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a b s t r a c t

We compared the effect of motion cues on people’s ability to: (1) recognize dynamic objects by combin-
ing information from more than one view and (2) perform more efficiently on views that followed the
global direction of the trained views. Participants learned to discriminate two objects that were either
structurally similar or distinct and that were rotating in depth in either a coherent or scrambled motion
sequence. The Training views revealed 60� of the object, with a center 30� segment missing. For similar
stimuli only, there was a facilitative effect of motion: Performance in the coherent condition was better
on views following the training views than on equidistant preceding views. Importantly, the viewpoint
between the two training viewpoints was responded to more efficiently than either the Pre- or Post-
Training viewpoints for both the coherent and scrambled condition. The results indicate that view com-
bination and processing coherent motion cues may occur through different processes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

To interact in a dynamic environment, humans and other active
animals must be able to encode and recognize objects under con-
ditions in which both the objects and the viewing conditions
may be changing. For example, shadows and light change with
time of day and the relative positions of observers and objects
may also change over time (e.g., a moving observer or a moving ob-
ject). The net result of these changes is that the same three-dimen-
sional (3D) object projects different shapes and surface details onto
the two-dimensional (2D) retinal array. Thus, the input to the vi-
sual recognition system contains both static information (e.g., the
2D shape at a particular moment) and dynamic information (e.g.,
how that 2D shape changes over time). The role of static cues in ob-
ject recognition has been investigated extensively (e.g., Biederman,
1987; Bülthoff & Edelman, 1992; Edelman & Bülthoff, 1992; Fried-
man, Spetch, & Ferrey, 2005; Peissig, Wasserman, Young, & Bieder-
man, 2002; Spetch & Friedman, 2003; Spetch, Friedman, & Reid,
2001; Tarr, Bülthoff, Zabinski, & Blanz, 1997), but it is only recently
that the role of motion cues has begun to be understood (e.g.,
Kourtzi & Nakayama, 2002; Kourtzi & Shiffrar, 1999, 2001; Vuong
& Tarr, 2004, 2006; Wallis & Bülthoff, 2001), especially in terms
of comparisons across species (Cook & Katz, 1999; Cook & Roberts,
2007; Cook, Shaw, & Blaisdell, 2001; Friedman, Vuong, & Spetch,
ll rights reserved.
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2009; Loidolt, Aust, Steurer, Troje, & Huber, 2006; Spetch, Fried-
man, & Vuong, 2006; Spetch et al., 2001).

A view combination framework has been able to account for ob-
ject recognition across species under a variety of circumstances
(Bülthoff & Edelman, 1992; Edelman, 1999; Spetch & Friedman,
2003; Friedman et al., 2005, 2009; Spetch et al., 2001; Ullman,
1998). Briefly, view combination is a kind of generalization (cf.
Shepard, 1987) in which a novel input view activates all of the
stored representations to which it is similar. Therefore, view com-
bination is construed as a process that relies on the existence of ob-
ject representations in long-term visual memory. A new
representation is constructed from the activation of multiple
stored representations and if the constructed representation is suf-
ficiently similar (over a threshold) to the novel input image, the
novel image is recognized. The behavioral signature of view com-
bination is twofold: First, a novel view that is between two training
views (an Interpolated view) can be responded to more efficiently
than an Extrapolated novel view outside of that range by an equiv-
alent distance (e.g., viewpoint 4 in Fig. 1 vs. viewpoints 2 and/or 6
or 1 and/or 7), and second, the Interpolated view can often be re-
sponded to about as efficiently as the Training views. Thus far,
we have found evidence for view combination with static images
(Friedman et al., 2005; Spetch et al., 2001) and more recently, with
dynamic objects (Friedman et al., 2009; see also Bülthoff & Edel-
man, 1992). In Friedman et al. (2009), which compared humans
and pigeons, we found that both species showed view combination
with both scrambled and coherent motion, but it was stronger for
coherent than scrambled motion in humans. We also found an
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Fig. 1. Schematic diagram of the top view of the different viewpoint conditions for
half of the participants. The images were rendered as if the object were in the center
of a sphere and the camera was placed at the horizontal great circle of the sphere.
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effect of motion; the views that followed the training views were
responded to more quickly than those which preceded the training
views by an equal amount. Thus, we concluded that view combina-
tion models might have to be modified to take account of effects of
coherent motion.

In the present study we explored the recognition of dynamic
objects further by investigating two potentially different ways of
facilitating recognition, one involving view combination and the
other involving motion per se. First, we examined whether the per-
ception of smooth coherent motion would enhance view combina-
tion effects relative to when the motion was not coherent but the
same amount of structure was learned (e.g., Friedman et al., 2009;
Kourtzi & Shiffrar, 1999). Second, we examined whether view com-
bination mechanisms observed with dynamic objects are separable
from motion-specific mechanisms (Freyd, 1987; Friedman et al.,
2009; Stone, 1999; Vuong & Tarr, 2004). To address these goals,
we extended our previous study on view combination with dy-
namic objects in humans (Friedman et al., 2009, Experiment 1a)
and we changed the training procedure in order to enhance hu-
mans’ perception of smooth coherent motion. The procedural
changes we made were similar to those shown to affect how pi-
geons used coherent motion even though the motion itself was
not discriminative of object identity (Friedman et al., 2009; Exper-
iments 1b and 2). The finding with pigeons is notable because pi-
geons are highly sensitive to coherent motion cues when they
are discriminative (e.g., Spetch et al., 2006). The changes we made
to enhance pigeons’ perception of motion during training included,
for example, ‘‘sweeping” across two different 30� segments of the
objects in their correct sequence instead of presenting the seg-
ments in a random order.

