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Figure 1: Three examples of facial expressions retargeted from Motion Capture onto a morphable 3D face model.

Abstract

We present a system for realistic facial animation that decomposes
facial motion capture data into semantically meaningful motion
channels based on the Facial Action Coding System. A captured
performance is retargeted onto a morphable 3D face model based
on a semantic correspondence between motion capture and 3D scan
data. The resulting facial animation reveals a high level of realism
by combining the high spatial resolution of a 3D scanner with the
high temporal accuracy of motion capture data that accounts for
subtle facial movements with sparse measurements.

Such an animation system allows us to systematically investigate
human perception of moving faces. It offers control over many as-
pects of the appearance of a dynamic face, while utilizing as much
measured data as possible to avoid artistic biases. Using our anima-
tion system, we report results of an experiment that investigates the
perceived naturalness of facial motion in a preference task. For ex-
pressions with small amounts of head motion, we find a benefit for
our part-based generative animation system over an example-based
approach that deforms the whole face at once.
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1 Introduction

Psychology in general and Psychophysics in particular have suc-
cessfully researched the human perception of faces using synthetic
images in the past decade (e.g. [Troje and Bülthoff 1996]). With re-
cent advances in computing power, data acquisition and Computer
Graphics, it has become feasible to produce stimuli of high physical
realism for this purpose. At the same time, the Computer Graphics
community is showing increased interest in systematically under-
standing human perception for achieving the desired result in the
observer without spending unnecessary computational and artistic
effort.

The human face is a challenging object for both fields of research.
In psychology, there is demand for realistic, but controllable face
stimuli. On the other hand, a good understanding of the cognitive
processes of face perception in humans would clearly help Com-
puter Graphics researchers and artists in the difficult task of synthe-
sizing realistic virtual humans. From this, a variety of industrial ap-
plications could benefit: Computer games, human-computer inter-
faces, teleconferencing, medical rehabilitation systems, computer-
based training and consulting as well as the film industry.

In order to achieve the level of realism required for psychophysical
experiments, we use real-world data extensively. Shape and color
information of the face and its deformation states are measured in
a 3D scanner and then converted into a morphable 3D face model.
Additionally, motion information for a sparse set of facial markers
is acquired using an optical Motion Capture system. The morph ac-
tivation time courses for the 3D model are computed from motion
capture data by decomposing the marker trajectories into semanti-
cally meaningful motion elements based on the Facial Action Cod-
ing System (FACS) [Ekman and Friesen 1978], which defines a set
of basic facial motions called Action Units (AUs). These AUs ap-
proximately correspond to natural muscle activations, providing an
intuitive and accurate system for annotating facial motion. Using
FACS as a basis has two additional advantages. Its semantics allow
for easy retargeting of the motion onto any face model that uses the
same semantic structure. In contrast to approaches that use statis-
tical concepts such as Principle Component Analysis, Action Units
can be verbally described. Thus, matching facial expressions can be



generated by actors or artists. Furthermore, Action Units describe
local effects in the face which is beneficial for a generative model
of facial motion. It has been argued that Action Unit activations
might fail to describe the facial state accurately since they might re-
flect the combined activations of multiple muscles and do not take
temporal information into account [Essa and Pentland 1994]. So
far we have neglected temporal information in our system and have
worked on a frame-by-frame basis.

After reviewing related work in Section 1.1, we give an overview
over our animation system in Section 2, explaining the data acqui-
sition process, the construction of the animation model and the mo-
tion analysis. A comparative perceptual experiment of our anima-
tion setup is described in Section 3. Section 4 concludes this paper
with a general summary and outlook.

1.1 Related Work

Realistic Facial Animation Starting with the pioneering work
of [Parke 1972], rendering lifelike performers has been of great in-
terest in Computer Graphics. With [Williams 1990] an approach
for the construction of realistic human head model based on photo-
graphic texture mapping has been suggested. The results initiated
the development of a range of systems that analyze the expressions
of a human performer and transfer the animation onto models, e.g.
[Guenter et al. 1998]. [Pighin et al. 2002] build a morphable model
by fitting a generic face model to multiple photographs of one facial
expression using manually placed feature points; that model is af-
terwards used to track video sequences of the same person. [Eisert
and Girod 1998] present an animation system designed for telecon-
ferencing based on landmark tracking in videos. This process is
aided by a deformable 3D mesh model that has been obtained from
a 3D laser scan.

