THE HOMOTOPIE CATEGORY OF COMPLEXES OF PROJECTIVE MODULES

PETER JØRGENSEN

Abstract. The homotopy category of complexes of projective left-modules over any reasonably nice ring is proved to be a compactly generated triangulated category, and a duality is given between its subcategory of compact objects and the finite derived category of right-modules.

0. Introduction

The last decade has seen compactly generated triangulated categories rise to prominence. Triangulated categories go back to Puppe and Verdier, but only later developments have made it clear that the compactly generated ones are particularly useful. For instance, they allow the use of the Brown Representability Theorem and the Thomason Localization Theorem, both proved by Neeman in [6]. There are also results by many other authors to support the case.

The standard examples of compactly generated triangulated categories are the stable homotopy category of spectra and the derived category of a ring. Indeed, many analogies between these two cases are captured by their common structure of compactly generated triangulated category, and this allows the transfer of methods and ideas back and forth.

This paper adds to the collection of compactly generated triangulated categories by showing that if A is a reasonably nice ring, then the homotopy category of complexes of projective A-left-modules, $K(\text{Pro} \, A)$, is compactly generated. Furthermore, the subcategory of compact objects, $K(\text{Pro} \, A)^c$, admits a duality of categories

$$K(\text{Pro} \, A)^c \longleftrightarrow D^f(A^{op}),$$

where $D^f(A^{op})$ is the finite derived category of A-right-modules whose objects are complexes with bounded cohomology consisting of finitely presented modules.

2000 Mathematics Subject Classification. 18E30, 16D40, 13C10.
Key words and phrases. Coherent ring, flat module, projective dimension, compactly generated triangulated category, derived category, dualizing complex.
Moreover, if A is a reasonably nice k-algebra over the field k, and if there exists a k-algebra B and a dualizing complex BD_A, as defined in [8, def. 1.1], then the duality of categories can be improved to an equivalence

\[K(\text{Pro } A)^c \xrightarrow{\sim} D^f(B). \] (2)

My proof that $K(\text{Pro } A)$ is compactly generated and admits the duality (1) works when A is a coherent ring for which each flat left-module has finite projective dimension, and my proof of the equivalence (2) works when A is a left-coherent and right-noetherian k-algebra which admits a left-noetherian k-algebra B and a dualizing complex BD_A.

This covers a wide variety of natural examples. For instance, many rings, such as noetherian rings, are coherent. The condition that each flat A-left-module has finite projective dimension would appear less standard, but is in fact satisfied by large classes of rings such as noetherian commutative rings of finite Krull dimension [7, Seconde partie, cor. (3.2.7)], left-perfect rings [1, thm. I], and right-noetherian algebras which admit a dualizing complex [4].

It is worth noting that if A has finite left and right global dimension, then there is nothing new in my results. In this case, [5, lem. 1.7] gives that $K(\text{Pro } A)$ is equivalent to $D(A)$, the derived category of A-left-modules, so $K(\text{Pro } A)$ is compactly generated. ([5, lem. 1.7] is formulated for $K(\text{Free } A)$, but removing part of the proof gives an argument that works for $K(\text{Pro } A)$.) The subcategory of compact objects $K(\text{Pro } A)^c$ is now clearly equivalent to $D(A)^c$, the subcategory of compact objects of $D(A)$. It follows from [6, thm. 2.1.3] that $D(A)^c$ consists of the complexes which are isomorphic to bounded complexes of finitely generated projective modules. The same holds for $D(A^{op})^c$, and therefore $\text{RHom}_A(-, A)$ induces a duality between $D(A)^c$ and $D(A^{op})^c$. And finally, since A has finite right global dimension, each complex in $D^f(A^{op})$ has a bounded resolution consisting of finitely generated projective modules, so $D^f(A^{op})$ is equal to $D(A^{op})^c$.

These standard arguments show that if A has finite left and right global dimension, then $K(\text{Pro } A)$ is compactly generated and admits the duality of categories in equation (1). However, my results show the same for many rings which do not have finite global dimension.

1. Compact objects

Setup 1.1. In this section, A is a right-coherent ring.

As indicated in the introduction, $\text{Pro}(A)$ is the category of projective A-left-modules, and $K(\text{Pro } A)$ is the corresponding homotopy category of complexes. So $K(\text{Pro } A)$ has as objects all complexes of projective
A-left-modules, and as morphisms it has homotopy classes of chain maps. Similarly, $K(\text{Pro} \ A^\op)$ is the homotopy category of complexes of projective A-right-modules.

