, analysing 3-7 years of GPS and 

GLONASS data from 49 globally-distributed stations. Using the PANDA software in kinematic 

precise point positioning mode with float ambiguities, we demonstrate that GLONASS can estimate 

OTL height displacement at the M2, N2, O1 and Q1 lunar frequencies with similar accuracy to GPS: 

95th percentile agreements of 0.6-1.3 mm between estimated and FES2014b ocean tide model 

displacements. At the K2 and K1 luni-solar frequencies, 95th percentile agreements between GPS 

estimates and model values of 3.9-4.4 mm improved to 2.0-2.8 mm using GLONASS-only solutions. 

A combined GPS+GLONASS float solution improves accuracy of the lunar OTL constituents and P1 

(but not significantly for K1 or K2) compared with a single constellation solution, and results in 

hourly-to-weekly spectral noise very similar to a GPS ambiguity-fixed solution, but without needing 

uncalibrated phase delay information. GLONASS estimates are more accurate at higher compared 

with lower latitudes because of improved satellite visibility, although this can be countered by using 

a lower elevation cut-off angle. 

 

Keywords: Ocean tide loading displacement, GPS, GLONASS, ocean tide models, kinematic precise 

point positioning  
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1. Introduction 

Geodetic measurements, for example from Global Navigation Satellite Systems (GNSS), Very Long 

Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR) and Doppler Orbitography Integrated 

by Satellite (DORIS), are sensitive to ocean tide loading (OTL) deformation of the solid Earth which 

is caused by the periodic change in ocean mass distribution arising from the gravitational attractions 

of the moon and Sun. The IERS Conventions (Petit and Luzum 2010) provide utilities to correct 

geodetic measurements for this OTL deformation, requiring as input OTL displacement coefficients 

at the dominant tidal periods (including those listed in Table 1). These are generated by convolving 

a global model of the ocean tides with a loading Green’s function, which is dependent on the material 

properties of the Earth’s interior. Because any errors in these OTL displacement coefficients will 

propagate to the normally estimated geodetic parameters and degrade, for example, resultant 

coordinate time series used for reference frame definition and the monitoring of millimetre-level land 

movements, it is important that accurate models are used for their derivation. One way in which the 

accuracy of these Earth and numerical ocean tide models can be verified is by independent geodetic 

analysis in which the OTL displacements are the parameters of interest. 

Table 1: Principal semi-diurnal and diurnal tidal constituents of the tidal potential (after Kudryavtsev, 2004) 

Constituent 
Frequency 

(cycles per day) 

Relative magnitude 

of tidal potential 

M2 1.936 1.00 
S2 2.000 0.46 
N2 1.896 0.20 
K2 2.006 0.13 
K1 1.003 0.58 
O1 0.929 0.41 
P1 0.997 0.19 
Q1 0.893 0.08 

 

VLBI data were first shown to be able to estimate OTL displacement by Schuh and Moehlmann 

(1989) and then Sovers (1994), who included harmonic parameters at the dominant tidal frequencies 

in the primary least squares estimation. Schenewerk et al. (2001) showed this was also possible with 

global solutions of double differenced Global Positioning System (GPS) data but to an accuracy of 

~5 mm for 90% of the sites studied, whereas Allinson et al. (2004) used Precise Point Positioning 

(PPP) for at least 90 days of GPS data to obtain M2 OTL displacement agreements with geophysical 

models within ~1 mm. Thereafter King et al. (2005) used the PPP GPS method of Allinson et al. 

(2004) to obtain OTL displacements to validate ocean tide models around Antarctica. Thomas et al. 

(2007) compared VLBI and PPP GPS analyses (each using several years of data), and concluded 
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similar millimetre-level agreement for GPS and VLBI when compared with OTL computed from 

existing Earth and ocean tide models, for the majority of tidal constituents. An alternative approach 

was followed by Khan and Tscherning (2001) and Melachroinos et al. (2008), who undertook 

harmonic analysis of GPS coordinate time series to estimate the OTL displacement, obtaining 

observed versus model differences of several millimetres but using only 7-15 weeks of GPS data. 

Penna et al. (2015) refined this time series analysis technique by determining the optimum 

tropospheric and coordinate process noise through comparisons with radiosonde tropospheric delays 

and synthetic harmonic ground displacements. This led to the estimation of OTL displacement using 

GPS to an accuracy of around 0.4 mm when using time series from 2.5 years of data, improving to 

about 0.2 mm with 4 years or more of data. While ocean tide model errors have historically been 

assumed to be the limiting accuracy factor in the modelling of OTL displacement (e.g., Bos and Baker 

2005), recent advances in ocean tide modelling (e.g., Stammer et al. 2014) have led to GPS-estimated 

OTL displacements being used to not only validate and identify deficiencies in ocean tide models, 

but also to measure the elastic and anelastic properties of the Earth’s interior (e.g., Ito and Simons 

2011; Bos et al. 2015). 

Studies to date on probing the Earth’s interior properties at tidal frequencies using GPS have mostly 

considered the M2 constituent only (e.g., Bos et al. 2015; Yuan and Chao 2012; Martens et al. 2016), 

and validation of ocean tide models using GPS-estimated OTL displacements has proved especially 

problematic at the K2 and K1 frequencies (e.g., Allinson et al. 2004; King et al. 2005; Thomas et al. 

2007). This is because K2 and K1 coincide with the GPS orbital period and sidereal geometry repeat 

period respectively, so any orbit errors and multipath effects degrade the OTL displacement estimates 

even over time spans of several years (e.g., Thomas et al. 2007). Post-processing periodic error 

mitigation techniques, e.g. sidereal filtering for multipath, would inadvertently remove part of the 

OTL, and hence cannot help overcome the GPS problem. The completion of the GLONASS satellite 

constellation replenishment in 2010, the subsequent upgrade of networks of GNSS receivers 

worldwide such that there are now over five years of both GLONASS and GPS dual frequency 

observations widely available, together with IGS Analysis Centres generating high accuracy GPS and 

GLONASS satellite orbits and high-rate clocks, now facilitate the estimation of OTL displacement 

using GLONASS. This is particularly desirable, as the GLONASS orbital period of 11.26 hours 

(~2.131 cycle per day) and the sidereal geometry repeat period of 8 days (0.125 cycle per day) are 

distinct from any major tidal frequencies, so K2 and K1 OTL displacement estimation becomes 

potentially feasible. This complements the promise shown by GLONASS for longer period crustal 

deformation studies, with Abraha et al. (2018) demonstrating that GLONASS can result in reductions 
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compared with GPS in artificial longer period signals arising from the propagation of unmodelled 

semi-diurnal and diurnal tidal displacements, because of the different geometry repeat period. 

