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A great deal of perceptual and social information is conveyed by facial motion. Here, we investigated
observers’ sensitivity to the complex spatio-temporal information in facial expressions and what cues
they use to judge the similarity of these movements. We motion-captured four facial expressions and
decomposed them into time courses of semantically meaningful local facial actions (e.g., eyebrow raise).
We then generated approximations of the time courses which differed in the amount of information
about the natural facial motion they contained, and used these and the original time courses to animate
an avatar head. Observers chose which of two animations based on approximations was more similar to
the animation based on the original time course. We found that observers preferred animations contain-
ing more information about the natural facial motion dynamics. To explain observers’ similarity judg-
ments, we developed and used several measures of objective stimulus similarity. The time course of
facial actions (e.g., onset and peak of eyebrow raise) explained observers’ behavioral choices better than
image-based measures (e.g., optic flow). Our results thus revealed observers’ sensitivity to changes of
natural facial dynamics. Importantly, our method allows a quantitative explanation of the perceived sim-
ilarity of dynamic facial expressions, which suggests that sparse but meaningful spatio-temporal cues are
used to process facial motion.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Most of the faces we encounter and interact with everyday
move. Dynamic faces are highly ecological stimuli from which
we can extract various cues such as the affective states of others
(e.g., Ambadar, Schooler, & Cohn, 2005; Cunningham &
Wallraven, 2009; Kaulard et al., 2012; Krumhuber, Kappas, &
Manstead, 2013), the intensity of emotions (e.g., Jack et al., 2012;
Kamachi et al., 2001) or speech movements (e.g., Bernstein,
Demorest, & Tucker, 2000; Rosenblum et al., 2002). Given the
social relevance of facial motion, it is of great interest to study
which face motion cues are used by observers during perceptual
tasks. However, dynamic face information is complex, which
makes it difficult to isolate and quantify meaningful cues. Such
quantification would for example allow testing human sensitivity
to various aspects of this spatio-temporal information (e.g., onset
or acceleration of movements) using dynamic face stimuli with
controlled information content. Here we first measured the per-
ceived similarity of computer generated facial expressions. This
similarity was then correlated with different cues in the anima-
tions to test observers’ sensitivity to natural facial movements
and explore the cues they used for face perception.

One common method to quantify the spatio-temporal informa-
tion in complex facial movements is to use a coding scheme for
facial expressions called Facial Action Coding System (FACS;
Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002). This sys-
tem defines a number of discrete face movements - termed Action
Units - as an intuitive and accurate description of the basic constit-
uents of facial expressions (e.g., eyebrow raising). Each Action Unit
can be represented as a time course which captures the magnitude
of activation of a ‘‘local’’ facial region (e.g., eyebrow) over time. This
magnitude can vary from no activation to some maximum
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intensity. As exemplified in Fig. 1 (red line), the eyebrow can nat-
urally rise and lower from a resting, neutral position over time as
an actor makes a facial expression. These time courses thus capture
spatio-temporal properties of local facial movements (e.g., onset,
acceleration of eyebrow raising). Curio and colleagues developed
a novel 3D facial animation approach inspired by FACS to decom-
pose motion-capture data recorded from actors into time courses
of local facial movements termed facial actions (Curio et al.,
2006). Like Action Units of the FACS system, facial actions are
semantically meaningful. In their study, Curio and colleagues
showed that using a set of local facial actions to approximate the
facial motion led to more natural animations than using a global
approximation in which the whole face is deformed at the same
time.

Recently, a series of studies have used synthesized time courses
for FACS Action Units to generate animations of facial expressions
in the absence of actor data (e.g., Jack et al., 2012; Roesch et al.,
2011; Yu, Garrod, & Schyns, 2012). Without real-data recorded
from a performing actor, the particular shape of an Action Unit’s
time course is arbitrary, and various methods can be used to gen-
erate it. In its simplest form, an Action Unit’s activation can
increase linearly over time from no activation to some level of acti-
vation (see blue line in Fig. 1). When applying this linear interpo-
lation to all Action Units of a facial expression, the resulting
stimulus is very similar to an image sequence made by gradually
morphing between two images (e.g., neutral and peak of the facial
expression). Given the simplicity and ease of control, such tech-
niques have been used in many studies investigating facial motion
perception (e.g., Furl et al., 2010; Ku et al., 2005; LaBar et al., 2003;
Sarkheil et al., 2012; Sato & Yoshikawa, 2007). More recent studies
have combined spline interpolation (see green line in Fig. 1) with
advanced reverse-correlation methods and found that observers
used fine-grained spatio-temporal cues to categorize facial expres-
sions (e.g., Jack et al., 2012; Yu, Garrod, & Schyns, 2012). In line
with these findings, other studies showed that advanced spatio-
temporal interpolations are perceived as more natural than linear
or global interpolations of facial motion (e.g., Cosker, Krumhuber,
& Hilton, 2010; Curio et al., 2006). However, how sensitive humans
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Fig. 1. Exemplary time course of activation for one local facial action. The ‘‘original’’
time course derived from facial motion tracking is shown in red. The simplest kind
of approximation is a ‘‘linear interpolation’’ from t1 to t4 (outer left and outer right
black circles) of the original time course, and is shown in blue. A more sophisticated
approximation method is to use a Hermite spline interpolation (‘‘h-spline’’), based
on four control points (t1, t2, t3 and t4, black circles), which is shown in green. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
are to spatio-temporal cues in facial motion has not been investi-
gated quantitatively so far.