Construction 1.2. Let M be a finitely presented A-left-module. This means that there is an exact sequence of A-left-modules $Q_1 \to Q_0 \to M \to 0$ where Q_0 and Q_1 are finitely generated projective A-left-modules.

Hence there is an exact sequence of A-right-modules $0 \to M^* \to Q_0^* \to Q_1^*$, where $(-)^*$ denotes the functor $\text{Hom}(-, A)$ which dualizes with respect to A.

Here Q_0^* and Q_1^* are finitely generated projective A-right-modules. As M^* is the kernel of a homomorphism between them and A is right-coherent, it follows that M^* is finitely presented. Hence M^* has a projective resolution P consisting of finitely generated projective A-right-modules.

Viewing M^* as a complex concentrated in degree zero, there is a canonical quasi-isomorphism

$$P \xrightarrow{\pi} M^*.$$

There is also a canonical homomorphism $M \xrightarrow{\mu} M^{**}$ which I will view as a chain map of complexes concentrated in degree zero, and so I can consider

$$M \xrightarrow{\mu} M^{**} \xrightarrow{\pi^*} P^*.$$

If I consider P^* and P to be objects of $K(\text{Pro} \ A)$ and $K(\text{Pro} \ A^\op)$, then P^* depends functorially on P, and P depends functorially on M^*. But M^* depends functorially on M and so altogether, P^* depends functorially on M.

Lemma 1.3. If Q is a projective A-left-module, then

$$\text{Hom}_A(P^*, Q) \xrightarrow{\text{Hom}_A(\pi^* \mu, Q)} \text{Hom}_A(M, Q)$$

is a quasi-isomorphism.

Proof. As Q is projective, it is a direct summand in a free module, so it is enough to prove the lemma when Q is free. But both P^* and M consist of finitely presented modules so when Q is free, and so has the form $\coprod A$, then the coproduct can be moved outside the Hom's, and so it is enough to prove the lemma for $Q = A$.
There is a commutative diagram

$$
\begin{array}{ccc}
P & \xrightarrow{\pi} & M^* \\
p & \downarrow & \downarrow \\
P^{**} & \xrightarrow{\pi^{**}} & M^{**} & \xrightarrow{\mu} & M^* \\
\end{array}
$$

where \(p \) is the canonical chain map. Since \(P \) consists of finitely generated projective modules, \(p \) is an isomorphism. Also, \(\pi \) is a quasi-isomorphism by construction, so the diagram shows that the composition \(\mu^{**} \pi^{**} \) is a quasi-isomorphism.

That is, the chain map

$$
\mu^{**} \pi^{**} = (\pi^* \mu)^* = \text{Hom}_A(\pi^* \mu, A)
$$

is a quasi-isomorphism, and this proves the lemma in the case \(Q = A \) as desired. \(\square \)

Lemma 1.4. If \(Q \) is a complex of projective \(A \)-left-modules, then

$$
\text{Hom}_A(P^*, Q) \xrightarrow{\text{Hom}_A(\pi^* \mu, Q)} \text{Hom}_A(M, Q)
$$

is a quasi-isomorphism.

Proof. The chain map \(M \xrightarrow{\pi^* \mu} P^* \) can be completed to a distinguished triangle

$$
M \xrightarrow{\pi^* \mu} P^* \longrightarrow C \longrightarrow
$$

in the homotopy category of complexes of \(A \)-left-modules, \(K(\text{Mod} A) \). Here \(C \) is bounded to the left because both \(M \) and \(P^* \) are bounded to the left. This induces a distinguished triangle

$$
\text{Hom}_A(C, Q) \xrightarrow{} \text{Hom}_A(P^*, Q) \xrightarrow{\text{Hom}_A(\pi^* \mu, Q)} \text{Hom}_A(M, Q) \xrightarrow{} \text{Hom}_A(M, Q)
$$

which shows that the chain map in the lemma is a quasi-isomorphism if and only if the complex \(\text{Hom}_A(C, Q) \) is exact.

Now, if the complex \(Q \) is just a single projective module placed in degree zero, then the lemma follows from Lemma 1.3. So in this case, \(\text{Hom}_A(C, Q) \) must be exact.

Hence \(C \) is a complex bounded to the left for which the complex \(\text{Hom}_A(C, Q) \) is exact when \(Q \) is a single projective module placed in degree zero. But then it is classical that \(\text{Hom}_A(C, Q) \) is exact when \(Q \) is any complex of projective modules. Indeed, this follows from an argument analogous to the one which shows that if \(X \) is a complex
bounded to the left which is exact and I is any complex of injective modules, then $\text{Hom}_A(X, I)$ is exact. \qed

Lemma 1.5. For each finitely presented A-left-module M, there is a natural equivalence

$$\text{Hom}_{K(\text{Pro} A)}(P^*, -) \simeq H^0\text{Hom}_A(M, -)$$

of functors on $K(\text{Pro} A)$.