This paper investigates how well OTL displacement may be estimated using GLONASS 

observations, in particular for the GPS-problematic K2 and K1 frequencies. We also investigate 

whether combining GPS and GLONASS observations can lead to more accurate OTL displacement 

estimation than when using either GPS or GLONASS observations alone. A globally-distributed set 

of GPS+GLONASS continuous receiver data spanning at least three years at carefully selected 

stations is used, with validation undertaken by comparison with forward geophysical model OTL 

displacement values. We focus on the height component, as these OTL displacements are typically 

three times the size of the horizontal components (Baker 1984). 

 

2. OTL displacement estimation using multi-GNSS kinematic PPP  

As described by Penna et al. (2015), OTL displacement can be estimated by the GNSS Precise Point 

Positioning (PPP) technique in two ways, which they termed harmonic estimation and the kinematic 

approach. In kinematic PPP (which we use here, following Penna et al. 2015), satellite positions and 

clock offsets are held fixed, and a variety of systematic errors, including antenna phase centre 

variations (PCV), phase windup, atmospheric propagation effects, and tidal displacements, are 

corrected. Then, parameters of interest are estimated which include time-varying 3D station 

coordinates, receiver clock offsets (at each data collection epoch), unmodelled time-varying 

tropospheric delays, and phase biases for each satellite during each phase-connected arc. Thereafter, 

the station coordinates in each processing session, e.g. 24 hours, are concatenated to form a time 

series and then screened to remove blunders. In addition, a low pass filter in the form of a window 

average may be used to eliminate time series noise with periods much shorter than the diurnal and 

semidiurnal tidal bands. Finally, by least squares spectral analysis of the time series for each desired 

coordinate component and tidal constituent, the amplitude and phase lag of the tidal displacement 

signals are estimated.  

Here, for the kinematic PPP data processing, we use the Position and Navigation Data Analyst 

(PANDA) software (Liu and Ge 2003), as it not only has a proven capability in kinematic PPP 

combined multi-GNSS processing (e.g., Penna et al. 2018) but also allows the processing of either 

GPS or GLONASS data separately. To fix the satellite positions and their clock offsets at each data 

collection epoch, we use the ESA final (operational) products as they have the longest continuous 

record of high-rate (30-second) GPS+GLONASS satellite clock availability (2010 onwards) of all the 

IGS Analysis Centres, and they are of high quality throughout this interval, ~1 cm weighted root 
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mean square difference from the IGS combined solution (Villiger and Dach 2018). We use EOP 

information provided by IERS bulletins as fixed values for each daily kinematic PPP batch. We apply 

IGS receiver and satellite antenna phase centre variation models and we use the ionosphere-free 

combination of dual frequency data to mitigate ionospheric effects. The predictable parts of the 

tropospheric delay and tidal displacement (including the perturbation due to the Free Core Nutation) 

are removed from GNSS observations according to the IERS Conventions 2010 (Petit and Luzum 

2010), using the Saastamoinen (1972) formula and the Global Mapping Function (GMF) (Boehm et 

al. 2006) to reduce the hydrostatic and wet tropospheric delays. Due to their simpler modelling 

approach (e.g., Mathews et al. 1997), Earth body tide calculations are typically performed within PPP 

software packages. However, OTL displacement computations, which require information for the 

ocean tidal height and coastline geometry (e.g., Farrell 1972; Baker 1984), require a separate 

computation procedure. We input the FES2014b ocean tide model (Carrère et al. 2016), and an elastic 

Earth response Green’s function computed from the Preliminary Reference Earth Model (PREM) 

(Dziewonski and Anderson 1981) by Wang et al. (2020), to the NLOADF (SPOTL) software (Agnew 

1997; 2012) to compute a priori OTL displacements. These are then applied in the GNSS processing 

via the hardisp program of the IERS Conventions 2010. Thus, the tidal displacement signals we 

estimate are residuals to this a priori model. We focused our study on the M2, N2, K2, K1, O1, P1 

and Q1 constituents which typically have the largest semi-diurnal and diurnal OTL displacements 

(Table 1). We disregarded S2 OTL despite its typically large magnitude, as GNSS observations are 

also affected by S2 atmospheric loading displacement (e.g., Tregoning and van Dam 2005) and these 

two physical signals cannot be separated in the frequency domain. Because ESA satellite orbit/clock 

information is provided in the centre of GNSS network (CN) reference frame, which is a realisation 

of the Earth’s centre of figure (CF) frame (e.g. Dong et al. 2003), we compute the predicted OTL 

displacement with respect to the centre of mass of the solid Earth (CE), which closely resembles CF.  

We adopt a dynamic model for the estimated time-varying kinematic PPP parameters consisting of 

white process noise for receiver clock offsets, and random walk process noise for the station 

coordinates and tropospheric zenith wet delay (ZWD) and its northward and eastward horizontal 

gradients. As described below, we use the method of Penna et al. (2015) to tune appropriate process 

noise values. The unknown parameters in the GPS-only solutions, namely 3D station coordinates and 

receiver clock corrections every 30 seconds, ZWD every 30 minutes and its horizontal gradients every 

60 minutes, and a real-valued phase bias for each phase-connected arc, are estimated in a recursive 

least squares adjustment, over 24-hour sessions (chosen to minimise any additional errors from day 

break effects when concatenating 24-hour ESA orbits and clocks). The GLONASS-only and 

GPS+GLONASS solutions were parameterised as for GPS except: for GLONASS, also a time-
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constant inter-frequency bias is estimated per satellite (except for a reference satellite); for 

GPS+GLONASS, also a time-constant inter-system time and inter-frequency bias is estimated per 

satellite. As precise satellite orbit products for GPS and GLONASS are both computed in the 

International Terrestrial Reference Frame (ITRF), a coordinate frame transformation between them 

is not required in combined GPS+GLONASS PPP. Gross outliers were removed from the resulting 

30-second detrended height coordinate time series if they were more than ten times the median 

absolute deviation from the median, before coordinate averaging in 30-minute bins, which were then 

used to estimate harmonic displacements at specific, defined tidal frequencies using least squares. 

 

2.1.  GNSS data selection 

The GNSS stations used to assess the benefit of GLONASS for OTL displacement estimation were 

selected according to (i) GNSS data availability and quality, and (ii) the suitability of using forward 

geophysical models for the validation of the estimated OTL displacements. As the quality of a 

kinematic PPP solution will be directly dependent on the quality of satellite orbits and high-rate 

clocks, as well as how well ionospheric and tropospheric effects are mitigated, we selected a globally-

distributed set of GNSS stations to assess the impact of these effects on the OTL displacement 

estimation. In total, 49 globally-distributed GNSS stations were selected (shown in Figure 1 and listed 

in Appendix A along with the data availability and spans used) which fulfilled the criteria now 

described. 

