
Bayesian combination of two-dimensional location estimates

Alinda Friedman & Elliot A. Ludvig & Eric L. G. Legge &

Quoc C. Vuong

Published online: 6 October 2012
# Psychonomic Society, Inc. 2012

Abstract We extend a Bayesian method for combining
estimates of means and variances from independent cues
in a spatial cue-combination paradigm. In a typical cue-
combination experiment, subjects estimate a value on a
single dimension—for example, depth—on the basis of
two different cues, such as retinal disparity and motion.
The mathematics for this one-dimensional case is well
established. When the variable to be estimated has two
dimensions, such as location (which has both x and y val-
ues), then the one-dimensional method may be inappropriate
due to possible correlations between x and y and the fact that
the dimensions may be inseparable. A cue-combination task
for location involves people or animals estimating xy loca-
tions under two single-cue conditions and in a condition in

which both cues are combined. We present the mathematics
for the two-dimensional case in an analogous manner to the
one-dimensional case and illustrate them using a numeric
example. Our example involves locations on maps, but the
method illustrated is relevant for any task for which the
estimated variable has two or more dimensions.

Keywords Bayesian statistics . Cue combination . Location
estimation . Two-dimensional variables

Mobile organisms need to remember places in their
environment and navigate to and from them, either from
memory or by using other means—for example, mag-
netic fields (Buehlmann, Hansson, & Knaden, 2012),
celestial cues (Legge, Spetch, & Cheng, 2010), land-
marks (Spetch & Kelly, 2006; Wystrach, Schwarz,
Schultheiss, Beugnon, & Cheng, 2011), proximal and
distal cues (Brodbeck, 1994; Spetch & Edwards, 1988),
and so on. A popular hypothesis regarding how organ-
isms combine different sources of information into a
single estimate of a destination (location) is that they
approximate optimal Bayesian inference. An example
would be when a landmark or a proximal cue is com-
bined with a distal cue to determine a destination. This
cue-combination literature has been reviewed elsewhere
(Cheng, Shettleworth, Huttenlocher, & Reiser, 2007)
and will not be further reviewed here. Instead, our
primary goal is to extend Bayesian cue combination,
which typically deals with estimating one-dimensional
(1-D) signals from different cues, to estimating two-
dimensional (2-D) signals from different cues that them-
selves are 2-D signals (e.g., again, location).

In general, Bayesian cue combination allows one to infer
or estimate the likelihood of values of some signal (S), given
noisy measurements of S from different sources of
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information or cues (C) according to Bayes’s rule,

P S Cjð Þ ¼ PðSÞ � P C Sjð Þ
PðCÞ ; ð1Þ

where P(S) and P(C) are the prior likelihoods of the
signal and cue, respectively, and P(C|S) is the likelihood
of the cue given the signal. The theorem thus provides
a means to optimally update existing (prior) estimates,
given new, additional evidence or cues. The most likely
value of S as estimated by combining information from
the different cues according to Bayes’s rule will be the
most reliable estimate of S. In the special case with
uniform priors and independent Gaussians, the Bayesian
method is equivalent to minimum-variance, and optimal
cue combination results from a weighted linear combi-
nation rule in which the weight of each cue is inversely
proportional to the variance of that cue (e.g., Colombo
& Series, 2012; Ernst & Banks, 2002; Landy, Malney,
Johnston, & Young, 1995; Yuille & Bulthoff, 1996).
This rule has successfully modeled human performance
across a variety of tasks when S is one-dimensional.
Furthermore, the assumption that the prior probability
for the different values of S is uniform often holds in
human perception (e.g., Ernst & Banks, 2002; Landy et
al., 1995).

As was noted, Bayesian cue combination has mostly
been applied to properties that vary along a single
dimension; for instance, depth can vary along a line
of sight. The more general case occurs when a property
varies along n dimensions; for instance, location on a
flat surface can vary in x and y directions. Ma, Zhou,
Ross, Foxe, and Parra (2009) derived a Bayesian model
for n-dimensional data, which they applied to recogniz-
ing spoken words. They used Bayesian cue combination
to explain how visual information improves auditory
word recognition accuracy. To validate their Bayesian
formulation, they experimentally varied the reliability of
the auditory and visual cues by manipulating the
signal-to-noise ratio of their stimuli. They then fitted
the Bayesian model to the accuracy data and found a
good fit between the model’s predictions and human
performance.