Previous studies using paradigms that tap relatively short-term
representations (e.g., representational momentum (Freyd, 1987);
priming; apparent motion (Kourtzi & Shiffrar, 1999, 2001)) have
found evidence for both view combination and motion-specific
mechanisms. For example, Kourtzi and her colleagues (Kourtzi &
Nakayama, 2002; Kourtzi & Shiffrar, 1999, 2001) tested human
participants with a short-term visual priming paradigm (Sekuler
& Palmer, 1992), in which the primes either induced apparent mo-
tion or were static images. The primary task was to decide if two
shapes presented simultaneously 500 ms after the primes were
the same or different with respect to each other. The primes were
therefore irrelevant to the main task; the rationale was that if there
was facilitation on the same-different judgment, then the orienta-
tion of the target shapes must have been primed and by implica-
tion, must have had a representation (however brief). The
orientation of the target stimuli was either: (1) identical to either
of the primes (i.e., to the ‘‘learned” views), (2) at a novel angle that
was within the rotation angle that separated the two primes (i.e.,
an ‘‘Interpolated” view), or (3) at a novel angle outside the rotation
angle that separated the two primes by an equivalent amount of
degrees to the second condition (i.e., an ‘‘Extrapolated” view).

When the angular disparity of the two primes was small (60o),
Kourtzi and Shiffrar (1999; Experiment 1) found significant prim-
ing of the Interpolated view for both static and apparent motion
conditions, but surprisingly, significant priming of Extrapolated
views was found only in the static condition (see their Fig. 3). By
comparison, when the angular disparity was large (120�), they
found significant priming of the Interpolated view only in the
apparent motion condition, and they did not find any significant
priming of Extrapolated views for either the static or apparent mo-
tion conditions (see also Kourtzi & Nakayama, 2002; Kourtzi &
Shiffrar, 2001, who found similar results for 2D objects rotating
in the picture plane or deforming objects). Based on these results,
Kourtzi and Shiffrar suggested that the visual system can take
advantage of an object’s motion path and link views within the
path of motion (i.e., Interpolated views) even across relatively large
rotational differences, possibly creating short term ‘‘virtual” views
that could facilitate recognition (see Vetter & Poggio, 1994). Con-
sistent with this interpretation, a recent functional imaging study
by Weigelt, Kourtzi, Kohler, Singer, and Muckli (2007) showed as
much adaptation of the hemodynamic response in object-selective
temporal cortical regions to the Interpolated view as to repeated
views but no adaptation to Extrapolated views. This hemodynamic
adaptation suggests that the brain had formed a representation of
the unseen Interpolated view. This newly formed representation
may be why unseen views falling within the object’s path are effi-
ciently responded to. Kourtzi and colleagues’ priming effects are
intriguing because they are consistent with the idea that view
combination mechanisms also work in short-term visual memory
with objects undergoing coherent apparent motion.

In our long-term memory studies with static objects (Friedman
et al., 2005), we found a slightly different pattern of results from
what Kourtzi and Shiffrar (1999) found with apparent motion in
short-term memory. In particular, view combination occurred for
pigeons trained with small but not large angles between views
(e.g., 60� vs. 90�) and there was no facilitation for Extrapolated
views at either angle. Using a similar long-term memory paradigm
with humans, the same pattern of results was observed for static
views of real-world scenes (the training angles were either 48�
or 96� apart; Friedman & Waller, 2008). Thus, it appears that view
combination with static stimuli can occur within a wide range of
angles in short-term memory and within a narrower range in
long-term memory. The present study is an effort to further differ-
entiate effects of view combination and coherent motion in a long-
term memory paradigm with objects undergoing real, rather than
apparent, motion (e.g., Friedman et al., 2009).

Strictly speaking, view combination should occur with both sta-
tic and moving objects that are represented in long-term memory,
including dynamic objects in which the motion is not coherent
(e.g., objects undergoing scrambled motion). Kourtzi’s results im-
ply that the range over which view combination is effective might
be extended with dynamic objects undergoing coherent motion,
whether the motion is real or apparent. Furthermore, Wallis and
Bülthoff (2001) showed that coherent apparent rotations of face
views were more likely to be linked than the same face stimuli
shown in a scrambled order (thereby disrupting the spatio-tempo-
ral integrity of the apparent rotation, but controlling for the total
amount of an object’s structure that was seen; see also Harman
& Humphrey, 1999). Together, these results point to the possibility
that view combination may be enhanced by coherent motion. In
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contrast to this expectation, in our previous work with dynamic
objects (Friedman et al., 2009), humans showed an equivalent
magnitude of view combination in response times for both coher-
ent and scrambled motion conditions. However, there was an accu-
racy difference for the Interpolated view that favored coherent
motion. Thus, the evidence for an enhancement of view combina-
tion via coherent motion was mixed.