In the current study, we investigated observers’ sensitivity to
changes in facial motion, and studied what cues observers extract
and interpret when making judgments about facial motion. Identi-
fying these cues would provide clues about the importance of dif-
ferent aspects of facial motion for perception, also in comparison to
static faces, and thus have implications for theories of mental rep-
resentations of facial motion. Given the importance of motion for
facial expressions, we focused on this aspect of face perception
but it should be noted that identity and expressions may be pro-
cessed by different pathways in the brain (Bruce & Young, 1986;
Haxby, Hoffman, & Gobbini, 2002; but see also Calder & Young,
2005). With static faces, one widely used approach to determine
cues important for face perception is to correlate objective mea-
sures of similarity (e.g., Gabor jets, principal components) with
perceived similarities between facial expressions (e.g., Lyons
et al., 1998; Susskind et al., 2007) and facial identities (e.g.,
Rhodes, 1988; Steyvers & Busey, 2000; Yue et al., 2012). Here we
adopted a similar approach for dynamic facial expressions to assess
whether objective measures of facial motion similarity could
explain the perceived similarity of facial motion. As discussed
below, the different measures captured both low-level and high-
level cues in our dynamic faces. We used the system developed
by Curio et al. (2006) to generate high quality animations based
on natural facial motion, which we will refer to as ‘‘original anima-
tions’’. We then created additional animations based on different
approximations of the facial action time courses obtained from
the actors’ motion, which we will call ‘‘approximations’’. To this
end, we chose interpolation techniques such that the approxima-
tions systematically varied in the amount of information they con-
tained about the natural motion dynamics. Observers judged
which of two approximations was more similar to the original ani-
mation. If observers were sensitive to differences between the
approximations, they would consistently judge one animation of
the pair to be more similar to the original. We captured facial
expressions with different dynamics (e.g., including speech move-
ments) to investigate whether the goodness of an approximation
varied with the type of facial expression. The pattern of choices
served as a measure of the perceived similarity between approxi-
mations and the original animation, and allowed us to directly
compare perceived similarities between stimuli with objective
measures of similarity. Here, we calculated these objective similar-
ity measures based on three kinds of information: (1) time courses
of facial action activation, (2) optic flow, and (3) Gabor-jet filters.
Importantly, facial action time courses capture semantically mean-
ingful high-level changes to a sparse set of local facial regions (e.g.,
eyebrow) whereas optic flow and Gabor-jets capture detailed low-
level image changes (e.g., movement direction of one pixel). To
anticipate our results: We found that high-level cues about spa-
tio-temporal characteristics of facial motion best explained observ-
ers’ choice pattern.
2. Material and methods

2.1. Participants

Fourteen participants (6 female; mean age: 28.6 ± 5.2 years)
were recruited from the subject database of the Max Planck Insti-
tute for Biological Cybernetics, Tübingen, Germany. They were
naive to the purpose of the experiment and had normal or cor-
rected-to-normal vision. All participants provided informed writ-
ten consent prior to the experiment and filled out a post-
questionnaire after the experiment was finished. The study was
conducted in accordance to the Declaration of Helsinki.
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2.2. Stimuli

To create highly controllable and accurate animations of facial
expressions, we used a system that decomposes recorded motion
data into time courses of facial actions (e.g., eyebrow raising)
which are used to animate a 3D head model with corresponding
facial actions (Curio et al., 2006). This facial animation procedure
is schematically shown in Fig. 2 and is explained in detail in
Appendix A.

2.2.1. Constructing approximations of natural facial expressions
We created approximations of the original time courses for each

facial action obtained from the motion decomposition (see Appen-
dix A for details). We did not attempt to find the optimal technique
to approximate natural facial motion, but focused on different
approximation techniques (linear and spline interpolations) previ-
ously used to investigate perception of facial motion (e.g., Jack
et al., 2012; Sarkheil et al., 2012). We selected different time points
at fixed intervals of the original time courses as control points to
create our approximations. The start and the end of the time course
were always included as control points but the number of points in
between was varied to create approximations that preserved dif-
ferent aspects of the original time course. We selected a subset
of four approximation techniques to span a range of possible tech-
niques. Many more techniques could have been used to reveal a
more fine-grained pattern of results; however, restrictions
imposed by the experimental design (mainly the total number of
trials) meant that this would have gone beyond the scope of the
present study.

Fig. 3 illustrates the four approximation techniques we used,
with the facial action ‘‘mouth open’’ from the facial expression
‘‘fear’’ serving as example. The red line represents the time course
from the motion decomposition (orig, Fig. 3A and B). For the linear
approximation lin1 (magenta, Fig. 3A), three equidistant control
points were chosen from the original time course (frame 1, 50
and 100, black circles) and used to linearly interpolate the original
time course. The second approximation lin2 (blue, Fig. 3B) is
another linear interpolation of the original time course based on
four equidistant control points (frame 1, 33, 67 and 100, black cir-
cles). Lin2 contains more information about the original time
courses than lin1, and the animation made on its basis should thus
be perceived as more similar to the animation based on the original
time course. Linear interpolations may contain sharp changes in
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Fig. 2. (A) Schematic overview of the facial animation procedure, shown for the facial ex
and the facial expression happiness is recorded from the actor (left). In the second ste
expression into time courses of facial action activation (middle). In the last step, the tim
face model (right). (B) Three example facial actions ‘‘Neutral’’ (facial action 1), ‘‘Mouth
positions for the facial actions (middle), and the semantically matched 3D facial action
the time courses at the position of the control points (see frame
67 of lin2, black circle in Fig. 3B). The visual system may be sensi-
tive to these changes. Thus, for another set of approximations, we
created spline interpolations of the original time courses, which
are very smooth at the control points and should thus appear more
similar to the original motion than lin1 and lin2. For the first spline
approximation spl1 (green in Fig. 3A) we used a cubic spline inter-
polation based on the same three control points as lin1 (frame 1, 50
and 100, black circles). While this approximation is smoother than
the linear approximations, splines tend to exceed (overshoot) the
interpolated time course at extremes, resulting in a large difference
from the original time course. We reduced this in the next approx-
imation by using cubic Hermite splines hspl (yellow, Fig. 3B), in
which the spline interpolation not only goes through the same four
control points as lin2 (frame 1, 33, 67 and 100, black circles) but
also preserves the slope of the time course at the given control
points. This approximation contains the most information about
the original time courses of facial actions.