Proof. I have

$$\text{Hom}_{K(\text{Pro} A)}(P^*, -) \simeq H^0\text{Hom}_A(P^*, -) \simeq H^0\text{Hom}_A(M, -)$$

as functors on $K(\text{Pro} A)$, where the first \simeq is classical and the second \simeq is by lemma 1.4. \qed

Proposition 1.6. For each finitely presented A-left-module M, the complex P^* from construction 1.2 is a compact object of $K(\text{Pro} A)$.

Proof. This is clear from lemma 1.5, since the functor $H^0\text{Hom}_A(M, -)$ respects set indexed coproducts because M is finitely presented. \qed

2. Compact Generators

Setup 2.1. In this section, A is a coherent ring (that is, it is both left- and right-coherent) for which each flat A-left-module has finite projective dimension.

Remark 2.2. Note that there is an integer N so that the projective dimension of each flat A-left-module F satisfies $\text{pd} F \leq N$. For otherwise, if there were flat A-left-modules of arbitrarily high, finite projective dimension, then the coproduct of such modules would be a flat module of infinite projective dimension.

Construction 2.3. For each finitely presented A-left-module M, take the complex P^* from construction 1.2, and consider the collection of all suspensions $\Sigma^i P^*$.

There is only a set (as opposed to a class) of isomorphism classes of such modules M, so there is also only a set of isomorphism classes in $K(\text{Pro} A)$ of complexes of the form $\Sigma^i P^*$. Let the set \mathcal{S} consist of one object from each such isomorphism class.

Theorem 2.4. The category $K(\text{Pro} A)$ is a compactly generated triangulated category with \mathcal{S} as a set of compact generators.

Proof. Each complex P^* is a compact object of $K(\text{Pro} A)$ by proposition 1.6, so the same holds for each complex $\Sigma^i P^*$ in \mathcal{S}. It remains to
show that \mathcal{G} is a set of generators. So suppose that Q in $K(\text{Pro} A)$ has
$\text{Hom}_{K(\text{Pro} A)}(G, Q) = 0$ for each G in \mathcal{G}. I must show $Q \cong 0$ in $K(\text{Pro} A)$.

First, I can consider construction 1.2 with M equal to A, viewed as an A-left-module. The corresponding complex P^\ast has suspensions $\Sigma^i P^\ast$, and by the construction of \mathcal{G} each $\Sigma^i P^\ast$ is isomorphic to a complex in \mathcal{G}, so $\text{Hom}_{K(\text{Pro} A)}(\Sigma^i P^\ast, Q) = 0$. Hence

$$0 = \text{Hom}_{K(\text{Pro} A)}(\Sigma^i P^\ast, Q)$$
$$\cong \text{Hom}_{K(\text{Pro} A)}(P^\ast, \Sigma^{-i} Q)$$
$$\cong H^0 \text{Hom}_A(A, \Sigma^{-i} Q)$$
$$\cong H^{-i} Q,$$

where the second \cong is by lemma 1.5. So Q is exact.

Secondly, let me show that for each j, the jth cycle module $Z^j Q$ of Q is flat. It is clearly enough to do this for $Z^0 Q$. I shall use the criterion of [2, chp. VI, exer. 6]. So suppose that a_1, \ldots, a_m in A and z_1, \ldots, z_m in $Z^0 Q$ satisfy the relation

$$\sum_s a_s z_s = 0. \quad (3)$$

Consider the finitely generated submodule $M = A z_1 + \cdots + A z_m$ of $Z^0 Q$. Since $Z^0 Q$ is a submodule of Q^0, so is M, and as M is finitely generated while Q^0 is projective and A coherent, it follows that M is finitely presented. So M is among the modules considered in construction 1.2, and there is a corresponding complex P^\ast. As above, by the construction of \mathcal{G} the complex P^\ast is isomorphic to a complex in \mathcal{G}, so $\text{Hom}_{K(\text{Pro} A)}(P^\ast, Q) = 0$. Hence

$$0 = \text{Hom}_{K(\text{Pro} A)}(P^\ast, Q) \cong H^0 \text{Hom}_A(M, Q)$$

by lemma 1.5.