The training angles in our previous study were relatively close
(they spanned 60� on either side of the Interpolated view) but
there were other aspects of the design, such as presenting the
30� motion segments out of their global order (see below), that
may have made it more difficult to obtain differential effects of
motion type (coherent vs. scrambled) on response time with re-
spect to view combination. For example, we used the same seg-
ments as are shown in Fig. 1, but trained with segments 2, 3, 5,
and 6 (or their counterparts on the other half of the circle). These
segments were presented individually on each training trial; con-
sequently, the global sequence was never seen in order. By training
with one segment at a time, we may have inadvertently weakened
the effects of global coherent motion and strengthened the Inter-
polated view via motion generalization from the preceding training
view (in addition to view combination). We correct those issues in
the present study to examine whether robust view combination
still occurs for both coherent and scrambled motion conditions in
a long-term memory paradigm.

To investigate the separate effects of motion per se, indepen-
dently of effects of view combination, we took advantage of a phe-
nomenon reported by Freyd (1987), which she called
representational momentum (see also Freyd & Finke, 1984, 1985).
In studies of representational momentum, under some circum-
stances an observer’s memory for the final position of an object
is distorted in the direction the apparent motion. For example,
Freyd and Finke (1984) presented participants with a static figure
presented at three different orientations along a path of rotation in
the image plane; each figure was separated from the next by a
250 ms interstimulus interval, so that the conditions existed for
there to be apparent motion. Observers found it more difficult to
decide that a fourth test stimulus that had been slightly rotated
forward in the implied direction of apparent motion was different
than the actual third stimulus that they had seen, compared to a
test stimulus that was slightly rotated backwards in the opposite
direction. This discrimination cost for forward rotation disap-
peared when the three static frames were presented in a scrambled
order that did not lead to the percept of apparent motion. Thus,
representational momentum has characteristics similar to both
the effects of apparent motion on priming (e.g., Kourtzi & Shiffrar,
1999) and of view combination on recognition (e.g., Friedman
et al., 2005), in that some novel views are processed more effi-
ciently than other novel views. However, at least empirically, the
two mechanisms are different in short-term visual memory be-
cause view combination favors views within the training range,
whereas representational momentum favors views outside of that
range.

Freyd and Finke’s (1984) finding provides evidence that people
are sensitive to an implied direction of motion; presumably they
would be similarly sensitive to implied views of objects that were
actually undergoing coherent motion. Vuong and Tarr (2004) con-
firmed this expectation. They found that people responded ‘‘same”
more quickly to novel views of objects that continued the trajec-
tory of an object rotating in depth than they were to respond to
views that preceded that rotation trajectory. They argued that it
was possible that motion provides the ability to predict the struc-
ture or appearance of upcoming views, thereby biasing novel views
in the direction of rotation (see also Stone, 1999). However, it was
not clear whether observers generated and then represented in
memory the predicted ‘‘virtual” view that followed the endpoint
of the dynamic object’s motion. The priming results from Kourtzi
and colleagues suggest that Interpolated views generated by mo-
tion may be represented; thus, views implied by an object’s direc-
tion of motion may also be represented in short-term visual
memory.

Kourtzi and her colleagues, Freyd and her colleagues, and Vuong
and Tarr all examined the role of motion (real or apparent) in the
context of short-term visual memory. Together, their results sug-
gest that motion can broaden the tuning functions of studied views
(e.g., Kourtzi & Nakayama, 2002), which may affect view combina-
tion mechanisms. Their data also suggest that that motion may dis-
tort or otherwise bias views in the direction of motion (e.g., Freyd,
1987; Vuong & Tarr, 2004). In the present study, we used movies of
novel 3D objects rotating in depth to examine both view combina-
tion and motion predictions in a long-term memory paradigm. As
noted above, the behavioral signature that indicates a facilitative
role for coherent motion is that performance on the sequence of
views that follows the trained views (even though that sequence
is outside of the training range) should be better than performance
on the sequence that precedes the trained views. We will refer to
this pattern of responding to dynamic cues as the motion effect.

In our previous research on dynamic object recognition in hu-
mans and pigeons (Spetch et al., 2006), shape and motion cues
were redundant on training trials, so both cues were discriminative
of identity. With structurally similar objects, pigeons could rely on
dynamic cues alone to perform accurately but humans maintained
a reliance on shape cues (Spetch et al., 2006). In a second series of
studies (Friedman et al., 2009) we examined what happened when
motion cues were not discriminative of identity. Humans and pi-
geons were trained to recognize a dynamic object from two differ-
ent perspectives. In the first experiments (Friedman et al., 2009, 1a
and 1b), a full 1/3 of the objects were shown on the training trials
(e.g., viewpoints 2, 3, 5, and 6 in Fig. 1). Both species showed clear
evidence for view combination, but only humans showed facilita-
tion for novel views that continued the rotation trajectory. We rea-
soned that pigeons might require better global motion cues to take
advantage of motion when it was not discriminative. That is, the
four training viewpoints in Experiments 1a and 1b were presented
one at a time in a random order; for Experiment 2, which tested
only pigeon subjects, we instead presented a ‘‘sweep” of two view-
points in their proper sequential order for the coherent motion
condition (e.g., in Fig. 1, viewpoint 3 followed by viewpoint 5,
omitting viewpoint 4) and randomized across the same two view-
points for the scrambled condition. With this procedure, the pi-
geons now showed both a view combination effect and a
facilitatory effect of motion. Because sweeping across two view-
points of the objects was effective in eliciting about a 10% advan-
tage in accuracy for coherent over scrambled motion in pigeons,
and this presentation method also yielded a significant motion ef-
fect, we examined whether the same kind of manipulation would
magnify the efficacy of dynamic cues for humans and possibly dis-
sociate view combination and motion effects.