The accuracy of a GNSS-estimated tidal displacement is a function of data completeness within each 

daily PPP session, and the entire data processing window size. Penna et al. (2015) found that if at 

least 2.5 years of data are used, a harmonic displacement in the semi-diurnal tidal band may be 

estimated to within about 0.4 mm. They also found that at least 70% data coverage is needed over the 

given time span. Therefore to be conservative in selecting our data set, we used globally-distributed 

stations which had 90% annual coverage for at least three consecutive years between 2012.0 and 

2019.0. Daily station data files were only considered as candidates if there were at least 20 hours of 

GPS and GLONASS continuous data and if the GPS analyses of Blewitt et al. (2018) for the station 

per day resulted in sub-3 cm values both for the RMS of the daily post-fit residuals from all satellites 

and for the formal error of the estimated daily 3D coordinates (ftp://data-

out.unavco.org/pub/products/unr_qa). For validation of the GLONASS-estimated OTL 

displacements, GPS-derived OTL displacements using established methodology could be used for 

most constituents, but for the K2 and K1 constituents which are expected to be problematic for GPS, 

we must validate using OTL displacements computed by forward modelling. Therefore, after assuring 

ftp://data-out.unavco.org/pub/products/unr_qa
ftp://data-out.unavco.org/pub/products/unr_qa
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data completeness as described above, we further restricted our choice of GNSS stations to locations 

where precise and accurate tidal displacement modelling is possible. This must in principle include 

the modelling of the Earth body tide, but referring to Yuan et al. (2013), we expect sub-millimetre 

uncertainty for this at any station. Therefore we are concerned only with the accuracy of predicted 

OTL displacement, which is a function of errors in each of the ocean tide model, the Green’s function 

incorporating the Earth model, and the computational strategy for convolving these. Penna et al. 

(2008) found sub-millimetre agreement for the convolution integral computation using different OTL 

software packages, even in the worst case of coastal stations, and agreement better than 0.2 mm for 

stations more than 150 km inland. On the other hand, Bos et al. (2015) reported 0.2-0.4 mm 

disagreement between GPS observations and the predicted M2 OTL height displacement using a 

Green’s function that accounted for anelasticity effects, commensurate with the effects of the 

established GPS observation error and uncertainties in the ocean tide models that they used. This 

suggests that computational and Earth model errors can be reduced to negligible amounts provided a 

suitable Green’s function and ocean tide model are used. Hence, we believe ocean tide model error 

remains the main source of potential uncertainty for OTL displacement prediction. 

To determine the GNSS station locations at which ocean tide model errors are minimised, OTL 

displacements based on eight global ocean tide models, FES2014b (Carrère et al. 2016), GOT4.10c 

(Ray 2013), TPXO8-Atlas (Egbert and Erofeeva 2002), NAO.99b (Matsumoto et al. 2000), 

HAMTIDE11a (Taguchi et al. 2014), DTU10 (Cheng and Andersen 2011), and EOT11a (Savcenko 

and Bosch 2012), were computed using NLOADF, and the phasor differences from the mean of the 

displacements for each cell of a 0.25°×0.25° global grid were generated. The RMS magnitudes of 

these phasor (vector) differences for the modelled height component for the M2 and K1 constituents 

are shown in Figure 1, and similar maps for the smaller constituents N2, K2, O1, P1 and Q1 are 

provided in Appendix B. The largest inter-model discrepancies of about 3 mm arise around the 

Weddell Sea, the Ross Sea, Baffin Bay, Baffin Island (outside the TOPEX/POSEIDON and Jason 

altimetry satellite data coverage and where the ice grounding zone is poorly determined) and the 

Philippines, while there are further more localised areas where the discrepancies are about 1 mm, 

such as in the Arctic Ocean, northern Australia, the Gulf of Alaska and the north coast of Brazil. 

Therefore we only considered GNSS stations away from these areas, and selected 49 stations for 

GNSS processing which all fulfilled the criterion 𝑀𝑀𝑀𝑀𝑀𝑀{𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 𝑀𝑀2,𝑁𝑁2,𝐾𝐾2,𝐾𝐾1,𝑂𝑂1,𝑃𝑃1,𝑄𝑄1} <

1𝑚𝑚𝑚𝑚 as well as fulfilling the GNSS data criteria described above. As stated above, we used an elastic 

Green’s function based on PREM for all of our computations, and at our 49 stations, the M2 

constituent height component displacements differ by only 0.16 mm RMS from when the anelastic 

Green’s function of Wang et al. (2020) is used. Ocean tide model variations caused 0.7-0.8 mm RMS 
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inter-model agreement for the predicted M2 OTL height displacements at OHI2, TOW2, TRO1, 

VARS, and WARK (labelled in Figure 1), which is mostly caused by 0.8-1.5 mm discrepancies 

arising from the NAO.99b model. If this model is excluded, the RMS inter-model agreement per 

station is reduced to 0.4-0.7 mm, but these stations are still the worst-performing. All other stations’ 

predicted OTL displacements agree better than 0.5 mm regardless of ocean tide model choice.  

 

 

Fig. 1 RMS agreement of the magnitudes of the vector differences for the predicted OTL height displacement (in 

mm) per cell of a 0.25° global grid for the M2 (top) and K1 (bottom) constituents based on seven recent ocean tide 

models (FES2014b, GOT4.10c, TPXO8-Atlas, NAO.99b, HAMTIDE11a, DTU10, and EOT11a), with GNSS 

stations used in this paper shown as dark blue dots. The colour scale saturates at 2 mm RMS (maximum RMS for 

both M2 and K1 is 3 mm). The five stations with the largest (0.7-0.8 mm) inter-model disagreement (OHI2, TOW2, 

TRO1, VARS and WARK) are labelled, as are the five stations co-located with radiosonde observations (CAS1, 

CHUR, HOB2, TIXI and UFPR). 
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2.2. PANDA software validation 

As we are not aware of any previous publications using PANDA kinematic PPP to estimate OTL 

displacements, we initially assessed its GPS-only capability using two tests. First, we introduced a 

synthetic harmonic displacement signal and assessed how well it may be recovered using our PANDA 

kinematic PPP estimated GPS height time series. Second, the power spectral density (PSD) from GPS 

kinematic PPP height time series from PANDA were compared with those using the GNSS-Inferred 

Position System (GIPSY) software, which is regarded as valid because GIPSY height time series 

have been shown by Penna et al. (2015), Bos et al. (2015) and Martens et al. (2016) to estimate OTL 

displacement to an accuracy of better than 0.5 mm. 