2.2.2. Animation stimuli
For each facial expression, we sub-sampled the number of

frames by a factor of three to 34 frames to ensure fluid video dis-
play during the experiments (Note: this down-sampling did not
affect the smoothness or other characteristics of the time courses
and was thus not perceptible in the final stimuli). We then loaded
the original and approximated time courses of facial action activa-
tion into 3ds Max to produce 20 Quicktime animation movies with
a resolution of 480 � 640 pixels, a duration of about 1 s (34 frames
at 30 Hz), and scene and rendering settings optimized for facial
animations.

To assess whether our stimuli could be correctly recognized, we
performed a preliminary experiment with a different set of partic-
ipants (N = 10). In a 4 alternative-forced-choice task, participants
were able to correctly identify the four expressions from the ani-
mations based on the original time courses (chance = 25%). Recog-
nition was perfect for happiness (mean and standard error of the
mean: 100 ± 0%) and good for anger and surprise (80 ± 13% for
both). Performance for the expression fear was lower but still
clearly above chance level (60 ± 16%).

Videos that matched the animations frame-by-frame were
recorded by the scene camera during the motion capture, and after
scaling to match the visual angle subtended by the size of the face
in the animations (approximately 8� � 13�), they were saved at the
B
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e courses of facial action activation are used to animate a semantically matched 3D
open’’ (facial action 17) and ‘‘Smile’’ (facial action 22). The recorded facial marker
shapes created for the 3D face model (right).
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Fig. 3. Time course of activation for the facial action ‘‘Mouth open’’ during the facial expression ‘‘fear’’ directly resulting from the motion analysis (orig, shown in red) and
interpolated using four approximation types. (A) Approximations lin1 (magenta) and spl1 (green) based on three control points (frame 1, 50 and 100, black circles). (B)
Approximations lin2 (blue) and hspl (yellow) based on four control points (frame 1, 33, 67 and 100, black circles). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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same frame rate as the animations. We used these videos as stimuli
in a second preliminary experiment which tested whether the ori-
ginal animation was perceptually the most similar to the corre-
sponding expression video. The participants of our main study
(N = 14, see Section 2.1) performed a delayed match-to-sample
task using the video as sample and the animations as comparison
stimuli. When paired with any approximation, the original anima-
tion was chosen in more than 50% for all expressions (anger: 89%,
t(13) = 18.97, p < 0.0001; fear: 69%, t(13) = 9.33, p < 0.0001; happi-
ness: 71%, t(13) = 5.37, p < 0.001; surprise: 72%, t(13) = 7.11,
p < 0.0001). Thus, the original animations were perceived to be
most similar to videos of the expressions.

2.3. Design and procedure

Perceptual sensitivity to the different approximations was
tested in a delayed match-to-sample task: After watching the ori-
ginal animation driven by one of the four facial expressions (sam-
ple), observers were asked to indicate which of the two
approximations (matching stimuli A and B) was most similar to
the original animation. The six possible combinations of the four
approximations were repeated ten times (60 trials) for each of
the four facial expressions, for a total of 240 trials. Trials were
run in random order and the presentation on the left or the right
side of the screen was counter-balanced for each animation within
a specific pair.

Fig. 4 depicts the trial procedure in the experiment. All trials
began with a white fixation cross on a black background shown
for 0.5 s at the center of the screen, followed by the original anima-
tion. After the animation, a black screen appeared for 0.5 s, fol-
lowed by two matching animations presented side-by-side, 6.7�
to the left and right of fixation. As the difference between anima-
tions was subtle, we decided to present the animations simulta-
neously to allow for detailed, continuous assessment of the facial
motions without influence of memory load. The same presentation
.5 1 .5
max. 2 repetiti

Fixation Sample Blank M

Fig. 4. The trial procedur
procedure had already been successfully used in the study by Curio
et al. (2006). Observers could indicate their readiness to respond by
pressing any key on a standard computer keyboard during the trial.
The sequence of animation, black screen and two animations was
repeated until a key was pressed or three presentations were
reached. Each sequence was repeated 1.45 times per trial on aver-
age across observers with a standard deviation of 0.31. Then a
response screen showing the question ‘‘Which of the two anima-
tions was most similar to the original?’’ appeared. Observers
pressed the left or right cursor arrow key to choose the corre-
sponding animation. The response screen remained until observers
responded. No feedback was provided.

Observers could take up to seven self-timed breaks, one every
30 trials. The experiment lasted approximately 60–70 min and
was programmed using PsychToolbox 3 for Matlab (http://
www.psychtoolbox.org) (Kleiner, 2010). Observers were seated
approximately 68 cm from a Dell 2407WFP monitor (24 in. screen
diagonal size, 1920 � 1200 pixel resolution; 60 Hz refresh rate).