As an alternative to motion tracking, [Joshi et al. 2003] present a
learning approach for the estimation of generative 3D morph mod-
els based on a combination of a reference 3D head model and a
RBF deformation approach driven by sparse Motion Capture data
projected onto the reference model. Similar to that idea, a muscle-
based head animation system has been demonstrated by [Sifakis
et al. 2005] that uses motion capture data in a non-linear optimiza-
tion process to estimate facial muscle activation parameters.

For better generalization across identities, [Blanz and Vetter 1999]
used a statistical approach for which a large corpus of colored 3D
scanned head models in neutral pose were obtained and automati-
cally put into correspondence. This 3D morphable model was aug-
mented with scans of facial expressions and was subsequently used
to track and alter facial motion in video sequences [Blanz et al.
2003]. [Vlasic et al. 2005] presented a video-driven motion retar-
geting approach for animation that controls animation factors such
as the identity, type of expression and visemes of animated head
models. These 3D head models are determined by a multi-linear
model estimation based on tensor algebra and are directly estimated
from high-temporal resolution 3D scans that are in dense correspon-
dence.

[Kalberer and Gool 2002] learn a morphable model directly from
high temporal resolution 3D scans. Their approach is based on
unsupervised learning. Initially, the data acquisition process uses
marker tracking. Later, the model is used for analyzing new
marker-less scan data and applied for dense performance capture
of mouth regions. [Chuang and Bregler 2005] introduced an ani-
mation blendshape technique for facial expression generation that
is composed of different regionally selected submodels which of-
fer an intuitive approach to control the animation. As head motion
seems to be a key contribution for convincing facial expressions the

authors learn a dependency for it from speech. Since facial Action
Units are spatially localized across the face they have been used in
Computer Vision to estimate facial states from video footage [Lien
et al. 1998; Tian et al. 2000] with specialized classifiers. Instead of
the determination of discrete class labels, we are interested in the
suitability of FACS for the analysis and synthesis of continuous fa-
cial motion, exploiting the availability of Motion Capture and 3D
colored scans of the same Action Units as a basis space.

3D Facial animation in perception research For the devel-
opment of animation and retargeting techniques the assessment of
their quality and realism is an important research problem. [Geiger
et al. 2003] have evaluated the quality of 2D speech-driven face an-
imation [Ezzat et al. 2002] by devising a “Turing test” that com-
pares animations with real videos in a forced choice paradigm.
Another study [Wallraven et al. 2005] has investigated different
factors that influence quality of face animation. Factors such as
texture, shape quality and simple animation techniques have been
compared with performance measures in facial expression catego-
rization tasks. [Kleiner et al. 2004] has developed a multi-camera
3D texture manipulation system to study the perception of facial ex-
pressions. This system allows to investigate the importance of facial
regions in conversational expressions [Cunningham et al. 2004].
Facial animation technology is also used for investigating the influ-
ence of facial motion on identification performance [Hill and John-
ston 2001; Knappmeyer et al. 2001; Knappmeyer et al. 2003].

2 Facial Animation System

The quality of facial animation depends both on the adequate rep-
resentation of facial deformations and correct timing. Following
the work of [Breidt et al. 2003], we developed a facial animation
system using a morphable face model generated from 3D scans and
animated by morph weights automatically computed from motion
capture data.

FACS was originally designed for the analysis of natural facial mo-
tion by human observers. Nevertheless, it was used successfully
for animation purposes (e.g. the character Gollum, created by Ja-
son Schleifer and Bay Raitt for the recent movie trilogy Lord Of The
Rings), although there is no systematic proof that it can produce the
full range of facial motion. For our work, we make the assumption
that all expressions in the normal range of conversational and emo-
tional expressions are encodable by AUs and can be synthesized by
their linear combination. (Note that for Gollum, a large number of
corrective shapes were created to enhance the result of the different
shape combinations).