All data from all stations marked on Figure 1 (and listed in Appendix A) were processed using 

PANDA in GPS-only mode with a 10° elevation angle cut-off, and a 5 mm amplitude (phase assigned 

as zero at J2000) synthetic harmonic height displacement with 13.96 hour period was applied to the 

data in order to test the harmonic displacement measurement accuracy and precision. This follows 

the validation methodology of Penna et al. (2015), except here we implemented this by changing the 

satellite instantaneous position rather than the nominal reference coordinate of the ground station. At 

each data epoch, we generated a height displacement signal in the GNSS station’s local topocentric 

frame. Then the station’s approximate latitude and longitude were used to construct the matrices to 

convert from the topocentric frame to the geocentric Earth fixed frame of the orbits. After converting 

the synthetic signal 3D coordinates (with zero values for the east-west and north-south components) 

to the IGS orbit coordinate frame in this way, the displacements were applied to the satellite positions. 

Similar to Penna et al. (2015), we then varied the process noise values of the station coordinates and 

the ZWD, to minimise the synthetic signal recovery error, estimated height repeatability, RMS of the 

observation post-fit residuals, and RMS discrepancy between GPS-estimated tropospheric delay and 

that estimated from nearby radiosonde data where available. Based on analysis of five of the stations 

in different parts of the world (CAS1, CHUR, HOB2, TIXI and UFPR, labelled on Figure 1), we 

found optimum values of 1.0 𝑚𝑚𝑚𝑚/√ℎ and 3.0 𝑚𝑚𝑚𝑚/√𝑠𝑠  for the ZWD and coordinate process noise, 

respectively, and hence these values are used for the GNSS kinematic PPP data processing throughout 

the rest of this paper. We evaluated the recovery error in the spectral domain instead of the time 

domain. In Figure 2a, the phasor differences between the true synthetic signal and its estimated values 

at all stations are shown. As this figure indicates, the residual vectors are randomly distributed with 

a very small mean  𝑹𝑹𝑚𝑚 = (0.02, 0.01) mm. Therefore, we applied the Rayleigh distribution (e.g., 

Maymon 2018) for the statistical assessment of the synthetic signal recovery error magnitude, and 

the best fit probability distribution function (PDF) and its equivalent cumulative distribution function 

(CDF) are shown in Figures 2b and 2c, respectively. For more than 95% of the tested GNSS stations 
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the synthetic signal was recovered with an error less than 0.5 mm in magnitude. This is approximately 

equivalent to the 0.2-0.4 mm RMS reported by Penna et al. (2015) for GIPSY, but uses more stations 

(49 rather than 21) which are distributed globally, not just in western Europe. The PANDA solution 

uses float not fixed carrier phase ambiguities. The similarity between the PANDA synthetic signal 

displacement recoveries and those of Penna et al. (2015) also suggest that for tidal constituents with 

periods clearly distinct from 12 or 24 hours, there is no significant degradation in using 24 hour 

session lengths with concatenated 24 hour orbits and clocks rather than 30 hour GPS processing 

session lengths with 30 hour orbit and clocks.  

To compare directly with the PANDA GPS height time series, GPS data over the same time span 

from all 49 stations were processed using GIPSY v6.4 in kinematic PPP mode, with the processing 

method following that described in Bos et al. (2015). The key differences between the PANDA and 

GIPSY processing are that in GIPSY: the VMF1 mapping function was used; the data were processed 

in 30-hour sessions and the central 24 hours of estimated coordinates extracted and concatenated; JPL 

repro3 fiducial satellite orbits and 30-second clocks computed in the IGb14 reference frame were 

held fixed; and the nominal FES2014b / PREM Green’s function OTL displacements applied were 

computed in the CM frame to ensure compatibility with the JPL orbits and clocks. The resulting mean 

(stacked) PSD plot for the ambiguity-float GIPSY height time series for all 49 stations is shown in 

Figure 3, and superimposed on it is that from the PANDA GPS-only processing. It can be seen that 

they are very similar, with the PANDA results showing slightly (11-18%) more noise PSD averaged 

across the non-tidal bands 0.2-0.8 cycles per day (cpd), 1.2-1.8 cpd and 2.2-2.8 cpd. This confirms 

that PANDA GPS-only processing gives commensurate kinematic float PPP results to GIPSY. This 

similarity exists despite these solutions using different orbit and clock products which have different 

reference frames (the ESA products are operational and initially in the IGS08 frame but switched to 

IGb14 at GPS week 1934, whereas the JPL ones are repro3 products in the IGb14 frame) and may be 

subject to changes in ESA processing strategy over time for the operational products. However, this 

similarity further substantiates the findings of Penna et al. (2015) who noted that OTL displacement 

estimates are not sensitive to reference frame changes.  

Previous studies (e.g., Penna et al. 2015; Bos et al. 2015; Martens et al. 2016) have used ambiguity-

fixed GPS kinematic PPP within GIPSY (Bertiger et al. 2010) as the most robust solution for the 

GPS-derived OTL displacement, so this will be taken as the reference solution for comparison of the 

ambiguity-float PANDA GPS-only, GLONASS-only and combined GPS+GLONASS solutions later 

in this paper. To illustrate the effect of ambiguity fixing, Figure 3 also compares the stacked PSDs of 

our ambiguity-fixed and ambiguity-float GIPSY GPS solutions. Ambiguity fixing leads to a reduction 

in noise across the entire frequency range (35-45% smaller noise PSD in the three non-tidal bands 
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mentioned above), although this reduction is marginal at the highest frequencies. We will in the next 

section investigate to what extent the addition of GLONASS data can mitigate the lack of ambiguity 

resolution in our PANDA solutions, and constellation-related GPS errors. A notable feature of all 

solutions shown in Figure 3 is the frequency comb of increased noise at frequency multiples of K1 

(23h56m period) and K2 (11h58m period), arising from errors in GPS which are sidereally-repeating 

(station-satellite geometry and multipath) and orbitally-repeating (satellite orbits and clocks) 

respectively. These errors, resulting from the 11h58m orbital period of GPS satellites, are a principal 

motivating factor for including GLONASS in our analysis, although they are accompanied by some 

daybreak noise, centred on frequency multiples of S1 (24h period), which we would expect to persist 

in all solutions based on 24-hour data segments. 