2.4. Calculating objective similarity measures

One aim of this experiment was to determine the extent to
which observers’ choice behavior correlated with objective mea-
sures of similarity between the animations. Each stimulus consists
of a sequence of images (34 frames). Given how each animation
was generated, an animation stimulus can also be conceived as a
set of time courses (with each time course representing the activa-
tion of a facial action over time). Various cues can thus be extracted
from either the image sequences or the time courses and used to
measure the similarity between two animations.

2.4.1. Similarity based on facial action activation
First, we calculated the similarity of animations based on the

time courses of facial action activation. Each frame of the original
animation and the approximations can be described in terms of
Which of the two
animations was 
most similar to 

the original?

1 R time (s).5
ons

atching stimuli Blank Task

e of the experiment.
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the activation of facial actions used to construct this frame. As
those values cannot be retrieved in a straightforward way using
image analysis, we consider these facial action activations to be
high-level cues. To calculate the similarity between two anima-
tions, we carried out the following steps. First, we interpreted each
frame of an animation as coordinates in an n-dimensional facial
action space, where n represents the number of facial actions used
to generate a frame of the stimulus. For a single frame, we com-
puted the distance between two animations in this space as the
Euclidean distance between the facial action activations. We then
summed the distances across all frames. This procedure was imple-
mented in the following equation, for two animations a and b:

dFAða; bÞ ¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðai;j � bi;jÞ2
vuut ; ð1Þ

where m = 34 is the total number of frames per animation, n = 30 is
the number of facial actions and ai,j represents the activation level
of facial action j at time i. Note that the same equation can be
applied to calculate the similarity between two animations based
on a subset of facial actions, or even based on a single facial action
(e.g., for facial action ‘‘eyebrows raised’’ with n = 1).

2.4.2. Similarity based on optic flow
Second, we calculated the similarity between two animations

based on optic flow. In the context of an image sequence, optic flow
is defined as the spatial displacement of pixels from one image of
the animation to the next image (Horn & Schunck, 1981). We used
3ds Max to directly output the pixel motion of our animations
(called ‘‘velocity render element’’ in the software). The motion out-
put of one time frame consists of q 3-dimensional vectors of pixel
space motion (x-, y- and z-motion), where q represents the number
of pixels in the animation. For simplicity, we ignored motion in the
z-axis (depth) as the stimuli rendered from our animations were 2-
dimensional. We calculated the distance in pixel motion between
two animations a and b as follows:

dOFða; bÞ ¼
Xm�1

i¼1

Xq

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

c¼1

ðai;p;c � bi;p;cÞ2
vuut ; ð2Þ

where c represents the motion direction (in horizontal and vertical
dimensions), q = 480 � 640 is the number of pixels p per frame,
summed over m (the total number of frames per animation)
�1 = 33 consecutive pairs of frames. (Note that the sum is over
m � 1 frames as the motion vectors represent pixel motion from
two consecutive frames, so there is no motion information about
the first frame of the animation.)

2.4.3. Gabor similarity
As a third similarity measure, we computed the Gabor similar-

ity between two animations. Gabor similarity is a biologically-
inspired physical similarity measure that emulates the responses
of simple and complex cells (see Lades et al., 1993). In early visual
cortex (V1), both simple and complex cells are organized into
hypercolumns that respond to different spatial frequencies at dif-
ferent orientations. Importantly, this similarity measure is highly
correlated with the perceived similarity of the identity of static
faces (e.g., Yue et al., 2012) and has been successfully applied as
similarity measure for facial expressions (Xu & Biederman, 2010).
We computed the Gabor similarity between two animations as fol-
lows. First, we took all corresponding frames from each animation
and converted them into grayscale images (256 levels). Second, we
placed a Gabor jet at the intersections of a uniform grid (11 � 14)
covering the entire image. Each jet consisted of five spatial scales
and eight equidistant orientations (i.e., 22.5� differences in angle;
for details see Yue et al., 2012). Third, we convolved the image with
each jet to get its response to an image. The responses from all the
Gabor jets thus form a high-dimensional feature vector (5
scales � 8 orientations � (11 � 14) jets = 6160 features) for each
frame. Lastly, the Gabor similarity between corresponding images
was computed as the Euclidean distance between the two feature
vectors, Ja and Jb, and summed across all corresponding pairs of
frames in the two animations a and b:

dGSða; bÞ ¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðJai;j
� Jbi;j

Þ2
vuut ; ð3Þ

where m = 34 represents the number of frames and n is the number
of features in each feature vector.

2.5. Calculating choice probabilities

In order to compare the objective similarity measures to
observers’ choice behavior, we computed choice probabilities
based on the three objective similarity measures (Luce, 1959).
Observers had to choose which of two approximations was most
similar to the original animation. For each similarity measure, we
used Luce’s choice rule to calculate the probability of choosing
one approximation over the other. The probability of choosing
which of two approximations, a and b, is most similar to the origi-
nal animation can be expressed as the conditional probability of
selecting a (response ra) given an original animation o:

PðrajOÞ ¼ 1� dða;OÞ
dða;OÞ þ dðb;OÞ ; ð4Þ

where d(a, o) is the similarity between the approximation a and the
original animation o in terms of facial action activation, optic flow
or Gabor similarity, and d(b, o) is the corresponding similarity
between approximation b and the original o. Note that the choice
probability is given as 1-fraction because the similarity is repre-
sented as distance, such that large distances indicate low similarity
and small distances indicate high similarity. If two approximations
are equally similar to the original animation o (i.e., d(a,o) = d(b, o)),
the probability of choosing a is 0.5. If the approximation a is very
similar to the original animation o (e.g., the distance d(a, o) = 0.1)
and the approximation b is very dissimilar (e.g., the distance
d(b,o) = 0.9), the probability of choosing a is very high (e.g.,
P(ra|o) = 0.9).