Here, we use the Bayesian method to analyze 2-D
spatial data, such as location estimates, in which the
dimensions of the variable are inseparable (Garner,
1974). Importantly, we show how the Bayesian method
can be used straightforwardly to combine 2-D spatial
locations estimated from different cues, to compute the
reliabilities of the individual cues, to compute their
predicted mean values under the combined condition,

and to compute the relative weighting of the cues.
Furthermore, this article provides a tutorial on the 2-D
method using Microsoft Excel©. The supplementary
material provided is an Excel© spreadsheet that per-
forms the computations on the data for multiple subjects
or items. In the Appendix, we further provide a MAT-
LAB© script that implements the same computations.
Lastly, we point out in the discussion other situations
for which this method of cue combination is likely to
be useful.

The Bayesian framework specifies that the optimal
manner to estimate the value of a signal is to use a
weighted combination of estimates from independent
sources based on their relative reliability. For example,
a classic 1-D cue-combination problem in vision is how
observers estimate the depth of an object from different
depth cues (e.g., retinal disparity and motion; Landy et
al., 1995). To address this issue, observers are typically
shown conditions in which depth is specified only by
retinal disparity or only by motion cues (single-cue
conditions) or in which depth is specified by both dis-
parity and motion cues (combined-cue condition). Using
the Bayesian method of estimating the weights, the
observers’ depth estimate in the combined-cue condition
can then be compared with the predicted combined
estimate based on their depth estimate from the single
cues. Each cue signals the depth with different levels of
reliability, and the noise around the signals is assumed
to be independent and Gaussian. The visual system
seems to take this differential noise into account
through the relative weighting of the information from
the different cues, thereby minimizing the variance in
the combined estimate (Landy et al., 1995).

Moving from one to two dimensions

The Bayesian method for integrating two 1-D variables
typically also assumes that both cues are independent.
The extent to which the information from the two
independent cues is used in a combined-cue condition
(when they are both present) will depend on their rela-
tive reliability, which is determined by a weighting
formula (either Eqs. 2 and 3 or Eqs. 4 and 5). The
weight of each cue varies between zero and one, and
the two weights sum to one. If one cue is more certain
(reliable; precise) than the second, the more reliable cue
will be given more weight in the combined estimate. In
the case when the two cues are correlated, Oruç,
Maloney, and Landy (2003) showed that a weighted
linear combination rule also yields the optimal solution
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if the correlation between observers’ internal estimates
of the single cues is taken into account. It is worth
noting that two inseparable dimensions within the same
variable are not the same thing as two different cues
that both provide information about the 2-D variable
(e.g., auditory and visual cues to the location of a
signal). The paradigm example is spatial location,
which always has x and y values in two dimensions
and x, y, and z values in three dimensions.

The formulas we present in Eqs. 2–5 illustrate the
case in which Cue1 and Cue2 are independent condi-
tions under which the value of a 1-D variable is esti-
mated. These equations allow us to then combine the
single estimates to predict responses in a combined-cue
condition. If there is a Cue1 condition (e.g., retinal
disparity) and a Cue2 condition (e.g., motion), then
the equations to obtain the weights for predicting the
optimal combination of the cues from these single-cue
conditions, in a condition in which both cues are avail-
able to be combined (CueC), are given in Eqs. 2 and 3
below. In Eqs. 2–7, w indicates the weight, σ2 the
variance for each cue, and r indicates the reliability.
The subscripts refer to the associated single-cue con-
dition (1 or 2).

w1 ¼ σ2
2

σ2
1 þ σ2

2

ð2Þ

w2 ¼ σ2
1

σ2
1 þ σ2

2

ð3Þ

Following previous work (e.g., Landy et al., 1995),
we can express the weights in Eqs. 2 and 3 with respect
to the reliability of the signal in that condition. Reli-
ability (or precision) is defined as the inverse of the
variance of the signal—that is, r ¼ 1

σ2 . We can therefore

rewrite Eqs. 2 and 3 as

w1 ¼
1
σ21

1
σ21
þ 1

σ22

¼ r1
r1 þ r2

ð4Þ

w2 ¼
1
σ22

1
σ21
þ 1

σ22

¼ r2
r1 þ r2

ð5Þ

That is, in Eqs. 2 and 3, the weights are parameterized
with respect to variance, whereas in Eqs. 4 and 5, they are

parameterized with respect to reliability. It can be shown
that both parameterizations lead to the same values. Note
that in Eqs. 2 and 3, the numerator of w1 is the variance of
the cue2 condition, whereas in Eqs. 4 and 5, the numerator
of w1 is the reliability for the cue1 condition.