So each homomorphism $M \to Q^0$ for which the composition $M \to Q^0 \to Q^1$ is zero factors through $Q^{-1} \to Q^0$. In other words, each homomorphism $M \to Z^0 Q$ factors through the canonical surjection $Q^{-1} \to Z^0 Q$. But M is a submodule of $Z^0 Q$, so in particular the inclusion $M \to Z^0 Q$ factors,

$$\begin{array}{c}
M \\
\downarrow f \\
Q^{-1} \overset{\sigma}{\longrightarrow} Z^0 Q.
\end{array}$$
Applying f to $\sum_s a_s z_s = 0$ gives $\sum_s a_s f(z_s) = 0$ in Q^{-1}. But Q^{-1} is projective, hence flat, and so by [2, chp. VI, exer. 6] there exist a_{11}, \ldots, a_{mn} in A and q_1, \ldots, q_n in Q^{-1} so that

$$f(z_s) = \sum_t a_{st} q_t$$

(4)

and

$$\sum_s a_s a_{st} = 0.$$

(5)

Applying σ to equation (4) gives

$$z_s = \sum_t a_{st} \sigma(q_t).$$

(6)

However, when equation (3) implies the existence of a_{11}, \ldots, a_{mn} in A and $\sigma(q_1), \ldots, \sigma(q_n)$ in $Z^0 Q$ so that equations (5) and (6) are satisfied, then [2, chp. VI, exer. 6] says that $Z^0 Q$ is flat as desired.

Finally, note that by remark 2.2 there is an integer N so that each flat A-left-module F has $pd F \leq N$. Hence $pd Z^{i+N} Q \leq N$ for each j. But there is an exact sequence

$$0 \to Z^{j} Q \to Q^j \to \cdots \to Q^{j+N-1} \to Z^{j+N} Q \to 0,$$

and since Q^j, \ldots, Q^{j+N-1} are projective it follows that $Z^j Q$ is projective for each j.

So Q is an exact complex of projectives where each cycle module is also projective. Hence Q is split exact, and so in particular null homotopic, so $Q \cong 0$ in $K(\text{Pro} A)$ as desired. \square

3. The Subcategory of Compact Objects

Setup 3.1. In this section, A is again a coherent ring for which each flat A-left-module has finite projective dimension.

The compactly generated triangulated category $K(\text{Pro} A)$ has the full subcategory $K(\text{Pro} A)^c$ of compact objects. And the derived category $D(A^{op})$ of A-right-modules has the full subcategory $D^b(A^{op})$ of complexes with bounded cohomology consisting of finitely presented modules.

Theorem 3.2. There is an equivalence of triangulated categories

$$K(\text{Pro} A)^c \xrightarrow{\cong} D^b(A^{op})^{op}.$$

Proof. Consider again the set \mathcal{G} from construction 2.3. Theorem 2.4 says that \mathcal{G} is a set of compact generators for $K(\text{Pro} A)$.

Let C be the full subcategory of $K(\text{Pro} A)$ consisting of objects which are finitely built from objects G in \mathcal{G}, using suspensions, distinguished
triangles, and retractions. Let \(D \) be the full subcategory of \(K(\text{Pro} \ A^{\text{op}}) \) consisting of objects which are finitely built from objects of the form \(G^* \) with \(G \) in \(\mathcal{G} \).

Each object \(G \) in \(\mathcal{G} \) is a complex of finitely generated projective modules, so the canonical chain maps \(G \to G^{**} \) and \(G^* \to G^{***} \) are isomorphisms. Hence

\[
C \xrightarrow{(-)^*} D^{\text{op}} \xleftarrow{(-)^*} \]

are quasi-inverse equivalences of triangulated categories. Indeed, let me show that this gives the equivalence stated in the theorem. First, the category \(C \) consists of the objects finitely built from a set of compact generators of the compactly generated triangulated category \(K(\text{Pro} \ A) \), so \(C \) is equal to \(K(\text{Pro} \ A)^{\text{c}} \) by [6, thm. 2.1.3].

Secondly, let me consider the category \(D \). It consists of the objects finitely built from objects of the form \(G^* \) with \(G \) in \(\mathcal{G} \). By the definition of \(\mathcal{G} \), there is one object \(G \) in each isomorphism class of objects of the form \(\Sigma^i P^* \) with \(P^* \) coming from construction 1.2. So up to isomorphism, there is one object \(G^* \) in each isomorphism class of objects of the form \(\Sigma^j P \) with \(P \) coming from construction 1.2. Recall from construction 1.2 that \(P \) is a projective resolution of the \(A \)-right-module \(M^* \) which comes from the finitely presented \(A \)-left-module \(M \). It follows that \(D \) consists of the objects finitely built from projective resolutions of the form \(P \).