2.6. Regression analyses

We investigated whether the calculated choice probabilities
based on objective similarity measures could predict observers’
choice behavior. After assessment of the normality of the data
(quantile–quantile plot of data against a normal distribution), we
ran three separate linear regression analyses to assess the contri-
bution of each similarity measure to the behavioral choices. A Kol-
mogorov–Smirnov test on the residuals was not significant and
thus confirmed the suitability of parametric analyses. Second, we
investigated the best fitting model combining the three similarity
measures to explain the behavioral choices. As facial action time
courses are used to create the animation stimuli which image-
based measures are based on, we expected the similarity measures
to be correlated. In case of multicollinearity, the prediction accu-
racy of ordinary least squares regression can be reduced and the
results are difficult to interpret (e.g., see Hoerl & Kennard, 1970).
Compared to ordinary least squares regression, regularized regres-
sion obtains higher prediction accuracy (in particular if multicol-
linearity exists) and provides a simpler model by selecting the
most informative predictors. Regularized regression methods
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include an additional regularization term in the cost function (e.g.,
an l1-norm regularizer as in the ‘‘Lasso method’’; see Tibshirani,
1996; or an l2-norm as in ‘‘ridge regression’’; see Hoerl &
Kennard, 1970) for which a regularization parameter k defines
the degree to which coefficients are penalized. While ridge regres-
sion performs a shrinking of all coefficients, Lasso additionally
selects variables by setting small coefficients to zero. Recently, a
regularized regression method was proposed which combines
Lasso and ridge regression (called ‘‘Elastic net’’; see Zou & Hastie,
2005). Elastic net selects the most important predictors under con-
sideration of multicollinearity (Zou & Hastie, 2005) where an addi-
tional parameter a (0 < a 6 1) defines the weight of lasso (a = 1)
versus ridge regression (a = 0). Here, we applied regularized
regression to investigate which similarity measure could explain
most of the variance in the behavioral choices.

3. Results

3.1. Observers’ perceptual choices

Fig. 5 shows which approximation the observers judged to be
perceptually closest to the original animation in all possible pairs
(Fig. 5A) and separated for facial expressions (Fig. 5B). The y-axis
represents the mean proportion of trials in which observers chose
a specific approximation and the x-axis represents the six possible
approximation pairs. For trials in which approximation A was
paired with approximation B, 0 indicates that B (bottom label on
x-axis) was chosen on 100% of the trials, 1 indicates that A (top
label of x-axis) was chosen on 100% of the trials, and 0.5 indicates
that both approximations were chosen equally often.

As can be seen in Fig. 5A, choice proportion was different from
chance in all pairs (lin2 > lin1: 70%, t(13) = 9.91, p < 0.0001,
d = 2.65; hspl > lin1: 76%, t(13) = 9.96, p < 0.0001, d = 2.53;
lin2 > spl1: 69%, t(13) = 9.46, p < 0.0001, d = 2.46; hspl > lin2: 66%,
t(13) = 9.26, p < 0.0001, d = 2.66; hspl > spl1: 69%, t(13) = 9.19,
p < 0.0001, d = 2.48) except for the pair lin1-spl1 (lin1 > spl1:
56%, t(13) = 1.08, p > 0.1, d = 0.29). This result suggests that observ-
ers were sensitive to differences between approximations because
they consistently chose one approximation over another, with the
exception of lin1 and spl1 (chosen equally often). The data further
show that the four animations can be ranked in terms of observers’
decreasing choice proportion: hspl > lin2 > lin1 = spl1.

A 6 approximation pairs � 4 expressions ANOVA revealed a
main effect of approximation pair on choice proportions
(F(5, 13) = 81.49; p < 0.0001, g2 = 0.474). Choices also varied as a
function of expression (F(3, 13) = 8.3; p < 0.001, g2 = 0.026). Lastly,
an interaction between the two factors (F(15, 195) = 14.93;
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Fig. 5. Behavioral results. Proportion of approximation A choices for each pair of two app
95% confidence interval (CI) in all plots. A choice proportion of 0.5 indicates that both
approximation A was always chosen in this pair. The approximations can be ranked in
p < 0.0001, g2 = 0.192; see Fig. 5B) revealed that observers’ choices
were not consistent across different facial expressions, suggesting
that there was not one specific approximation that was perceived
to be most similar to the original animation for all expressions.

3.2. Explaining observers’ perceptual choices

We investigated whether the calculated choice probabilities
based on the three objective measures of similarity could explain
the behavioral choice pattern. First, we assessed their separate
contribution using linear regression. To this end, we calculated
three separate linear regression analyses, in each of which only
one measure was used as predictor and the choice behavior was
the predicted measure. All predictors could significantly explain
the variance of the behavioral choices. The choice probabilities
based on facial action activation were highly predictive and
explained 59% of the variance (r = 0.77, p < 0.0001), indicating that
the semantically meaningful facial actions capture spatio-temporal
properties which are used for judging similarity between facial
expressions. The choice probabilities based on physical similarity
measures also explained variance of the behavioral choices, with
more variance explained by optic flow (r = 0.74, 54% variance
explained, p < 0.0001) than Gabor similarity (r = 0.60, 36% variance
explained, p < 0.01). This finding suggests that motion cues mea-
sured by optic flow are closer to cues used for perceiving motion
similarity than cues extracted by the biologically motivated V1-
based Gabor similarity.