Once the weights are computed, they are multiplied with
the means of each single cue condition to predict the optimal

value for the mean in the combined cue condition (XC), as in
Eq. 6:

XC ¼ w1X 1 þ w2X 2 ð6Þ

The reliability in the combined-cue condition (rc) is
higher than the reliability of each cue alone and is equal
to the sum of the reliabilities of the other two cues (i.e.,
rc 0 r1 + r2). Because variance and reliability are

inversely related, the predicted variance (σ2
C) around XC

is the inverse of the combined reliabilities and can be
computed using Eq. 7:

σ2
C ¼ 1

rC
¼ σ2

1σ
2
2

σ2
1 þ σ2

2

ð7Þ

This mathematical relationship between reliability and
variance provides the means to extend the Bayesian
approach to the 2-D (or higher dimensional) case.

Because we want to extend the Bayesian analysis to
variables with more than one dimension, such as loca-
tion, we need to represent the mean location as a

vector (whose elements are X and Y ) and the varia-
bility in the data as a matrix (the covariance matrix,
which contains the variability for each dimension sep-
arately and jointly).

Extending Bayesian cue combination to spatial tasks
is important because location estimation is used in many
tasks with both humans (e.g., Friedman & Montello,
2006; Friedman, Montello, & Burte, 2012; Holden,
Curby, Newcombe, & Shipley, 2010; Huttenlocher, Hedges,
& Duncan, 1991) and other animals (cf. Cheng et al.,
2007). An analogous situation where a 1-D versus 2-D
difference in methods is required with location estimates
is when estimation accuracy is determined using corre-
lations between actual and estimated locations. For
example, it is wrong to simply correlate the actual with
the obtained x values and the actual with the obtained y
values and conclude anything. Instead, one must use a
procedure called bidimensional regression, first pro-
posed by Tobler (1964) and later refined and situated
within the regression context by Friedman and Kohler
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(2003). There are parallels between the 1-D and 2-D
cases, of course. For instance, correlating x on y does
not result in the same slope as correlating y on x.
Equally, the bidimensional regression procedure results
in different regression coefficients using the observed
values as the independent variable and the actual values
as the dependent variable or vice versa.

In the case of cue combination with location esti-
mates (i.e., in which subjects need to estimate an x and
y value for each location), a given set of locations is
presented in a Cue1 condition for one group of subjects,
a Cue2 condition for a second group, and a combined-
cue condition (CueC) for a third group (the three con-
ditions can also be presented within subjects). The task
for all three groups is to estimate the same locations.
The issue then becomes: How does one use a Bayesian
approach to (1) find the appropriate weights to predict
the mean values in the combined-cue condition and (2)
find the predicted covariance in the combined-cue con-
dition? We first show the necessary 2-D computations
(Ma et al., 2009) in a way that is analogous to the 1-D
computations (Eqs. 2–6). With the 2-D computations,
we further take into account possible correlations
between subjects’ internal estimates of x and y for a
single location (see Oruç et al., 2003, for the case
where the assumption of independent cues is violated
but the noise is not assumed to be Gaussian).