To summarize, in the present study, participants learned to dis-
criminate to a criterion between two similar or distinctive objects
that were displayed from two viewpoints. The objects were either
moving smoothly through a 90� arc that omitted 30� of its struc-
ture in the center of the arc, or the same amount of structure
was displayed in a scrambled manner. Participants were then
tested with dynamic stimuli at the trained viewpoints as well as
at novel viewpoints that were inside of the training range or out-
side of it by distances that were either directly adjacent to the
trained distances by the same amount as the Interpolated view
or were further away from the training views (see Fig. 1). In both
training conditions (coherent and scrambled), motion was not a
discriminative cue to object identity. Nevertheless, we expected
to observe effects of view combination here and, as we saw in
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our previous study, we expected to find these effects in both the
coherent and scrambled conditions; after all, view combination
was originally meant to explain static object recognition. However,
if coherent motion enhances view combination by, for example,
broadening the tuning functions of the representations, then the
view combination effect should be larger for coherent motion than
for scrambled motion. In addition, we expected to find a Pre-Post
effect – that is, facilitation for viewpoints following the rotation
direction – only in the coherent motion condition. The two effects
together may translate into a main effect for motion type (coherent
vs. scrambled).

It is important to document motion effects in a long-term mem-
ory paradigm, because doing so can help rule out recency effects as
a principle cause of any differences observed between the effi-
ciency of processing views that precede the first training view
and those that follow the second (and most recent) view. In partic-
ular, the present and previous experiments used a discrimination
learning paradigm (e.g., Friedman et al., 2009) in which all the
training views were trained to the same criterion. Thus, if there
is no effect of motion, there should be as much generalization to
views that precede the first training view as to those that follow
the second training view, and performance should be equal for
the two cases (Pre vs. Post). We did not think this was likely in
the present case because, in our previous work in which recency
effects were controlled (Vuong & Tarr, 2004), there was a still evi-
dence for an effect similar to ‘‘representational momentum”. Nev-
ertheless, from an empirical point of view, a pure recency
explanation of facilitation for views that follow the second training
view in the sequence predicts that those views should be re-
sponded to more accurately and/or more quickly than the Interpo-
lated viewpoint (which precedes the second training view). The
present design allows us to test this prediction in addition to the
predictions of view combination and motion per se.
2. Method

2.1. Participants

There were 45 volunteers (16 male, 29 female) from the Univer-
sity of Alberta participant pool who received partial course credit
as well as performance-based payment for their participation. They
were randomly assigned to one of 8 training conditions formed by
the combination of type of motion type (scrambled or coherent),
whether the stimulus pair that was learned first was distinctive
or similar, and which of two sets of particular views were used
as the training and test movies (see below). The data from five fe-
male participants were not considered further; in one case perfor-
mance was at chance throughout testing, and four others had less
than 70% correct on the training views during testing. This left five
participants per group.
2.2. Stimuli and design

The stimuli were two distinctive and two similar shapes (see
Fig. 2). Both exemplars of a given type (similar or distinctive) were
presented on each trial as animated movies; one exemplar of each
stimulus type was arbitrarily assigned to be the S+ for all partici-
pants. The particular distinctive shapes that were used were still
relatively similar to each other, both parametrically and psycho-
physically (i.e., the two objects differed by a 30% morph on three
parameters for each of their parts, which yielded approximately
60% correct discriminations for rotating pairs; see Schultz, Chang,
& Vuong, 2008). The part-structured stimuli in the present study
were different than those used in our previous experiments with
human and pigeon subjects (Friedman et al., 2009); in that study
there were no viewpoint effects for humans responding to the
part-structured stimuli. Here, we wanted to see whether part-
structured stimuli that were more difficult to discriminate psycho-
physically, but were still distinctive, would show viewpoint effects.

Bitmap images of each stimulus were made at each one degree
of viewing angle by moving clockwise around a circle that was cen-
tered on the objects. The stimuli were rendered as grayscale ob-
jects against a yellow background. When displayed side-by-side
on the LCD screen, each object in a pair was displayed in an area
that was 450 by 450 pixels (approximately 13.23 by 13.23 cm).