As the animation stimuli were based on time courses of facial
action activation, we expected the choice probabilities based on
facial action activation to be correlated with choice probabilities
based on the physical characteristics of the animations (optic flow
and Gabor similarity measures). We found that choice probabilities
based on facial action similarity measure significantly correlated
with choice probabilities based on both Gabor similarity measure
(r = 0.83, p < 0.001) and on optic flow-based similarity measure
(r = 0.88; p < 0.001). These results suggest that, unsurprisingly,
the time courses of facial action activation used to create the ani-
mations capture physical properties of the resulting animation
well. However, compared to image-based measurements, facial
action time courses reflect these physical properties in a semanti-
cally meaningful and sparse representation.

3.3. Selecting the best fitting model

We investigated which model based on the three objective
measures of similarity could best explain the behavioral choice
pattern. In this analysis, the 24 behavioral choice proportions (6
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decreasing order of observers’ choice proportion: hspl > lin2 > lin1 = spl1.
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approximation pair types � 4 facial expressions) were the pre-
dicted measure and the 3 � 24 choice probabilities obtained from
the three objective similarity measures were predictors. As the
choice probabilities based on image cues were highly correlated
with the choice probabilities based on facial action activation, we
chose elastic net as regularized regression and variable selection
method (Zou & Hastie, 2005). The results of the elastic net fitting
using a = 0.5 (we chose a to equally weight between lasso and
ridge regression) and 10-fold cross validation are shown in Fig. 6.
The standardized coefficients for each predictor (facial action acti-
vation in grey, optic flow in light blue, Gabor similarity in orange)
are plotted as a function of k. With increasing values of k, elastic
net retains optic flow and facial action activation as nonzero coef-
ficients while the latter is set to zero last. Note that for k = 0, the
coefficients are equivalent to ordinary least squares regression.
The dashed vertical lines represent k with minimal mean predic-
tion squared error (k = 0.06, MSE = 0.03; dashed black line) and
the MSE plus one standard deviation (k = 0.21; red dashed line)
as calculated by cross-validation. The best fitting model with
k = 0.06 explained 61% of the variance in the behavioral choices
(R = 0.78; F(13) = 33.77; p < 0.0001). The fitted coefficients for this
model were Beta = 0.88 for facial action activation, Beta = 0.46 for
optic flow and Beta = 0 for Gabor similarity. The results suggest
that the best model (i.e., the highest prediction accuracy with min-
imal predictors) to predict the behavioral choices is based on both
facial action activation and optic flow.

4. Discussion

When we see a person smile, we see how local face parts such
as the mouth and the eyebrows move naturally over time. In this
study, we show that observers are highly sensitive to deviations
from the natural motions of face parts. Using different approxima-
tions of these natural motions, we found that observers could not
only discriminate between the different approximations, but that
they were sensitive to the amount of information about the natural
motion given by those approximations. The more information
about the natural original motion (e.g., control points along the
natural motion curve) was used to create an approximation, the
more similar to the original animation it appeared. These results
are consistent with previous findings (e.g., Cosker, Krumhuber, &
Hilton, 2010; Curio et al., 2006; Furl et al., 2010; Pollick et al.,
2003; Wallraven et al., 2008) and emphasize the importance of
the quality of the approximation of facial motion in order to study
perception of dynamic faces. Our results extend this previous work
by showing a quantitative relationship between, on the one hand,
the amount of information about natural motion contained in an
approximation, and on the other hand, the perceived similarity
between an approximation and a reproduction of natural motion.

It is important to notice that the perceived similarity of an
approximation to the original animation varied with the type of
facial expressions shown in our study. Facial movements may have
different complexities in terms of their dynamics (e.g., linear ver-
sus nonlinear) depending on the type of facial expression (e.g., con-
versational or speech movements). Wallraven et al. (2008), for
example, used different techniques to create animations of basic
emotional and more subtle conversational expressions. The
authors found a recognition advantage for expressions based on
natural facial motion compared to linear morphs, with a stronger
effect for conversational than for emotional expressions. Cosker,
Krumhuber, and Hilton (2010) have also reported a perceptual
advantage for natural facial motion dynamics compared to linear
motion, and that advantage depended on the type of facial action.
Consistent with these findings, in our study linear approximations
(e.g., lin1, lin2) were chosen more often for the facial expressions
fear, happiness and surprise compared to the facial expression
anger which contained speech movements. This suggests that, per-
haps unsurprisingly, different kinds of approximations work best
for different facial expressions. Testing a wide range of expressions
performed by many actors could allow formulation of suggestions
about which approximations best reproduce the spatio-temporal
dynamics of specific facial expressions. However such an undertak-
ing was beyond the scope of the current study.

Another aim of the experiment was to investigate which charac-
teristic of facial motion observers used to judge the similarity
between the original animation and the approximations. This will
help understanding which aspect of facial motions we are most sen-
sitive to and therefore needs to be preserved to create adequate
approximations. We computed choice probabilities for three simi-
larity measures based on facial action activation, optic flow and
Gabor similarity and compared these objective measures to the pat-
tern of perceptual similarity. We found that the similarity measure
based on facial action activation best accounted for the variance in
the choice behavior. This similarity measure is based on a high-level
cue and represents the similarity of face deformations over time
(e.g., the way the eyebrows move in two animations). To our knowl-
edge, this is the first demonstration that objective similarity mea-
sures can predict perceptual similarity of facial movements.