The basic idea is to use the verbal descriptions of Action Units to
instruct actors to perform basic facial actions. We record those ac-
tions in two modalities: in a 3D scanner and an optical Motion Cap-
ture system. Due to the semantic match between the two recording
sessions, we are able to transfer new Motion Capture information
from one modality to the other (see Figure 3). We decided to use the
marker-based tracking of a commercial system for optimal speed
and accuracy, even in areas of the face that show little contrast.
From this we obtained very accurate data for the rigid motion of
the head and the non-rigid motion of the face. No information on
eye motion was captured. With eyes being such an important factor
in the perception of faces, we decided not to display any eyes at all
to avoid the presentation of incorrect and distracting information.



2.1 Recording and processing data

3D Scanning Shape and color data for the animatable face model
was captured with a customized version of a commercial ABW scan-
ner (Figure 2, top row). The scanner consists of two LCD linepro-
jectors and three CCD video cameras, covering an entire face from
ear to ear. Additionally, the system was equipped with one digital
Canon EOS 10D SLR camera, connected to a ProFoto flash system.
After an initial calibration process, the scanner can compute 3D in-
formation using a Coded Light approach, producing a measurement
for each pixel of each CCD camera. With a theoretical maximum
resolution of 900,000 3D points and 6.2 million color samples, a
typical face scan had about 400,000 points and took 2 seconds to
record.

The face regions in the scans were manually masked out and small
holes in the surface caused by poor reflection of the stripe pattern
(e.g. eyes, eyebrows) were filled by linear interpolation of the sur-
rounding values. Since one scan consists of four independent 3D
data sets, a cylindrical resampling was performed for each face to
produce one connected surface. Using the calibration information,
the color information from the SLR camera was projected onto the
surface to produce a detailed texture map. This procedure was used
to scan one face actor who was able to perform 46 basic facial ac-
tions.

Motion Capture Facial motion data was acquired from a second
actor with a commercial Vicon 612 Motion Capture system with six
cameras running at 120Hz arranged in a semi- circle at a distance
of roughly 1.5m from the face (Figure 2, lower left). 69 reflective
markers were attached to the motion performer’s face, three more
on a rigid head tracking target (Figure 2, lower right). The markers
with a diameter of 2mm were no longer noticed by the performer
after a few seconds and did not alter facial motion. From the second
actor, we recorded facial actions using the same instructions as for
the first actor in the 3D scanning step. He was able to perform a
subset of 25 basic facial actions.

After capturing the facial actions, the reconstructed markers were
labeled, occasional triangulation errors manually removed and gaps
in any marker trajectory filled by cubic spline interpolation. Finally,
the peak frame with maximum amplitude of the facial action was
identified for each expression for later use in the analysis step de-
scribed in Section 2.3.

2.2 Building the 3D face model

In order to build a morphable 3D face model from the scanned
data, each scan was aligned to the scan of the neutral face using
an Iterative Closest Point (ICP) algorithm with manual exclusion of
strongly deformed regions to remove any existing rigid head motion
that occurred in between the individual scans.

Next, the scan of the neutral face was taken into the 3D software
headus CySlice where a low-resolution surface network with 136
control points was constructed on the scanned surface, omitting the
areas of eyeballs and the interior of the mouth. For all of the remain-
ing expressions, this network was copied onto the scanned surface
and manually adjusted to correct for facial deformations. Exported
in polygonal format, the network was converted into a triangle mesh
with 3980 vertices that closely followed the scanned surface.

Finally, the individual facial action shapes were loaded into the
animation package Autodesk 3ds Max and used within one single
morph object. Increasing the morph weight for any action shape
added increasing amounts of that action shape to the overall morph

Figure 2: ABW Scanner (top left) and face scan example (top right);
Motion Capture system (lower left) and reflective marker setup with
additional head tracking target (lower right).

result. Animating all morph weights results in a facial animation
based on the linear combination of the basic action shapes.

2.3 Motion analysis

In order to compute the time course of morph weights, the rigid
head motion was separated from the Motion Capture data by align-
ing each frame of the motion sequence to the neutral start frame
using an SVD alignment method [Arun et al. 1987].