Now, if \(D \) had consisted of the objects finitely built from projective resolutions of all finitely presented \(A \)-right-modules, then \(D \) would have been the subcategory of \(K(\text{Pro} \ A^{\text{op}}) \) consisting of projective resolutions of all complexes with bounded finitely presented cohomology, and it is classical that this subcategory is equivalent to \(D^{\tau}(A^{\text{op}}) \). So I would have been done: Equation (7) would have given the equivalence stated in the theorem.

As it is, \(D \) only consists of objects finitely built from projective resolutions \(P \) of \(A \)-right-modules of the form \(M^* \) with \(M \) a finitely presented \(A \)-left-module. However, this makes no difference because it turns out that I can finitely build the projective resolution of any finitely presented \(A \)-right-module from projective resolutions of the form \(P \).

To see this, suppose that \(N \) is a finitely presented \(A \)-right-module, and let

\[
Q = \cdots \to Q^{-2} \to Q^{-1} \to Q^0 \to 0 \to \cdots
\]

be a projective resolution of \(N \). Since all projective resolutions of \(N \) are isomorphic in \(K(\text{Pro} \ A^{\text{op}}) \), I can suppose that \(Q \) consists of finitely generated projective \(A \)-right-modules.
Now
\[\bar{Q} = \cdots \to Q^{-4} \to Q^{-3} \to Q^{-2} \to 0 \to \cdots \]
is the double suspension of a projective resolution of \(Z^{-1}Q \), the \((-1)\)'st cycle module of \(Q \), and the complex \(Q \) is finitely built from \(Q^0 \) and \(Q^{-1} \) (viewed as complexes concentrated in degree zero) along with \(\bar{Q} \).

Both \(Q^0 \) and \(Q^{-1} \) are projective resolutions of the form \(P \), since they are both projective resolutions of modules of the form \(M^* \), namely, they are resolutions of \((Q^0)^* \cong Q^0 \) and \((Q^{-1})^* \cong Q^{-1} \).

And \(\bar{Q} \) is the double suspension of a projective resolution of the form \(P \) because \(Z^{-1}Q \) has the form \(M^* \) for a finitely presented \(A \)-left-module \(M \). To see this, complete \(Q^0 \to Q^{-1} \) with its cokernel,
\[Q^0 \to Q^{-1} \to M \to 0. \]
Here \(M \) is finitely presented and \(M^* \) sits in the exact sequence
\[0 \to M^* \to Q^{-1} \to Q^0 \to 0. \]
But \(Q^0 \) and \(Q^{-1} \) are finitely generated, so up to isomorphism the last map here is just \(Q^{-1} \to Q^0 \), so up to isomorphism, the kernel \(M^* \) is just the kernel of \(Q^{-1} \to Q^0 \), that is, it is \(Z^{-1}Q \). So \(Z^{-1}Q \) has the form \(M^* \).

4. The dualizing complex case

Set up 4.1. In this section, \(k \) is a field, \(A \) is a \(k \)-algebra which is left-coherent and right-noetherian, \(B \) is a left-noetherian \(k \)-algebra, and \(BD_A \) is a dualizing complex over \(B \) and \(A \).

See [8, def. 1.1] for the definition of dualizing complexes.

Theorem 4.2. The category \(K(Pro \, A) \) is compactly generated, and there is an equivalence of triangulated categories
\[K(Pro \, A)^c \cong D^f(B). \]

Proof. Since there is a dualizing complex \(BD_A \) between \(B \) and \(A \), each flat \(A \)-left-module has finite projective dimension by [4]. Moreover, \(A \) is clearly coherent, so sections 2 and 3 apply to \(A \). Theorem 2.4 says that \(K(Pro \, A) \) is compactly generated, and theorem 3.2 gives an equivalence
\[K(Pro \, A)^c \cong D^f(A^{op})^{op}. \]
But existence of \(BD_A \) gives an equivalence
\[D^f(A^{op})^{op} \cong D^f(B) \]
by [8, prop. 1.3(2)], and composing the two equivalences proves the theorem. \(\square \)
Acknowledgement. The homotopy category of complexes of injective modules, and more generally, of injective objects in a Grothendieck category, admits a treatment analogous to the one given here; see [3]. Indeed, the present work was prompted by the ideas that led to [3]. I thank Henning Krause for inspiring conversations, and for providing me with a trick for the proof of theorem 3.2.

The diagrams were typeset with Paul Taylor’s diagrams.tex.

References

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

E-mail address: popjoerg@maths.leeds.ac.uk, www.maths.leeds.ac.uk/~popjoerg