For static faces, Gabor jets which model simple and complex
cells in early stages of visual processing have successfully pre-
dicted perceived similarity between facial identities (Yue et al.,
2012) and facial expressions (e.g., Lyons et al., 1998; Susskind
et al., 2007). Here, we adapted this image-based measure to motion
stimuli. We found that Gabor similarity explained the least vari-
ance in the behavioral choice pattern among the three similarity
measures, with much lower predictive power than reported for
static faces (see Yue et al., 2012). Furthermore, the best fitting
model did not include Gabor similarity as a predictor. There are
two possible explanations for this finding. On the one hand, com-
pared to real faces, our stimuli lack high-spatial frequency contents
both in the spatial and temporal domains (e.g., freckles or skin
wrinkling during expressions).This could potentially reduce the
efficacy of the Gabor similarity which is based on the available fre-
quency content of the image sequences as measured by Gabor fil-
ters. However, Gabor filters based on known properties of neurons
found in early visual cortex (e.g., Jones & Palmer, 1987) remove
these high spatial frequencies. In line with this, psychophysical
studies found that human observers mainly use mid spatial fre-
quencies to recognize faces (e.g., Costen, Parker, & Craw, 1996;
Näsänen, 1999) and neuroimaging studies have shown that low
spatial frequency information play an important role in the brain
responses to fearful stimuli (Vuilleumier et al 2003; Vlamings
et al, 2009). It is beyond the scope of our current study to
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determine the extent to which high spatial frequencies may con-
tribute to the similarity judgments for dynamic expressions. On
the other hand, the low predictive performance in our experiment
could be due to differences in static versus dynamic faces. In line
with the latter possibility, neurophysiological and psychophysical
studies (e.g., Duffy & Wurtz, 1991; Morrone, Burr, & Vaina, 1995;
Wurtz et al., 1990) reported that motion stimuli are processed at
later stages in the visual hierarchy that are more responsive to
optic flow features than to Gabor measures.

Given the importance of optic flow for the processing of natural
motion stimuli (e.g., Bartels, Zeki, & Logothetis, 2008), we hypothe-
sized that objective similarity between stimuli measured by optic
flow might explain the behavioral similarity judgments we
observed. We indeed found that optic flow was an important predic-
tor of the perceptual choices. However, the contribution to the
behavioral variance by optic flow was smaller than for facial action
activation. This finding suggests that the overall similarity in low-
level motion might capture subtle differences in face motion stimuli
which are less relevant for observers’ decisions than the spatio-tem-
poral dynamics of local face parts. In the future, it would be interest-
ing to investigate how responses of higher-level models of biological
motion which combine Gabor filters and optic flow measures (e.g.,
Giese & Poggio, 2003) relates to human responses to facial motion.

We used animations of synthetic faces as stimuli in our study.
While videos of faces capture much of the visual experience of per-
ceiving real-life faces, it is difficult to precisely quantify the spatio-
temporal information in videos, let alone to systematically manip-
ulate this information to address the questions raised in this study.
Still the question arises whether the reported results can be gener-
alized to faces in real life. Evidence from psychophysical and neu-
roimaging studies investigating static (e.g., Dyck et al., 2008; Ishai,
Schmidt, & Boesiger, 2005; Wilson, Loffler, & Wilkinson, 2002) and
dynamic face processing (e.g., Mar et al., 2007; McDonnell, Breidt,
& Bülthoff, 2012; Moser et al., 2007) indicates that synthetic faces
are processed by similar mechanisms as natural faces. However,
contradictory results have also been reported (e.g., Han et al.,
2005; Moser et al., 2007). These differences in results may be
due to differences in the naturalness of the synthetic face stimuli
across these studies, highlighting the need to capture natural facial
motions with a high degree of fidelity. As we have strived to gen-
erate avatars with motion as natural as possible, we believe that
our results would generalize to real-life faces if the same tests
could be run under controlled conditions. With the techniques
available today, we do not expect any of our similarity measures
to account better for the perceived similarity between videos than
perceived similarity between our animations, since videos contain
much more irrelevant information that would need to be dis-
counted for a sensitive analysis (e.g., head movements, different
backgrounds, hair).

Our results suggest that observers extract spatio-temporal char-
acteristics of facial motion stimuli and make their judgments based
on a sparse but semantically meaningful representation rather
than on low-level physical properties of the stimuli. Given the
social importance of facial motion, it is likely that despite the fact
that observers were asked to perform a simple similarity judgment
task, they automatically extracted and analyzed the semantic con-
tent of facial motion. To further test this hypothesis in a future
experiment, one could use nonsense facial motion stimuli (e.g.,
by scrambling the frames) or inverted face motion stimuli to inves-
tigate whether image-based measures better explain the perceived
similarity of such stimuli.

5. Conclusions

We draw three main conclusions from our study. First, our
results demonstrate how exquisitely sensitive the human
perceptual system is to degradations of the spatio-temporal prop-
erties of natural facial motion: observers discriminated the subtle
differences between the different approximations and preferred
animations containing more information about the natural facial
motion dynamics. Second, the perceived similarity of an approxi-
mation depended on the type of facial expression, which shows
that the use of simple approximations, such as linear interpola-
tions, is not appropriate to reproduce all types of facial expressions.
Third, our approach allowed a quantitative explanation of observ-
ers’ perceptual choices revealing the importance of high-level cues
in the processing of facial motion. These findings suggest that to
understand facial motion processing, we need more advanced
analyses than for static images, going beyond the analysis of
image-based properties. These conclusions validate attempts to
capture and render semantically meaningful information in facial
motion. Using better approximations will open the door to in-
depth studies of how humans judge and perceive natural facial
motion, what information in facial motion they rely on when per-
forming different tasks involving facial motion, and what neural
mechanisms underlie the processing of these different kinds of
information. We believe that such methods are essential for a sys-
tematic, quantitative analysis of the incredible amount of informa-
tion that can be conveyed by facial motion and have important
implications for theories and models of facial motion perception.
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Appendix A

A.1. Facial animation procedure

A.1.1. Acquiring and post-processing facial motion capture data
We captured facial movements of a non-professional female

actor using a seven-cameras optical motion capture system (Natu-
ralPoint Optitrack) running at 100 Hz, and OptiTrack Expression
software (version 1.8.0, NaturalPoint, Inc., Corvallis, OR, USA).
The positions of 41 reflective markers (37 markers on the actor’s
face and 4 markers on a headband, see left image of Fig. 2A) were
tracked by six infra-red cameras, while an additional synchronized
scene camera recorded a gray-scale video of the actor performing
the facial movements (see Fig. 2A).