For the decomposition of natural facial motion, a morph basis is
required that can express all facial deformations as a linear combi-
nation of the basis elements. Analogous to the construction of the
3D shape model, we build such a basis from the peak frames of
each of the basic facial expressions of the second actor, effectively
creating a second morphable model for 72 marker positions that
spans the same basis as used for the dense 3D shape model. This
morphable model of Motion Capture markers is then used in an op-
timization process that estimates the contributions of the individual
basis elements to a compound facial expression for each time step.
Our system now finds the optimal linear combination with minimal
least-squares error to the recorded marker positions. The Euclid-
ean distance between a marker in the compound expression and
the same marker in the linear combination denotes the error in the
optimization problem. This error is minimized by quadratic pro-
gramming enforcing positivity constraints on the morph weights as
in [Choe and Ko 2001]. This decomposition of complex face con-
figurations assumes linearity of the shape basis and does not yet ex-
ploit temporal dependencies. It produces a set of vectors of morph
weights over all time steps, which is applied to the morphable 3D
face model. See Figure 3 for a schematic overview of the motion
retargeting process.



Figure 3: Schematic of our facial animation system: Using a morphable model M of motion markers (center left) that semantically matches
the morphable 3D shape model S based on scans (center right), motion capture data of a complex expression (left) can be decomposed into N
morph weights w∗ and retargeted onto the 3D model (right).

2.4 Face synthesis

From the intersection of the sets of scanned basic facial actions
and captured motion elements of the two respective actors, we se-
lected a common basis of 17 basic facial actions. After the motion
analysis, the morph activation values were directly used for mor-
phing, exploiting the semantic correspondence between the basis
elements. Rendering of the facial animations was done using the
default rendering system of 3ds Max. It should be noted that our
face model can easily be displayed and animated in real-time using
current graphics hardware. See Figure 1 for some snapshots from
animated expressions (from left to right: Confusion, Thinking and
Pleasant Surprise). Demo movies are available for download at
http://www.tuebingen.mpg.de/~mbreidt/apgv06.

3 Experiment

In order to test the quality of our animation system, we conducted
an experiment on the perceived naturalness of facial motion. The
main question we wanted to investigate was whether our system’s
ability to independently analyze and animate individual parts of a
face results in an increased perceptual quality. For this, we asked
subjects to directly compare two animation techniques. For tech-
nique A, we used the generative animation system as described
above. For technique B we used a global version of the system
using only two basis elements, effectively animating the entire face
at once

3.1 Stimuli

We motion-captured 12 complex universal and conversational ex-
pressions (see table 1) giving verbal instructions for a Method Act-
ing procedure to the same motion performer employed to construct
the motion capture morph basis.

Agreement Continue Agreement Yes Confusion
Disagreement Disgust Staged Fear
Fear Happy Sad
Surprise Thinking Problem Thinking Remember

Table 1: List of complex expressions used in the experiment.

The morphable 3D model for technique A was built as described in
Section 2.2. The facial animations for condition A were produced
by estimating 17 morph weights for each of the recorded complex
facial motions and applying them to the 3D model.

Technique A was also used to construct the two morph shapes of
technique B (see Figure 4 top right): After identifying the peak
frames of the 12 complex expressions, each of the peak frames were
decomposed into morph weights for the morphable 3D model of
technique A to produce one peak shape of model B: A static copy
of the resulting face mesh was taken and stored as the compound
peak shape for this expression. Since eye blinks occur often in nat-
ural facial motion and lack of them would immediately produce a
very noticeable difference between technique A and B, the morph
shape responsible for closing the eyes was additionally included in
technique B. Effectively, we produced a simple morphable model
with only two morph shapes for each complex expression. This
was done analogously for the morphable marker model (Figure 4
top left).

Using the same optimization process as in technique A, activation
values for the simple morph model of technique B were estimated
and used as animated morph weights for the two morph channels
(Figure 4 bottom). Figure 5 illustrates the resulting morph weight
time courses of the two analysis techniques. The neutral shape and
the eye blink shape were identical for both techniques.