Because we are using a 2-D variable, in addition to
variances, we also need to use covariances, which meas-
ure the variability of both dimensions within each cue
condition. In particular, we must use covariance matri-
ces to find the predicted weights, variances, and cova-
riances. For example, the covariance matrix for the Cue1
condition is

cov1 ¼ σ2
X1 covXY1

covXY1 σ2
Y1

� �
;

in which the subscripts refer to the x and y dimensions
of the locations being estimated. For convenience, we
abbreviate the covariance matrix for the single condi-
tions Cue1 and Cue2 as cov1 and cov2, respectively, in
the equations below. The covariance matrix for the
combined-cue condition is abbreviated as covC. To
make the analogy to the 1-D case, as reliability is
defined as the inverse of variance (reliability 0 1

σ2 for

1-D), the precision matrix (p) is defined as the inverse
of the covariance matrix (p 0 cov-1) in the 2-D case.
For example, the estimated precision matrix for the

Cue1 condition is given below:

p1 ¼ σ2
X1 covXY1

covXY1 σ2
Y1

� ��1

¼ 1

σ2
X1σ

2
Y1 � cov2XY1

� σ2
Y1 �covXY1

�covXY1 σ2
X1

� �

That is, if the 2 × 2 matrix a ¼ a b
c d

� �
, then a�1 ¼ 1

ad�bc

d �b
�c a

� �
. The MINVERSE function in Microsoft

Excel© performs this computation.
To find the weights necessary to predict X and Y, we

can use Eqs. 8 and 9 or, using the precision matrix,
Eqs. 10 and 11.

w1 ¼ cov2
cov1 þ cov2

¼ cov2 cov1 þ cov2ð Þ�1 ð8Þ

w2 ¼ cov1
cov1 þ cov2

¼ cov1 cov1 þ cov2ð Þ�1 ð9Þ

w1 ¼ p1 þ p2ð Þ�1p1 ð10Þ

w2 ¼ p1 þ p2ð Þ�1p2 ð11Þ

The resulting weights in Eqs. 8–11 are also 2 × 2 matri-
ces. Note that Eqs. 8–11 are analogous to Eqs. 2–5. In
addition, just as the weights in the single dimension case

sum to 1, the weight matrices sum to the identity matrix

1 0
0 1

� �
. It is also important to bear in mind that matrix

division is not defined. Rather, one must multiply by the
inverse of the divisor matrix instead.

Once the weights have been computed, the predicted
means, variances, and covariances in the combined-cue
condition can be found. For example, to find the predicted
means for a given combined-cue condition, we use Eq. 12:

XC

YC

� �
¼ w1

X1

Y1

� �
þ w2

X2

Y2

� �
ð12Þ

Because the weights (w1 and w2) are 2 × 2 matrices
and the mean location is a vector, this step requires
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matrix multiplication. The steps required for the multi-
plication will be outlined in detail in the numeric exam-
ple below.

Finally, to estimate the predicted covariance matrix in
the combined-cue condition on the basis of the single-
cue conditions, we first calculate the precision matrix
for each individual cue condition, using the inverse of
the covariance matrix. Then we simply add like cells,
using matrix addition, and invert the resultant matrix to
get the covariance matrix:

pc ¼ p1 þ p2
covc ¼ p�1

c

Note that the predicted covariance matrix in the
combined-cue condition is the same value as the first term
in Eqs. 10 and 11 [i.e., (p1 + p2)

−1] for the weights. We
illustrate the complete method for finding the estimated
statistics for the combined-cue condition in the numeric
example below.

Numeric example

We will now consider a numeric example based on a
small part of a published data set (Friedman et al.,
2012). Briefly, the experimental situation involved hav-
ing three groups of subjects estimate identical locations
in three conditions.

The single-cue conditions were called dots-only and
names-only. In the dots-only condition, subjects were
presented with a simplified polygon that represented
the Canadian province of Alberta. On each trial, sub-
jects were presented with one dot inside the polygonal
frame. After a 4-s masking interval, a blank polygon
frame appeared, and subjects had to click inside the
polygon where they thought the trial’s dot had been.
The 26 dots used across all trials corresponded to the
locations of 26 Albertan cities. This procedure resem-
bles that used by Huttenlocher et al. (1991) and many
others.