The 360 bitmaps for each object were divided into 12 view-
points of 30 consecutive bitmaps each. Fig. 1 shows the viewing
conditions for four of the eight experimental groups (one group
in each motion type � stimulus order condition). For participants
in these groups, the Training movies were made from the 60 bit-
maps in viewpoints 3 and 5 in the figure. The test stimuli consisted
of the two Training viewpoints, as well the two viewpoints that
showed the 60 views that preceded viewpoint 3 (Far-Pre and
Near-Pre), two viewpoints that followed viewpoint 5 (Near-Post
and Far-Post), one viewpoint that showed the views in between
the training views (Interpolated), and one viewpoint that was ta-
ken from the other side of the figure (Far-Opposite). The remaining
four groups were trained with viewpoints 9 and 11, and had corre-
sponding assignments of viewpoints to the other conditions. In
particular, the Far-Pre, Near-Pre, Interpolated, Near-Post, Far-Post,
and Far-Opposite viewpoints for these groups were 7, 8, 10, 12, 1,
and 4, respectively. Thus, the views that were within the Interpo-
lated viewpoint for half the participants were within the Far-Oppo-
site viewpoint for the other half and vice versa; similarly, the views
that were in the Far-Post viewpoint for one group were in Far-Pre
viewpoint for the other and vice versa. This counterbalancing en-
sures that particular views could not be responsible for either
the view combination or the Pre-Post effects.

Half the participants were assigned to the coherent group, and
received all of their training and testing stimuli in the correct con-
secutive order for each of the two training viewpoints, so that the
resulting movie showed smooth motion (the coherent group). Phe-
nomenologically, the objects appeared to move smoothly around
their vertical axis and then ‘‘jump” (via apparent motion) to a
new position and continue to move smoothly in the same direc-
tion. Although we did not counterbalance for the direction of rota-
tion (right to left or left to right), this variable was counterbalanced
in previous studies using similar or identical stimuli as the present
study (Spetch et al., 2006; Vuong & Tarr, 2006) and did not affect
any of the other variables, which were similar to those used in
the present study.

For the remainder of the participants the bitmaps within each
viewpoint were first divided into 10 clusters of three bitmaps each;
the 10 clusters within each viewpoint were presented in a different
randomized sequence on each trial (the scrambled group). The
resulting stimuli still had some motion but it was choppy. Further-
more, a random selection was made for each training trial in the
scrambled condition that determined the order in which the 20
clusters of three viewpoints were seen across the two training seg-
ments (either 3 and 5 or 9 and 11); this selection was made inde-
pendently for the S+ and S� objects. We did this to enhance the
unpredictability of the viewing sequence. However, by the end of
the training trials, both the coherent and scrambled-motion groups
saw the identical amount of structure in each of the stimuli for the
same amount of time.

All participants received two blocks of 40 training trials fol-
lowed by one block of 80 test trials for each object type (distinctive
and similar), for a total of 320 trials. On each training trial, the two
training viewpoints (e.g., viewpoints 3 and 5) were presented to-
gether; across each block of 40 training trials the S+ was randomly
selected to be on the right half the time and on the left for the other



Fig. 2. Stimuli used in the similar (top) and distinctive (bottom) conditions, respectively.
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half. For the 80 test trials each viewpoint (e.g., viewpoints 1–7 and
10) was presented twice by itself, randomized in blocks of 16 tri-
als; the S+ in each pair was on the right half the time and on the
left the other half. Each viewpoint was thus seen 10 times through-
out the test trials.

2.3. Procedure and apparatus

When a participant arrived, he or she was seated in a small
room in front of a computer with an NVidia GeForce 7600GS video
card. The stimuli were displayed on a 19” Samsung Syncmaster
940BF LCD monitor with a 2 ms gray-to-gray response rate. The
functional frame rate was 30 frames/s. The movies were presented
as pairs of animations, centered on the screen, which was approx-
imately 60 cm from the participant. There was a button box in
front of the monitor with two push button switches that were
8 cm from center to center. Participants responded by pushing
the button on the side of the response box that corresponded to
the object they thought was the S+.

After signing the consent form, the initial instructions were pre-
sented on the computer screen with the experimenter present. The
instructions informed the participants that their task was ‘‘to learn a
discrimination between two stimulus displays of novel objects that
are shown as animated movies.” They were also told that they could
earn money for accurate and fast responding and that if they scored
perfectly the amount they would earn would be $8.00. They were
told their total earnings at the end of each training and test block.

During the first training block, participants could not respond
until the movies had been shown for three cycles; correct re-
sponses earned 1¢ and incorrect responses were penalized 1¢. Par-
ticipants were asked to look at both objects as much as possible;
they were told they would have to guess at first which was the cor-
rect object but that they would get feedback on each trial and they
should use it to figure out which object was the correct object. The
participants received feedback in the form ‘‘You earn 1¢” or ‘‘You
lose 1¢” after each trial.

For each training trial, a beep sounded simultaneously with the
onset of a fixation point, which remained on for 750 ms. Then both
viewpoints of each object (the S+ and S�) were shown for a total of
three cycles per two viewpoints (6 s total), and after the participant
responded, the feedback for that trial was displayed for 1 s. This
was followed by a 1 s inter-trial interval. Participants could not re-
spond until the end of the three cycles.

For the second block of training trials, the procedure was the
same, but the participants were additionally told that each time
they responded correctly and ‘‘are fast enough” they would earn
3¢; otherwise, if they were correct they would earn 1¢, and if they
were incorrect 1¢ would be subtracted from their total. The 3¢ re-
ward was given for responses that were made in under 1 s, but the
participants did not know the exact time that was being used as
the criterion. During these trials the movies were still repeated
for three full cycles but participants could respond any time after
the onset of the stimuli.