The original rigid head motion present in the complex expressions
was directly transferred to the morphable 3D face model for both
techniques. Each complex motion started from and ended with a
neutral facial expression. Differences in head orientation at the start



Figure 4: Construction of morphable model for technique B (top) and subsequent analysis of motion capture data (bottom).

of the motion were corrected to ensure identical start conditions for
all expressions.

For a smoother appearance, we applied a single subdivision step to
the face mesh before rendering the facial animation using the 3ds
Max rendering system. For both techniques, a static color texture
map taken from the neutral face scan was used in combination with
a directional lighting setup producing relatively flat and symmetric
lighting from above with soft shadows. To improve the rendering
quality, a simple ambient term based on the angle of the surface
normal to the observer was added to the Blinn shader of the face
model. The hard edges of the face model were blended into the
background using a transparency map.

From these animations, 24 Quicktime movies using H.264 com-
pression were produced using identical perspective and lighting
conditions, half of them using technique A, the other half using
technique B. Each movie had a resolution of 480 x 640 pixels, with
the face initially covering 50% of the image frame and never leav-
ing it during the motion. For rendering, the temporal resolution of
our animations was reduced to 30Hz. To compensate for this, we
applied motion blur during rendering.

As there were varying amounts of rigid and non-rigid head motion
in individual expressions, we computed the total length of the head
trajectory and normalized it by the duration of the expression, ef-
fectively calculating the average speed of the rigid head motion in
3D space for each expression. Relative differences between the two
non-rigid deformations were measured by comparing the displace-
ments of all vertices of each face without rigid head motion against
the neutral start of the expression. For each time step and each tech-
nique, the differences were computed and normalized by the vertex
count. Then the average mesh difference between technique A and
B over the duration of the expression was computed as a measure
of effective 3D shape difference between the two techniques.

3.2 Experimental Design

Initial tests indicated that the two techniques produced animations
that looked very similar for naive observers. Therefore, we decided
to present both conditions simultaneous to allow for closer assess-
ment of the motion details.

Our stimulus material comprised 12 pairs of animations, corre-
sponding to the 12 different complex facial expressions recorded
with Motion Capture. Each pair consisted of one movie clip show-
ing the expression created by animation technique A and one clip
showing the same facial expression created by technique B. A total
of 19 voluntary subjects (10 males and 9 females, age between 24
and 35 years) participated in a preference study: They were seated
in front of a computer monitor at a viewing distance of approxi-
mately 80 cm in a room with controlled lighting. The pairs of fa-
cial animation clips where shown to them simultaneously and side
by side, using the Psychophysics toolbox for Matlab on Mac OS
X [Brainard 1997] for movie presentation and response collection.
The clips with a combined resolution of 960 x 640 pixels were
played back at a frame rate of 30 frames per second on a display
with a resolution of 1280 x 1024 and a refresh rate of 90 Hz. Spe-
cial care was taken to prevent any jerkiness in the playback that
could have disturbed the perceived facial motion. The two faces
subtended approximately 17 x 10 degrees visual angle.

For each presented pair, participants had to select which of the two
movies displayed a facial motion that looked more natural to them.
It was stressed in the instructions to only focus on the facial move-
ment, not on size, color or proportion of the faces. Animations
were repeated until the participant responded with a key press in-
dicating which movie clip was preferred. After the response the
next pair of facial expressions was shown. One session consisted of
six blocks: In each block, all of the 12 pairs of facial expressions
were shown to the subject in a randomized order, resulting in a total
of 72 trials. The presentation of the two animation techniques was
counter-balanced for presentation on the left or the right side of the
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Figure 5: Morph weights for expression ‘Happy’ computed by tech-
nique A using 17 basis elements (top) and technique B using the
two basis elements ‘eye blink’ and ‘happy’ (bottom). Note the very
similar activation curves for eye blinking (dark blue ribbon #1, see
color plates)

screen for each expression, in order to rule out a possible response
bias for one side. At the end of a session, participants were asked
for a self-assessment of their experience with 3D computer games,
computer graphics, facial animation and 3D animated movies. The
interviewer rated their response on a five point scale where a value
of one meant “no experience at all” and a value of five corresponded
to “being an expert”.