In the names-only condition, after being told that the
polygon represented a map of Alberta, subjects were
given a blank frame on each trial with a city’s name
at the top of the polygon. They were told that their task
was to click on the place within the polygon where they
thought the city was located. Thus, in the dots-only
condition, participants could use only perceptual mem-
ory of the location of the dot, whereas in the names-

only condition, they could use only their semantic
knowledge of the location of the city. The key question

Table 1 Raw estimates and some descriptive statistics for 30 subjects’
estimates of the location of the city of Edmonton in the three conditions
in Montello, Friedman, and Burte, 2012

Dots-Only Names-Only Dots-and-Names

EstX EstY Est X Est Y Est X Est Y

227 380 240 302 220 386

236 396 226 496 244 387

243 408 222 298 221 390

237 418 154 348 236 381

232 383 172 249 247 384

215 396 215 242 202 381

240 378 202 346 246 374

232 417 171 346 229 340

185 402 232 365 232 379

241 402 195 239 221 370

233 405 138 275 224 392

219 377 302 464 233 409

219 373 241 307 240 396

251 379 183 283 220 371

234 409 180 262 232 356

227 390 176 250 226 372

256 372 196 353 242 395

254 392 185 338 226 385

232 395 190 357 234 367

213 378 158 241 229 379

243 384 175 339 224 393

218 371 164 350 218 365

227 399 197 323 235 387

234 415 215 336 229 390

224 390 185 329 241 404

233 394 153 296 219 367

230 380 172 256 248 384

247 372 217 251 270 365

230 387 160 318 236 386

234 368 142 184 225 407

Means 231.53 390.33 191.93 311.43 231.63 381.40

Variances 193.84 213.26 1232.82 4226.05 159.41 226.11

covXY -8.36 1144.41 7.67

cov
193:84 �8:36
�8:36 213:26

� �
1232:82 1144:41
1144:41 4226:05

� �

p ¼ cov�1 ¼ :005168 :000203
:000203 :004697

� �
:001084 �:00029
�:00029 :002316

� �

Combined Precision Matrices :
:006251 �9:1E� 05

�9:1E� 05 :005013

� �

102 Behav Res (2013) 45:98–107



was how subjects estimated the 2-D location of the dot
when provided with both the perceptual dot and the
name label.

To address this question, in the combined dots-and-
names condition, subjects were told that the polygon repre-
sented a map of Alberta. They were also informed that there
would be a city name and a dot on the first map and that the
dot would be in the correct location for the named city. After
the same 4-s mask as in the dots-only condition, a blank
polygon appeared, and subjects clicked in the place they
thought the city/dot belonged. The procedure for this con-
dition was thus identical to that for the dots-only condition.
According to the Bayesian cue-combination method formu-
lated here, subjects make the most reliable (i.e., least varia-
ble) estimate of the dots’ locations by combining
information from both short-term perceptual memory and
long-term semantic memory when both cues were present in
the combined-cue condition.

Table 1 details the statistics required to compute the
Bayesian predictions from the 30 subjects in each group
for 1 city of the 26 in the experiment—Edmonton.
We chose this city to illustrate the methods because
most of the subjects lived there, so that the mean
familiarity ratings (taken after the location estimates
were made, on a scale of 1–9, where 1 meant no
knowledge and 9 meant a great deal of knowledge)
were 8.6, 8.5, and 8.6 for subjects in the dots-only,
names-only, and dots-and-names conditions, respec-
tively. These familiarity ratings are of interest because,
as will be seen, self-rated familiarity did not predict
estimation accuracy. This example is the equivalent of
an item analysis; that is, we predict the results for the
combined-cue condition for one city across subjects
(and could obviously do the same for each individual
city). A similar analysis could be conducted separately
for each subject across cities.

Given the data in Table 1, the covariance matrices for the
dots-only and names-only conditions are

Dots� only covariance matrix ¼ 193:84 �8:36
�8:36 213:26

� �

Names� only covariance matrix ¼ 1232:82 1144:41
1144:41 4226:05

� �

To compute the precision matrices from each of
these, we used the MINVERSE function in Microsoft
Excel©. MINVERSE takes as input a matrix and out-
puts its inverse. MINVERSE is an array function, so

one must (1) first select the output cells (in this case, a
2 × 2 empty set of cells), then (2) put in the MIN-
VERSE formula in any of those cells, and (3) press the
Control–Shift–Enter keys simultaneously to make the
function work as an array function. For example, if
the numbers from one of the covariance matrices above
were in cells B2 to C3, then select the empty cells E2
to F3, put the formula 0 MINVERSE(B2:C3) into one
of those four cells, and then press the Control–Shift–
Enter keys. You should at that point see the same
formula in each cell (with brace brackets around it),
but the values in the spreadsheet will be the correct
values for the precision matrix. By this method, the
precision matrices for the dots-only and names-only
conditions are