For the test trials, only one movie segment was shown at a time
and no feedback was given. The procedure was otherwise the same
as for the second set of learning trials. In addition, participants
were warned that some of the animations they would see would
be different than what they had previously seen, and that they
‘‘should try to decide whether to respond to the right or left side
based on which object is the correct one, given your previous feed-
back.” They were told that the same earning scheme was in place
as had been for the previous block of trials but that they would
not get feedback.

After finishing the test trials for the first stimulus type, the par-
ticipants were given a short break, and then they proceeded to the
second stimulus type. The procedure was identical.



Fig. 4. Percent correct as a function of object type, viewpoint, and motion type.
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3. Results

We used p < .05 as the criterion for significance throughout the
study and report g2

p as the measure of effect size. As in our previous
study (Friedman et al., 2009), we averaged each participant’s cor-
rect reaction times (RTs) separately over the distinctive and similar
objects and omitted RTs that were more than 3 SDs above these
means from further consideration. The omitted trials were counted
as errors and comprised 1.6% of the total data; they were counted
as errors on the assumption that long responses could have been
either correct or incorrect by chance. In addition, and irrespective
of whether we trimmed the RTs, there were two participants
(one each in the coherent and scrambled groups) who had no cor-
rect trials for one of the novel test viewpoints; their means for that
condition were replaced by the group means.

Figs. 3 and 4 show the RT and accuracy data, respectively. Three
aspects of the data are immediately evident. First, there was a large
effect of viewpoint on both measures for the similar stimuli, but little
or none for the distinctive stimuli. Second, there was very little evi-
dence for an overwhelming benefit of coherent motion over scram-
bled motion; however, coherent motion was generally facilitative
for the Far-Post viewpoint relative to the Far-Pre viewpoint for the
similar objects. Third, for the similar stimuli participants were as fast
and accurate on the novel Interpolated viewpoint as they were on the
Training viewpoints in both motion conditions, but they were slower
and less accurate in their responses to the views shown in all the
other novel viewpoints. In contrast, participants were fast and accu-
rate on all of the novel views of the distinctive objects.

These observations were confirmed with analyses of variance
(ANOVAs) on both RT and accuracy in which motion type was a be-
tween-subjects factor and object type (distinctive; similar) and
viewpoint (Far-Pre, Near-Pre, Interpolated, Near-Post, Far-Post,
and Far-Opposite) were within-subjects factors. Note that all of
the tested views were novel.
Fig. 3. Correct RTs as a function of object type, viewpoint, and motion type. Error
bars in this and all subsequent figures with data are 95% confidence intervals
computed from separate ANOVAs on the two motion type conditions, separately for
training and testing stimuli (Loftus & Masson, 1994).
There were robust main effects of object type for both mea-
sures, F(1, 38) = 64.61, MSE = 489,441.88, g2

p = .63 for RT, and
F(1, 38) = 70.79, MSE = 360.50, g2

p = .65 for accuracy. For RTs, the
distinctive objects were responded to faster than the similar ob-
jects at all of the novel views; for accuracy, the exception was
the Interpolated views, which were highly accurate for both object
types. There were also main effects of viewpoint type for both
measures, F(5, 190) = 24.04, MSE = 34,204.06, g2

p = .39 for RT, and
F(5, 190) = 14.20, MSE = 231.81, g2

p = .27 for accuracy. However,
both main effects were modified by the interaction between object
type and viewpoint, F(5, 190) = 20.79, MSE = 34,720.26, g2

p = .35 for
RT, and F(5, 190) = 14.74, MSE = 198.85, g2

p = .28. We discuss this
interaction further below. No other effects were significant in
either omnibus analysis (all Fs < 1.00). It should be noted that ex-
actly the same results were obtained for both measures when we
conducted ANOVAs that excluded the Far-Opposite viewpoint, for
which performance was particularly poor for the similar stimuli.
We did these ANOVAs to ensure that the Far-Opposite viewpoint
was not driving the interactions. Importantly, in the ANOVAs that
did not use the Far-Opposite viewpoint, the quadratic component
of the interaction between object type and viewpoint was signifi-
cant for both measures, F(1, 38) = 32.04, MSE = 41,625.05,
g2

p = .457 for RT, and F(1, 38) = 25.38, MSE = 171.84, g2
p = .400 for

accuracy. However, the quadratic component of the triple interac-
tion was not significant for either measure, which is evidence for
view combination effects of the same magnitude occurring with
similar stimuli in both motion conditions.

3.1. Effects of view combination

Further examination of the Viewpoint � Object Type interaction
showed that for the similar stimuli there was very clear evidence
that view combination took place in both motion conditions. For
RTs to similar stimuli in the coherent condition, performance to
the Interpolated view (819 ms) was significantly faster than
performance to both the Near-Pre (1027 ms) and Near-Post views
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(1011 ms), t(19) = 2.40, SDdiff = 387 ms and t(19) = 2.15,
SDdiff = 400 ms, respectively, and there was no difference in RT be-
tween the Interpolated and Training viewpoints, t < 1.00. Similarly,
for similar stimuli in the scrambled condition, there was no differ-
ence in RT between the Training and Interpolated views, t < 1.00,
but performance was significantly faster to the Interpolated view
(854 ms) than to both the Near-Pre (1075 ms) and Near-Post view-
points (972 ms) views, t(19) = 3.18, SDdiff = 310.46, and t(19) = 2.26,
SDdiff = 233.07, respectively. The finding that participants were able
to interpolate with similar stimuli when the motion was scrambled
replicates our previous finding (Friedman et al., 2009) and suggests
that the interpolation mechanism, in itself, is insensitive to the dif-
ference between coherent and scrambled motion cues when stim-
uli are structurally similar.