3.3 Results

From the 72 trials of each subject, we computed an average pref-
erence score for technique A over technique B, separately for each
expression. Figure 6 shows the mean preference and standard error
of the mean.

For all statistical tests, we used a critical p-value of 0.05. A one-
tailed t- test of the preference scores revealed that for half of the
presented expressions the participants significantly preferred ani-
mations with technique A, as indicated by the light colored bars
in Figure 6. Additionally, a repeated-measures ANOVA revealed a
significant influence of the expression type (F(11, 198)=2.4). We
also correlated participantsṕreference for technique A with compu-
tational measures of our animations and participantsśubjective rat-
ings of their experience level. The correlation between duration of
the animation and preference was significant (r=0.782, n=12).

Also, a significant negative correlation was found between rigid
head speed and preference (r= -0.646, n=12). The correlation be-
tween mesh difference and preference for technique A was not sig-
nificant (r=0.254). From the subjective expertise ratings of our par-
ticipants, we found significant correlations between male gender
and computer games experience level (r=0.601, n=19), male gen-
der and computer graphics experience (r=0.651) and interestingly a
significant negative correlation between experience with animated
movies and preference (r=-0.566). To check for a learning ef-
fect across blocks for each expression, we ran a repeated-measures
ANOVA with block as factor that showed no significant linear trend
in the preference scores (F(1,11)=3.328).

3.4 Discussion

The correlation between average speed of the head and chance-level
preference values for each expression shows that large amounts of
rigid head motion made it difficult for the participants to judge sub-
tle differences in the non-rigid motion. Taking this into account, our
results indicate that there is an overall advantage for our proposed
animation system based on basic facial motion elements. This is
particularly interesting since all but two participants spontaneously
reported after the experiment that the task was very hard to do and
some were not sure there was a difference at all between the differ-
ent conditions.

The computed average difference of 3D mesh displacement be-
tween the two techniques is not correlated to any of our results.
This shows that such a computational measure is not necessarily
useful for estimating the perceptual impact of different techniques
and cannot yet replace psychophysical experiments.

The negative correlation of experience with animated movies and
preference scores for technique A could be explained by the fact
that the noise of the Motion Capture data and the optimization
process is more visible in the part-based animation technique A
than in the global animation of technique B. Animation experts
might be particularly sensitive to this and therefore prefer the
smoother holistic animation, whereas less experienced participants
did not notice the increased noise level in particular and preferred
technique A for its more natural overall motion.

It should be noted that it can prove difficult for an untrained person
to reliably produce the full range of AUs (e.g. not all people can
raise their left and right eyebrow independently). Two independent,
certified FACS experts are needed to verify the correctness of the
recorded actions, which we plan to do for our data.
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Figure 6: Preference score for technique A (bar diagram, significant values in light color, see color plates) and average head speed (line).

4 Summary

We have presented an animation system for retargeting motion-
captured facial performances onto a morphable 3D face model us-
ing a semantic correspondence between the two modalities. The
face model was created as a linear combination of accurate 3D
scans of basic facial action units as defined by FACS. A semanti-
cally identical linear model was created from Motion Capture peak
frames and used by an optimization process that fitted the model
optimally into the observed marker positions recorded from com-
plex expressions. The obtained weights of the linear combination
were directly used as morph weights in the rendering system. In ad-
dition, our system could automate the very time-consuming manual
FACS annotation procedure commonly used by certified experts for
analyzing facial motion in Psychology.

Outlook We plan to build a richer morphable model by record-
ing more Action Unit performers. With this augmented, manually
constructed basis we intend to develop a model similar to the multi-
linear model of [Vlasic et al. 2005] enabling us to transfer Action
Unit deformations to other identities. We expect that new Action
Unit basis sets can be learned or adapted to new subjects not being
able to perform Action Units. We want to evaluate our animation
system with the help of certified FACS experts. Also, we plan to
do motion recordings of longer sequences in natural situations. In
parallel to this line of research, we are investigating real-time ca-
pabilities of the system for closed-loop conversational perception
studies of facial expressions. This will include optimizing marker
positions with the help of machine learning methodology. To add
more realism to our animation system an eye motion model may be
learned from facial expression state space models.
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