Dots� only Precision Matrix ¼ :005168 :000202
:000202 :004697

� �

Names� only Precision Matrix ¼ :001084 �:00029
�:00029 :000316

� �

The predicted precision matrix in the combined-cue con-
dition is achieved by adding like cells:

Dots� and �Names Precision Matrix

¼ :006251 �9:1E� 05
�9:1E� 05 :005013

� �
:

Recall that, in the 1-D case, the inverse of the reli-
ability in the combined-cue condition is the variance in
that condition. Using a similar logic, the inverse of the
predicted precision matrix, again achieved by using the
Excel function MINVERSE, is the predicted covariance
matrix for the combined dots-and-names condition:

160:02 2:90
2:90 199:53

� �
:

The observed covariance matrix (in pixel units) for this
condition was:

159:4126 7:668966
7:668966 226:1103

� �
:

Note that in all of the numeric matrices we have
illustrated, we have used only some of the digits in
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the numbers from the nonrounded matrices in Excel; the
inverted covariance matrices above, for example, have
many more digits than are shown.

Finally, to compute the weights for each single-cue con-
dition, we use Eqs. 10 and 11. For the dots-only condition
(Cue1):

w1 Dotsð Þ ¼ :005168 :000202
:000202 :004697

� �
þ :001084 �:00029

�:00029 :000316

� �� ��1
:005168 :000202
:000202 :004697

� �

¼ :006251 �9:1E� 05
�9:1E� 05 :005013

� ��1
:005168 :000202
:000202 :004697

� �

¼ 160:0155 2:902708
2:902708 199:5326

� �
:005168 :000202
:000202 :004697

� �
¼ :827472 :046034

:055401 :937783

� �

The first term in the first line expresses the addition of the
two precision matrices in the single-cue conditions. The
second line shows the sum. In the third line, this sum is
then inverted using MINVERSE. The final result is obtained
by using the MMULT function in Excel©, which is also an
array function. So, if the first matrix were in columns A and
B and rows 1 and 2, and the second matrix were in columns
C and D and also rows 1 and 2, one would select a 2 × 2

empty matrix of cells—say, E1 to F2—put in the equa-
tion 0 MMULT(A1:B2,C1:D2), and push “control-shift-
enter” to make the array that is the result. Note that in
matrix multiplication, order is important; here, in the
last step, the predicted covariance matrix is first in the
formula, and the precision matrix is second in the for-
mula for each weight. Similarly, the weight matrix for
the names-only condition is:

w2 Namesð Þ ¼ :005168 :000203
:000203 :004697

� �
þ :001084 �:00029

�:00029 :000316

� �� ��1
:001084 �:00029
�:00029 :000316

� �

¼ :006251 �9:1E� 05
�9:1E� 05 :005013

� ��1
:001084 �:00029
�:00029 :000316

� �

¼ 160:0155 2:902708
2:902708 199:5326

� �
:001084 �:00029
�:00029 :000316

� �
¼ :172527 �:046034

�:055401 :062217

� �
:

We are now ready to predict the means for the combined
dots-and-names condition. This calculation again involves the

matrix multiplication between the weights and means for dots-
only and the weights and means for names-only, as in Eq. 12.

¼ w1
X1

Y1

� �
þ w2

X2

Y2

� �

¼ :827472 :046034
:055401 :937783

� �
231:53
390:33

� �
þ :1725278 �:046034

�:055401 :062217

� �
191:93
311:43

� �

¼ 209:556
378:875

� �
þ 18:778

8:743

� �
¼ 228:333

387:618

� �

The last line in the equation above represents the results
of the two matrix multiplications, and the final result is
achieved by simply summing the xs (top row) and ys (bottom
row) from each of the matrices. The sum of the weight
matrices equals 1 on the diagonals and 0 on the off-
diagonals, as it should (this is the equivalent of the weights

in the 1-D case summing to 1). Thus, the predicted X and Y
values in pixel units for the combined-cue condition
(dots-and-names) were 228.3 and 387.6, respectively,
and the obtained values were 231.6 and 381.4.