 

Fig. 2 a) Signal recovery error phasors from the introduction of a 13.96 hour harmonic height displacement for the 

PANDA GPS-only height solutions, b) normalised probability distribution function (PDF) histogram of their vector 

magnitudes, and c) cumulative probability distribution (CDF) over all 49 GNSS stations listed in Appendix A. The smooth 

red curves in (b) and (c) are for the fitted distribution functions. 
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Fig. 3 Mean stacked power spectral density (PSD) for the GPS-derived height time series for the 49 globally-distributed 

GNSS stations processed using both PANDA (ambiguity-float) and GIPSY (ambiguity-float and ambiguity-fixed). All 

solutions used a 10° elevation cut-off angle. The shaded bandwidths (0.2-0.8 cpd, 1.2-1.8 cpd and 2.2-2.8 cpd) are used 

for the noise PSD comparisons. The lower panes show enlargements of the diurnal and semi-diurnal frequency bands. 

 

3. GLONASS data contribution to OTL displacement measurement 

The quality of kinematic PPP solutions is very sensitive to the number of satellites and their geometric 

distribution at each epoch (e.g., Li et al. 2015). The GPS constellation consists of at least 24 satellites 

distributed in six near-circular orbits of approximate radius 26559 km, inclined at 55° to the equatorial 

plane, with a 60° longitude separation between their ascending nodes. The GLONASS constellation 

also consists of 24 operational satellites, but they are distributed evenly across three near-circular 

orbits with approximate radius 25471 km, inclination angle 65°, and longitude separation of 120° for 

the ascending nodes. These differences in satellite constellation change the temporal and spatial 

variation in GNSS satellites’ availability and viewing geometry, and the consequent dilution of 

precision (DOP) in different locations; thus kinematic PPP performance is affected (Pan et al. 2017). 

In particular, to estimate independent coordinates and receiver clock terms at each epoch within a 

phase-connected data arc, a minimum of four satellites is required for a single-constellation solution, 

or five satellites for a dual-constellation solution where the GPS-GLONASS system time offset also 
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needs to be estimated. Epochs when this minimum is approached, or when the geometric dilution of 

precision is high, may not achieve reliable outlier identification and hence the position estimates may 

be unreliable (especially as 30-minute tropospheric parameters and constant ambiguity parameters 

are also estimated in our solutions). 

Using the initial elevation cut-off angle of 10°, we noted particularly poor performance of some 

GLONASS-only PPP solutions, which we investigated as follows. We used the TEQC program 

(Estey and Meertens 1999) to inspect the RINEX observation files of all stations from 00:00 UTC on 

15 January to 00:00 UTC on 21 January 2016, a sample time span during which all stations recorded 

all 30-second data epochs with no receiver tracking outages. The average daily percentage of epochs 

for which at least seven GPS or seven GLONASS satellites were recorded is shown in Figure 4. It 

can be seen that when a 10° mask angle is used, all stations obtain data from at least seven GPS 

satellites at virtually all epochs, whereas for GLONASS data this success rate varies with station 

latitude, from around 50% for latitudes between 20°-30° rising to at least 95% at latitudes of 50° and 

above. Figure 4 also indicates that for stations with latitudes less than 50°, reducing the mask angle 

to 5° can significantly increase the percentage of epochs with ample GLONASS observations. 

Although satellites at lower elevation angles will have lower quality observations because of 

increased atmospheric propagation errors and multipath, this is mitigated by elevation angle 

dependent data weighting. In PANDA, for any observation collected at an elevation angle (E) less 

than 30°, the pre-defined standard error is scaled by {2𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸)}−1, following Gendt et al. (2003). 

Hence, we classified stations into two groups based on their latitude: stations within 50° of the 

equator, and those at higher latitudes, to evaluate the impact of the data mask angle on kinematic PPP 

performance. After running kinematic PPP solutions for all stations with 5° and 10° elevation cut-off 

angles for GPS-only as well as GLONASS-only data, the mean PSDs of the estimated height time 

series for each region were computed. Figure 5 demonstrates slightly lower performance for the GPS-

only kinematic PPP solution for stations in the equatorial band, compared with the high-latitude 

group. For GPS, mean vertical DOP improves slightly at lower latitudes, but we hypothesise that this 

is offset by greater atmospheric delay variability which impacts the position estimates. Reducing the 

elevation cut-off angle improves the time series precision very slightly in both regions, which can be 

explained by the typically increased number of recorded GPS measurements and reduced DOP at 

each data collection epoch. In Figure 6, we present the mean stacked PSDs for the estimated height 

time series from GLONASS-only data, which also show larger noise for the lower-latitude group. 

However, in this case there is much smaller latitudinal variation in mean DOP, and we hypothesise 

that the effects of atmospheric delay variability are more extensively compounded because of the 

smaller number of satellites typically observed. As can be seen in Figure 6 (middle and bottom 
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panels), the amplitude modulation of the K2 and K1 constituents on the GLONASS satellite ground 

track repetition signal (K1/8) causes peaks which are symmetrically distributed around K2 and K1, 

but which are not present in the equivalent plots for GPS shown in Figure 5. Figure 6 also indicates 

that a reduction in data processing elevation cut-off angle enhances GLONASS-only kinematic PPP 

performance more for lower than for higher latitude stations. Therefore because of this improved 

precision with a 5° instead of 10° elevation cut-off angle for both GPS and GLONASS constellations 

and across all latitude bands, we use a 5˚ cut-off angle for all PANDA GPS-only, GLONASS-only 

and combined GPS+GLONASS data processing for the remainder of this paper. 

 

 

Fig. 4 Mean percentage of epochs with at least seven recorded satellites, as a function of station absolute latitude, for six 

consecutive days in January 2016 for all 49 stations, for different elevation cut-off angles. 
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Fig. 5 Mean stacked PSD of the height time series from PANDA GPS-only kinematic PPP ambiguity-float solutions with 

different elevation cut-off angles. Stations with absolute latitude (ϕ) greater than 50° are in the left panel, lower-latitude 

stations are in the centre panel, and the right panel is for the entire dataset. 
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Fig. 6 Similar to Figure 5 but for GLONASS-only data. 
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In Figure 7, the mean stacked height time series PSDs of the GPS ambiguity-fixed solutions from 

GIPSY, and those for the GPS, GLONASS, and combined GPS+GLONASS ambiguity-float 

solutions from PANDA are compared. The GLONASS-only solution has generally greater noise than 

GPS-only, likely because of fewer available GLONASS satellites especially in mid-latitude areas, 

and lower quality GLONASS satellite clock/orbit products (e.g., Prange et al. 2017). However, by 

combining GPS and GLONASS data in a float solution, the noise level of the estimated height time 

series is considerably reduced, and it shows generally similar or even smaller noise compared with 

the GPS-only ambiguity-fixed solution in GIPSY (0-8% reduction in noise PSD across the 0.2-0.8 

cpd, 1.2-1.8 cpd and 2.2-2.8 cpd non-tidal bands). This demonstrates the benefit of incorporating 