For the distinctive stimuli in the coherent motion condition, re-
sponses to the Interpolated view (601 ms) were slightly slower
than responses to the Training (569), Near-Pre (566), and Near-
Post (571 ms) views; t(19) = 3.62, SDdiff = 39 ms for Training vs.
Interpolated; t(19) = 4.06, SDdiff = 40 ms for Near-Pre vs. Interpo-
lated, and t(19) = 2.62, SDdiff = 51 ms for Near-Post vs. Interpo-
lated, respectively. It is likely that performance for the
distinctive objects is nearly at floor; it is thus not clear what to
make of any RT differences in this condition. No differences
among these conditions were significant in the scrambled motion
condition.

The accuracy data mirrored the pattern observed in RT data for
the effect of view combination with similar stimuli, although some
of the effects only approached significance. There were no differ-
ences in accuracy between the Training and Interpolated view-
points for either the coherent or scrambled condition,
t(19) < 1.00 for both. For similar stimuli in the coherent condition,
participants were more accurate on the Interpolated viewpoint
(97.0%) than on either the Near-Pre (88.5%) or Near-Post view-
points (93.0%), t(19) = 2.60, SDdiff = 14.6% and t(19) = 1.80,
SDdiff = 10.0%, p = .09, respectively. For the scrambled condition,
participants were also more accurate on the Interpolated view-
point (97.0%) than on either the Near-Pre (87.5%) or Near-Post
(89.0%) viewpoints, t(19) = 2.03, SDdiff = 20.8%, p < .06, and
t(19) = 2.37, SDdiff = 15.1%, respectively. None of the effects were
significant for the distinctive stimuli.
Fig. 5. Correct RTs and percent correct as a function of object type, motion type, and whe
in the sequence.
3.2. Effects of motion type

We next examined the differences, if any, between performance
on the viewpoints that preceded or followed the Training view-
points (see Fig. 5). For both RT and accuracy, we conducted ANOVAs
in which Object Type, Near/Far, and Pre vs. Post position were with-
in-subjects factors and motion type was the between-subjects fac-
tor. The main effect of Near-Far was significant, F(1, 38) = 35.86,
MSE = 18,441.67, g2

p = .49 for RT, and F(1, 38) = 31.74, MSE = 88.87,
g2

p = .46 for accuracy, as was the interaction between Near-Far
and Object Type, F(1, 38) = 22.63, MSE = 16,705.40, g2

p = .37 for RT,
and F(1, 38) = 17.63, MSE = 94.46, g2

p = .32 for accuracy. Most impor-
tantly, for RT, but not accuracy, there was a 4-way interaction
among the factors, F(1, 38) = 4.41, MSE = 11823.16, g2

p = 10. As can
be seen in Fig. 5, accuracy on the distinctive objects was at ceiling
for all of the views, which may have mitigated against revealing
the 4-way interaction for this measure.

Further examination of the interaction in the RTs showed that
most of the difference in performance on Pre-Post viewpoints took
place in the coherent motion group when they were responding to
similar stimuli. This was especially evident in the viewpoints that
were furthest away from the training views. In particular, for sim-
ilar stimuli undergoing coherent motion, there was a significant
109 ms facilitation in performance for the Far-Post views com-
pared to the Far-Pre views, t(19) = 2.29, SDdiff = 213 ms. In contrast,
there was only a 16 ms difference for the Near-Post vs. Near-Pre
viewpoints undergoing coherent motion, t(19) < 1.00. The differ-
ences between the Far-Post and Far-Pre (32 ms) and Near-Post
and Near-Pre (103 ms) views of the similar stimuli in the scram-
bled-motion group were not significant. Furthermore, none of the
Pre-Post comparisons were significant for the distinctive stimuli,
regardless of motion type.

For the similar stimuli undergoing coherent motion, none of the
specific Pre-Post tests were significant for accuracy, although the
differences were in the expected direction. The difference in
accuracy between the Far-Pre and Far-Post viewpoints was 9.0%
and between the Near-Pre and Near-Post viewpoints it was 4.5%.
For scrambled motion, the differences in accuracy between Far-
Pre and Far-Post viewpoints were small: 2.0% for the Far viewpoint
and 1.5% for the Near viewpoint.
ther the segments were near or far from the training views, and before or after them
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4. Discussion

The data from the present experiment can be summarized as
follows. First, similar objects that had no part-structure were much
more difficult to recognize and were responded to much more
slowly than objects with a part-structure at all novel viewpoints
except the Interpolated view. Thus, view combination mechanisms
can overcome the advantage part-structure often confers to recog-
nition (e.g., Biederman, 1987), insofar as for our stimuli with no
part-structure, the Interpolated views were responded to as well
as the Trained views. This replicates our previous finding (Fried-
man et al., 2009). Furthermore, the present results suggest that
view combination mechanisms do not necessarily depend on the
total amount of the object seen; in our previous study observers
saw 1/3 of each object during training whereas here they only
saw 1/6 of each object. Importantly, however, the ‘‘gap” between
views was the same across the two studies; we have shown else-
where (and the theory predicts) that view combination mecha-
nisms can only be engaged to combine information from
multiple views if the learned views are sufficiently close (Friedman
et al., 2005).