At the beginning of the motion capture session, 30 facial actions
were captured from the actor. These actions are listed in Table A1.
Although the selected facial actions were mainly based on FACS,
the actor and the instructor were not certified FACS experts. The
actor received verbal instructions for each facial action and was
instructed to perform the movement as intensely and as clearly
as possible, with as little co-activation as possible in other facial
regions corresponding to other facial actions. From these record-
ings, we manually selected the frame displaying the maximum
intensity for each of the 30 facial actions (e.g., eyebrow raising:
when the eyebrows were maximally raised).

The actor then performed four emotional facial expressions
(anger, fear, happiness and surprise) that involved a wide range of
facial motion distributed across different regions of the face (e.g.,
mouth, eyebrows). To induce the expressions as naturally as



Table A1
The 30 recorded facial actions and their semantic meaning specifying which part of the face moves and in which way.

Facial action number Semantic Facial action number Semantic

1 Neutral 16 Lips open
2 Eyebrows lowered 17 Mouth open
3 Eyebrows raised 18 Mouth wide open
4 Eyes wide open 19 Lower lip down
5 Eyes squint 20 Mouth stretched
6 Eyes closed 21 Dimpler
7 Nose wrinkled 22 Smile, mouth closed
8 Upper lip up 23 Right lips up
9 Upper lip up, teeth showed 24 Left lips up

10 Right mouth corner up 25 Smile, mouth open
11 Left mouth corner up 26 Lip corners up
12 Chin up 27 Pucker
13 Lip corners down 28 Lips funnel
14 Right lip corner down 29 Lips tight
15 Left lip corner down 30 Lips pressed
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possible, we used a ‘‘method-acting protocol’’ in which the actor is
verbally given a particular background scenario designed to elicit
the desired facial expression (see Kaulard et al., 2012). Three of
the recorded expressions (fear, happiness, and surprise) started
from a neutral expression and proceeded to the target expression.
For the facial expression anger, we chose a background scenario lead-
ing up to an anger expression that contained visual speech (i.e.,
‘‘speak angrily to someone’’). This facial expression increased the
range of spatio-temporal profiles of facial motion tested in our study.

Using OptiTrack Arena Expression software, the facial motion
data was post-processed as follows. First, the markers were labeled
according to their position on the face. Triangulation errors were
manually removed from the marker position time courses and rarely
occurring gaps in time courses were filled in by cubic spline interpo-
lation. Second, rigid head motion was removed from the motion cap-
ture data by aligning the four recorded head markers to their
positions at the start of the motion capture. Third, the remaining
non-rigid component of the motion data was loaded into Matlab
(version R2010b, The MathWorks, Inc., Natick, MA, USA) using the
MoCap Toolbox (Burger & Toiviainen, 2013), and filtered with a
low pass filter (digital Butterworth filter, cut-off frequency = 10 Hz,
order = 2) to reduce jitter in the marker time courses.

A.1.2. Analyzing facial motion capture data
The post-processed motion capture data for each expression

were decomposed into time courses of the constituent facial
actions (see Table A1). These time courses were obtained by line-
arly combining the marker positions of the set of static facial
actions to the marker positions at each time point of the recorded
expression (see Curio et al., 2006 for further details). The activation
for each facial action at each time point ranged from 0 (no activa-
tion) to 1 (maximum intensity). We first identified the peak of the
facial expression by summing all 30 facial action activations at
each time point and selecting the frame that had the largest sum.
For each facial action, we then selected sequences of 1s duration
(100 frames) that contained this peak at the end of the sequence.

A.1.3. Facial motion retargeting
The time courses were transferred onto a female 3D head model

designed in Poser 8 (SmithMicro, Inc., Watsonville, CA, USA). We
manually altered the model using Poser’s in-built animation
parameters to create 30 facial action ‘‘shapes’’ corresponding to
the 30 facial actions performed by the actor (at their maximum
intensity). Fig. 2B shows the facial actions ‘‘neutral’’ (facial action
1), ‘‘mouth open’’ (facial action 17) and ‘‘smile’’ (facial action 22)
as motion capture data (middle) and the corresponding facial
action shape (right). Each of the facial action shapes was exported
in OBJ format from Poser into the animation software 3ds Max
2012 (Autodesk, Inc., San Rafael, CA, USA). The 3D coordinates of
all the facial action shapes were in correspondence (e.g., the tip
of the nose is represented by the same vertex across all shapes).
This correspondence allowed us to take a weighted linear combi-
nation (i.e., morph) of the neutral action shape with all the other
action shapes (sometimes referred to as weighted morphing). For
example, increasing the weight of any particular action shape
(e.g., mouth open) adds increasing amounts of that action shape
to the neutral action shape. To synthesize a complex facial expres-
sion, the facial action shapes were weighted by their activation at
each frame (time step) and combined with the neutral action
shape. This combination was done in 3ds Max.
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