GLONASS data if an ambiguity-fixing algorithm is not implemented in a PPP software package, or 

when either uncalibrated phase delay (UPD) information or a dense regional network, which are 

required for PPP ambiguity fixing (e.g., Bertiger et al. 2010: Geng et al. 2011), are not available. 
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Fig. 7 Mean stacked height time series PSDs from GIPSY ambiguity-fixed GPS-only solutions and GPS-only, 

GLONASS-only and combined GPS+GLONASS ambiguity-float solutions in PANDA. For all PANDA solutions a 5° 

elevation cut-off angle is used. The shaded bandwidths (0.2-0.8 cpd, 1.2-1.8 cpd and 2.2-2.8 cpd) are used for the noise 

comparison. 
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Although the noise level is generally higher, most of the peaks at frequencies n*K1 in the GLONASS-

only PSD are smaller in absolute terms than those in any of the GPS-only solutions. This is because 

the 11h16m orbital period of GLONASS satellites does not combine with the sidereal rotation of the 

Earth to create an exact station-satellite geometry repeat as it does for GPS, so sidereally-repeating 

errors such as multipath are randomised and much reduced on average in a GLONASS-only solution. 

However, small errors remain because there does exist a weak approximate geometry repeat arising 

from the interaction between the 2⅛ GLONASS satellite orbits per sidereal day and the equal 

separation of eight satellites per GLONASS orbital plane. This means that after one sidereal day the 

satellite geometry as seen from a station will repeat, although different satellites will be involved. 

These small peaks can be seen in the GLONASS spectrum, with larger peaks at 3*K1 (K3) and 9*K1 

(K9) caused by the 120° longitude separation of the three GLONASS orbital planes (see Daly (1988) 

for a related discussion of GLONASS viewing geometry repeat). Also, the GLONASS solution shows 

slightly increased noise at period K1/8 and its frequency multiples, caused by the true GLONASS 

geometry repeat interval of 8 sidereal days. The combined ambiguity-float GPS+GLONASS PANDA 

solution is still contaminated by the sidereally-repeating errors arising principally from GPS and an 

overtone of the abovementioned K1/8 artefact, but whereas overall noise levels are similar, the 

magnitude of all n*K1 peaks is reduced compared with any of the GPS-only solutions. 

 

4. Comparison between GNSS-derived and modelled OTL displacements 

We inspect OTL height displacements for the M2, N2, K2, K1, O1, P1 and Q1 constituents obtained 

from GPS-only, GLONASS-only and combined GPS+GLONASS solutions at each of the 49 stations. 

The vector differences between the predicted (modelled) and GNSS-derived OTL displacements are 

shown in Figure 8, and their statistics summarised in Table 2. The largest M2 residuals (of about 

1.2 mm even for the combined GPS+GLONASS solution) are for the stations TOW2, TRO1, VARS 

and WARK, for which 0.7-0.8 mm inter-model disagreement for the predicted M2 OTL height 

displacement was noted in section 2. Figure 8 demonstrates that the vector differences for all 

constituents are distributed randomly around zero with a mean well below 0.5 mm, which again leads 

us to use the Rayleigh distribution for their statistical analysis. The estimated OTL height 

displacement residuals with their best-fitted Rayleigh CDF are presented in Figures 9-15.  

As depicted in Figure 9 for the M2 constituent, the estimated OTL height displacement residuals with 

GPS-only and GLONASS-only measurements are smaller than 1.2 mm and 1.3 mm, respectively, at 

about 95% of the processed stations. When excluding the five stations at which the largest M2 

disagreements arose (OHI2, TOW2, TRO1, VARS and WARK), these 95% limits are slightly 
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reduced to 1.0 mm and 1.2 mm (not shown in Figure 9). This indicates the near-similarity in 

capability of GPS-only and GLONASS-only data to estimate OTL displacement for M2. The slight 

improvement in vector difference residuals by a factor of 1.2 with GPS rather than GLONASS is also 

commensurate with the PSD differences around the M2 frequency shown in Figure 7. Also in 

accordance with the PSD GPS+GLONASS noise reductions over GPS-only and GLONASS-only, 

the combined GPS+GLONASS data provides the smallest residuals for M2: for the 44 better-

modelled stations the 95th percentile is reduced to 0.9 mm for this estimate and the mean magnitude 

of these residuals is 0.4 mm, commensurate with the ambiguity-fixed GPS results of Bos et al. (2015). 

In comparison, Figure 10 shows that for N2 OTL height displacement, which is only marginally 

affected by ocean tide model uncertainty, the estimated residual with combined GPS+GLONASS is 

smaller than 0.3 mm at 95% of the 49 stations, compared with 0.5 mm and 0.6 mm for GPS-only and 

GLONASS-only respectively. Similar behaviour for the estimated O1 height residual can be seen in 

Figure 13 and, as for N2 and M2, the improvements in the residuals with GPS+GLONASS are 

commensurate with the PSD reductions over GPS-only and GLONASS-only shown in Figure 7. We 

suggest that these results, for constituents whose OTL modelling uncertainty is low, are indicative of 

the inherent GNSS measurement error budget at frequencies well separated from the sidereal and 

satellite orbit and geometry repeat periods. Poorer agreement at M2 is at least partly due to the greater 

OTL modelling uncertainty, but might also indicate systematic lunar-origin errors in satellite orbit 

and clock or Earth body tide modelling.  

Figure 11 clearly demonstrates the problem of measuring OTL displacement at the K2 frequency 

from GPS data. The 95th percentile of the estimated K2 height residuals estimated by GPS is 4.4 mm, 

which is much larger than any uncertainty in OTL modelling and more than two times larger than its 

counterpart estimated by GLONASS (2.0 mm). Hence, the ability of GLONASS to partially 

overcome GPS problems in measuring K2 tidal displacement is confirmed. However, the lack of 

GLONASS agreement to within the level of OTL modelling uncertainty that is indicated by the results 

for N2 and O1 implies that systematic errors remain, which we suggest may be due to overtones of 

sidereally-repeating errors such as multipath arising from the approximate geometry repeat of the 

GLONASS constellation. Figure 11 also indicates that the increase in satellite availability and better 

DOP in the combined GPS+GLONASS kinematic PPP can compensate GPS-specific error in the 

estimated K2 tidal displacement to some extent, but the latter error dominates and so a combined 

solution (95th percentile residual 2.4 mm) is not as accurate as GLONASS-only. For the K1 tidal 

constituent shown in Figure 12, the 95th percentiles of the GLONASS-derived and combined 

GPS+GLONASS estimated K1 residuals are 2.8 mm and 2.6 mm respectively, roughly two-thirds of 

the GPS-derived value of 3.9 mm. In comparison to K2, these larger discrepancies might imply 
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further systematic errors in addition to the fundamental sidereally-repeating geometry related errors. 