Second, there were effects of motion per se, insofar as for sim-
ilar stimuli, views that followed the training views were recog-
nized faster than equally distant preceding views; in contrast to
view combination effects, the motion effects occurred only when
the training motion was coherent rather than scrambled. It is
important that the present motion effects were obtained in a
long-term memory paradigm, because as noted earlier, they allow
us to rule out recency as the cause of the facilitation of perfor-
mance to the Far-Post views. Further, a recency effect predicts that
the Near-Post views would be responded to more accurately and/
or quickly than the Interpolated view, but this was not the case.

The effects of motion were approximately the same order of
magnitude in the present experiment as they were previously for
humans (Friedman et al., 2009, Experiment 1a), and there was still
not an overall effect of motion type (coherent vs. scrambled). In the
previous study the difference between the Pre and Post conditions
for similar stimuli was 138 ms. In the present experiment, the dif-
ference between the Far-Pre vs. Far-Post conditions, which were
the identical viewpoints as in the present study, was 109 ms. From
one perspective, the similar size of the motion effect across the two
studies is surprising because the motion swept across two view-
points on each trial in the present study, whereas it swept across
only a single viewpoint on each trial in the previous study. Pigeons
in our previous study showed an effect of coherent motion when
the motion swept across two viewpoints but not when it swept
across a single viewpoint. We therefore expected that the overall
sense of global motion would be enhanced in the present study
with humans relative to that seen in the previous study. However,
it appears that either the enhanced sense of motion failed to affect
the speed with which views that followed the trained views were
processed, or, that the sweeping motion across two segments did
not enhance the global direction of motion for humans as much
as it appeared to have done for pigeons. On the other hand, in
the present experiment, much less of the objects’ overall shapes
were exposed during training (60� vs. 120�). Thus, from this per-
spective, sweeping across the two training viewpoints was effec-
tive in maintaining the same magnitude of Pre-Post effect in RT
as was training with twice as much of the objects’ structure but
with less overall global coherence attributable to the motion.

Third, there were large effects of viewpoint for the similar ob-
jects, with performance generally being a graded function of dis-
tance from the Training viewpoints. The important exception was
stimuli at the Interpolated viewpoint, which were as efficiently
processed as stimuli at the Training viewpoints. Further, for similar
objects, evidence for view combination of about the same magni-
tude was obtained in both the coherent and scrambled motion
conditions. This replicates the previous findings for humans (and
pigeons), but much more strongly. Consistent with previous work
(Stone, 1998, 1999; Wallis & Bülthoff, 2001) we found that an
explanation for view combination based purely on temporal asso-
ciations between images is not sufficient to explain the pattern of
recognition performance in data (but see Liu, 2007; Wang, Obama,
Yamashita et al., 2005, for some counterevidence with humans and
monkeys, respectively). For example, by immediately going from
viewpoint 3 to viewpoint 5, we placed very disparate views in close
temporal proximity. On a purely temporal association account, we
would not expect any benefit for Interpolated views if viewpoints 3
and 5 become associated into a single representation. In other
words, on a temporal association account the tuning functions that
originally represented each of Views 3 and 5 independently would
broaden to become one function that would exclude the informa-
tion in viewpoint 4 (see Fig. 1).

Thus far, the main empirical difference between view combina-
tion and motion effects is that view combination facilitates recog-
nition of views that are within the range of the training views for
static objects and those undergoing either coherent or scrambled
motion. Although we did not explicitly test this hypothesis here,
there are clearly angles between training views that are sufficiently
large that they would mitigate against facilitation by view combi-
nation because the tuning functions for the objects would not over-
lap (c.f., Friedman et al., 2005). In contrast, motion effects like
those observed here, as well as representational momentum, facil-
itate recognition of views outside of the range of the training views
in the direction of the global coherent motion (and not for scram-
bled motion). Thus, it may be that as long as coherent motion is ob-
served, the effective angle(s) for achieving facilitation by motion
may be relatively large (c.f., Kourtzi & Shiffrar, 1999). These are
important empirical differences that imply that the process(es)
underlying each type of effect (facilitation of recognition by view
combination and motion) are different, in both short- and long-
term memory. View combination is usually implemented as a form
of stimulus generalization (e.g., Edelman & Bülthoff, 1992). Some
form of generalization may also underlie motion effects for novel
views that follow the path of coherent rotation. However, even if
generalization underlies both effects, it clearly manifests itself dif-
ferently for view combination and motion-specific effects like rep-
resentational momentum. For example, predicting a ‘‘next” view or
biasing a particular set of views based on a coherently moving ob-
ject may depend upon non-structural information like velocity,
prior knowledge or expectations about the physical world and
the properties of the object (e.g., Reed & Vinson, 1996), and so
on. Elaborating what these differences are between view combina-
tion and motion effects requires future research with both short-
and long-term memory paradigms.
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