Such errors may arise from the 24-hour data segments used in processing and/or orbit integration, as 

evidenced by the larger discrepancies also noted for the P1 constituent (Figure 14) which is similarly 

close to 24 hours in period.  The discrepancies at P1 are identical for GPS-only and GLONASS-only 

solutions (95th percentile 2.4 mm), indicating that they are not related to orbital or geometry repeat 

period, but reduce to a 95th percentile of 1.3 mm for the combined solution as expected in accordance 

with the decreased overall noise level. 

It was anticipated from the noise reductions shown in Figure 6 that a more robust kinematic PPP 

solution would arise for the GLONASS-only solutions at higher latitude stations. Therefore in Figures 

9 to 15, we grouped the residuals into two latitude bands, with smaller GLONASS-only M2, N2, O1, 

P1 and Q1 residuals seen for the higher latitude band than the lower. To quantify this, we computed 

the 95th percentiles for the estimated OTL displacement residuals by latitude band, and plot these in 

Figure 16 for each of the GPS-only, GLONASS-only and GPS+GLONASS solutions. It can be seen 

that the M2, N2 and O1 OTL displacements can be measured by GLONASS data with similar 

accuracy to the GPS observations for high latitude stations, whereas the accuracy of the GLONASS-

derived M2, N2, O1, P1 and Q1 estimates is reduced by around 0.2-1.9 mm for the low latitude 

stations. For K2 and K1, the station latitude effect cannot be seen because the K2 and K1 error sources 

discussed above dominate. 
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Fig. 8 Vector differences between GNSS-derived and modelled OTL height displacement for all 49 stations for M2, N2, 

K2, K1, O1, P1 and Q1. In each panel, the mean of all vector differences (𝑹𝑹m) is provided. Note that K2, K1 and P1 are 

plotted with a different scale to the other constituents. For M2, phasors are highlighted in cyan for stations OHI2, TOW2, 

TRO1, VARS and WARK, which show larger disagreement among ocean tide models. 
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Fig. 9 Magnitude of vector differences between GNSS-derived and modelled M2 OTL height displacement. In the lower 

panels, the observed cumulative distribution function (CDF) with its fitted counterpart (based on the Rayleigh probability 

distribution function (PDF)) is shown and the 95th percentile of the fitted CDF is labelled. 

 

 

Fig. 10 Similar to Figure 9 but for the N2 constituent. 
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Fig. 11 Similar to Figure 9 but for the K2 constituent (note the different scale matching K1 and P1). 

 

 

Fig. 12 Similar to Figure 9 but for the K1 constituent (note the different scale matching K2 and P1).  
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Fig. 13 Similar to Figure 9 but for the O1 constituent.  

 

 

Fig. 14 Similar to Figure 9 but for the P1 constituent (note the different scale matching K2 and K1). 
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Fig. 15 Similar to Figure 9 but for the Q1 constituent 

 

Table 2 95th percentile of the magnitude of the vector differences between GNSS-derived and modelled OTL height 

displacement for the 49 stations, for GPS-only, GLONASS-only and GPS+GLONASS solutions 

 95th percentile (mm) 
 GPS GLO GPS+GLO 
M2 1.2 1.3 1.1 
N2 0.5 0.6 0.3 
K2 4.4 2.0 2.4 
K1 3.9 2.8 2.6 
O1 0.6 0.9 0.5 
P1 2.4 2.4 1.3 
Q1 0.4 0.9 0.3 
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Fig. 16 95th percentile for the GNSS minus model M2, N2, K2, K1,O1, P1 and Q1 OTL height displacement residuals 

grouped by station latitude. The cyan bars shown for M2 were computed after excluding the poorly-modelled stations 

mentioned in the Figure 8 caption.  

 

5. Discussion and conclusions 

We have validated PANDA’s robustness as a kinematic PPP displacement estimation software by 

comparing the spectral characteristics of its height time series noise to those from GIPSY, at hourly 

to weekly periods. We used a network of globally-distributed GNSS stations fulfilling daily and 

annual data completeness, located in regions with sub-millimetre consistency in predicted OTL height 

displacement when computed with different ocean tide models. We found that a low (5° instead of 

10°) elevation cut-off angle mask was especially beneficial for processing lower-latitude GLONASS-

only solutions, and had small but positive impact in other situations. Our investigation of GPS-only, 

GLONASS-only and combined GPS+GLONASS observation processing in kinematic PPP mode 

demonstrates three main benefits of incorporating GLONASS data, with particular relevance for 

measuring OTL displacement.  

First, combined GPS+GLONASS kinematic PPP with float ambiguity estimation is as precise as 

GPS-only fixed ambiguity PPP. However, the former is more flexible, as it is independent of UPD 

corrections. Even with available UPD information, the ambiguity fixing success rate will decrease 

when estimated float ambiguities are not precise enough (Teunissen 2017), for instance in the 

situation of poor DOP, extreme ionospheric activity, or short phase-connected arcs.  
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Second, in addition to noise reduction in the combined GPS+GLONASS kinematic PPP compared 

with single-constellation solutions, it is verified that GLONASS-only float solutions are able to 

measure the M2, N2, O1 and Q1 constituents of OTL height displacement with almost similar 

accuracy to GPS-only float solutions. With GLONASS-only, 95% of tidal displacements agreed with 

forward geophysical models to within 0.6-1.3 mm for the M2, N2, O1 and Q1 constituents, compared 

with 0.4-1.2 mm for GPS-only. Hence, GLONASS-derived M2, N2, O1 and Q1 OTL displacements 

can be used as a check for GPS-derived ones and vice versa. Furthermore, OTL displacement 

estimation from a float solution using combined GPS+GLONASS observations can be as robust as a 

GPS-only ambiguity fixed solution for these constituents. 

Third, we have demonstrated the improved ability of GLONASS data to resolve OTL height 

displacements at the luni-solar semi-diurnal and diurnal periods (K2 and K1) which are not reliably 

measurable by GPS on account of the latter’s orbital period and station-satellite geometry repeat 

interval. We found very distinct improvement for purely GLONASS-derived K2 tidal displacement 

compared to its GPS-derived counterpart (2.0 mm rather than 4.4 mm 95th percentile residual values), 

and also improved compared with the combined GPS+GLONASS estimate (2.4 mm 95th percentile) 

which appears to be dominated by GPS-related errors. For the K1 constituent, the GLONASS-only 

and combined solutions are of comparable quality. However, even the best solutions at K1 and K2 

do not agree with the modelled OTL at the level achieved for M2, N2, O1 and Q1. This disagreement 

may be caused by sidereally-repeating errors which also exist for GLONASS because of its 

approximate sidereal station-satellite geometry repeat, and errors arising from the use of 24-hour data 

segments which also affect the nearby P1 constituent. 

When several years of complete constellation data together with corresponding high accuracy satellite 

orbits and high rate clocks are available for the Galileo and BeiDou systems (which have further 

differences in orbital and geometry repeat periods), a combined GPS+GLONASS+Galileo+BeiDou 

kinematic PPP solution may achieve a further reduction in the K1 and K2 residuals. For example, 

Abraha et al. (2018) showed that even limited Galileo data when added to GPS+GLONASS data 

reduced the amplitude of spurious propagated tidal signals in GPS coordinate time series. Hence a 

full, four-constellation kinematic PPP solution using longer data segments could in future provide the 

potential to be utilised for the refinement of solid-Earth Green’s functions and numerical ocean tide 

models, including for the K1, K2 and P1 constituents.  
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Appendices 

A: GNSS station and observation information 

Table A1 GNSS station name, coordinates, and receiver operator or data provider 

Station  Latitude Longitude Data Provider 

ALGO 45.9558 281.9286 Canadian Geodetic Survey, Natural Resources Canada  

AZRY 33.5401 243.3703 US Geological Survey  

BADG 51.7697 102.2350 Institute of Applied Astronomy, Russian Academy of Sciences 

CAS1 -66.2834 110.5197 Geoscience Australia 

CCJ2 27.0675 142.1950 Geospatial Information Authority of Japan 

CEFE -20.3108 319.6805 Brazilian Institute of Geography and Statistics 

CHUR 58.7591 265.9113 Canadian Geodetic Survey, Natural Resources Canada  

DAV1 -68.5773 77.9726 Geoscience Australia 

DRAG 31.5932 35.3921 Survey of Israel  

DRAO 49.3226 240.3750 Geological Survey of Canada, Natural Resources Canada 

FAIV 64.9781 212.5015 Jet Propulsion Laboratory, NASA, USA  

GODZ 39.0217 283.1732 Jet Propulsion Laboratory, NASA, USA  

GOLD 35.4252 243.1107 Jet Propulsion Laboratory, NASA, USA  

HEL2 54.1863 7.8765 Federal Agency for Cartography and Geodesy, Germany 

HOB2 -42.8047 147.4387 Geoscience Australia 

JPLM 34.2048 241.8268 Jet Propulsion Laboratory, NASA, USA 

KHAR 50.0051 36.2390 Main Astronomical Observatory, Ukraine 

KIR0 67.8776 21.0602 Swedish Mapping, Cadastral and Land registration Authority 

KOKV 22.1263 200.3351 Jet Propulsion Laboratory, NASA, USA 

MAC1 -54.4995 158.9358 Geoscience Australia 

MADR 40.4292 355.7503 Jet Propulsion Laboratory, NASA, USA 

MAS1 27.7637 344.3667 European Space Operation Center, European Space Agency 

MATE 40.6491 16.7045 Italian Space Agency 

MAW1 -67.6048 62.8707 Geoscience Australia 

MGBH -19.9419 316.0751 Brazilian Institute of Geography and Statistics 

NYA1 78.9296 11.8653 Norwegian Mapping Authority 

OHI2 -63.3211 302.0987 Federal Agency for Cartography and Geodesy, Germany 

ONRJ -22.8957 316.7757 Brazilian Institute of Geography and Statistics 

ONSA 57.3953 11.9255 Swedish Mapping, Cadastral and Land Registration Authority 

PIE1 34.3015 251.8811 Jet Propulsion Laboratory, NASA, USA 

SCLA -27.7928 309.6957 Brazilian Institute of Geography and Statistics 

STK2 43.5286 141.8448 Geospatial Information Authority of Japan 

STR2 -35.3162 149.0102 Geoscience Australia 

SUTV -32.3802 20.8105 Jet Propulsion Laboratory, NASA, USA 

SVTL 60.5329 29.7809 Institute of Applied Astronomy, Russian Academy of Sciences 

SYOG -69.0070 39.5837 Geospatial Information Authority of Japan 

TID1 -35.3992 148.9800 Geoscience Australia 

TIXI 71.6345 128.8664 Regional GPS Data Acquisition and Analysis Center on 

Northern Eurasia, Russia 
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TOW2 -19.2693 147.0557 Geoscience Australia 

TRO1 69.6627 18.9396 Norwegian Mapping Authority 

TSK2 36.1056 140.0871 Geospatial Information Authority of Japan 

UFPR -25.4484 310.7690 Brazilian Institute of Geography and Statistics 

VARS 70.3364 31.0312 Norwegian Mapping Authority 

WARK -36.4344 174.6628 GeoNet, New Zealand 

WHIT 60.7505 224.7779 Canadian Geodetic Survey, Natural Resources Canada  

YAR3 -29.0465 115.3472 Geoscience Australia 

YCBA -22.0171 296.3200 German Geodetic Research Institute 

YELL 62.4809 245.5193 Canadian Geodetic Survey, Natural Resources Canada  

ZECK 43.7884 41.5651 Institute of Applied Astronomy, Russian Academy of Sciences 
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Fig. A1 Processed GNSS data time span with percentage data availability per day at each station. 
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B. OTL height displacement inter-model agreements 

 

Fig. B1 RMS agreement of the magnitudes of the vector differences for the predicted OTL height displacement (in mm) 

per cell of a 0.25° global grid for the semidiurnal N2 (top) and K2 (bottom) constituents based on seven recent ocean tide 

models (FES2014b, GOT4.10c, TPXO8-Atlas, NAO.99b, HAMTIDE11a, DTU10, and EOT11a), with GNSS stations 

used in this paper shown as dark blue dots.  

 



36 
 

 

Fig. B2 RMS agreement of the magnitudes of the vector differences for the predicted OTL height displacement (in mm) 

per cell of a 0.25° global grid for the diurnal O1 (top), P1 (middle) and Q1 (bottom) constituents based on seven recent 

ocean tide models (FES2014b, GOT4.10c, TPXO8-Atlas, NAO.99b, HAMTIDE11a, DTU10, and EOT11a), with GNSS 

stations used in this paper shown as dark blue dots. The colour scale saturates at 2 mm RMS (maximum RMS for O1 is 

3 mm). 

 