To get a sense of the relative weights of the two cue
conditions, we used the Excel© function MDTERM, which
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gives the determinant of a matrix. To find the determinant of
the weights for the dots-only condition, we would use the
array formula MDTERM on the array

:827472 :046034
:055401 :937783

� �

to get the result .77344, and for the names-only condition,
we would use the formula on the array

:172527 �:046034
�:055401 :062217

� �

to get the result .008184. It is important to note that these are
simply the relative magnitudes of the matrices, and not the
weights per se. The determinants make it easy to see that the
information from dots-only (short-term perceptual memory)
was given considerably more magnitude than that from
names-only (long-term semantic memory) in the computa-
tion of the combined weights. Thus, we have shown how to
compute the proper Bayesian predictions for 2-D measures.
The end results can be used to determine whether a
Bayesian model is appropriate for the psychological
theory underlying the obtained data.

Extension to 3-D variables

Using the precision matrices to perform the 2-D computa-
tions lends itself easily to a 3-D Bayesian formulation. We
will only give the 3-D covariance matrix here; however,
once one calculates the matrix, the inverse is the 3-D pre-
cision matrix, and the computations can proceed as above.

3 � D Covariance Matrix ¼
σ2
X1 covXY1 covXZ1

covXY1 σ2
Y1 covYZ1

covXZ1 covYZ1 σ2
Z1

2
4

3
5

Discussion

In the present article, we illustrated the method for the
Bayesian combination of cues in the case in which the
single- and combined-cue conditions are cuing specific 2-
D locations. The upscaling of the method from 1-D varia-
bles to 2-D variables was straightforward. In the example,
the predicted weights were higher for the dots-only condi-
tion than for the names-only condition, and indeed, the data
were much less accurate for the names-only condition than
for the dots-only condition (see Friedman et al., 2012). This
strong reliance on perceptual memory cues in this data set is

interesting because subjects were very confident in their
familiarity with Edmonton (and the names-only judgments
presumably were based on information in long-term mem-
ory obtained from a large variety of sources over their
lifetimes).

Bayes’s rule specifies how to optimally update beliefs in
the face of new evidence. As applied to psychology, one
core claim is that people can approximate optimal decisions
given noisy data (Bowers & Davis, 2012). These beliefs can
be priors, but they can also be beliefs that have already been
updated by other evidence. Indeed, in their application of
Bayesian inference to cue combination, Cheng et al. (2007)
“divide cases of Bayesian combination of information con-
veniently into three different varieties . . . (a) Two current
sources of information are combined in estimating a spatial
value. (b) A current source of information is combined with
prior information, typically an average derived from past
experience. This case is closest to Bayes’ original (1763)
formulation. (c) A current source of information is com-
bined with categorical information that may or may not be
derived from past experience” (pp. 625–626). In all three
situations, the same Bayesian formalism underlies the
computation of the optimal combination, and our exten-
sion of the 1-D case to the 2-D case would apply equally
well.

An interesting parallel to the 2-D method we illustrate is
general recognition theory (GRT; Ashby & Townsend,
1986). GRT is a multivariate generalization of signal detec-
tion theory (Green & Swets, 1966; Tanner & Swets, 1954)
and, as such, provides an important precedent to the method
outlined here. According to this theory, a multidimensional
perceptual space is partitioned into decision regions. A
response to a stimulus is determined by deciding which
region the percept elicited by the stimulus falls into—typi-
cally, using a weighted linear summation rule. Like the
Bayesian method illustrated here, GRT accords with much
human data, particularly in categorizing stimuli into discrete
categories (Ashby & Maddox, 1990; Ashby & Perrin, 1988;
Ashby & Townsend, 1986; Fific, Little, & Nosofsky, 2010).
Thus, important future work would extend GRT to multi-
dimensional response variables and to directly compare
GRT with Bayesian inference.

Beyond the particular data we used as an example, the
method described here should be useful for any location
estimation task (e.g., one involving only perceptual varia-
bles, such as two different landmarks, which are then com-
bined, or a landmark and a distal cue, and so on). In
addition, it should be noted that if, instead of Euclidean
locations, one wanted to use polar coordinates (r, θ), then
the mean of these (across subjects or items) can be substi-

tuted in the equations every time X and Yare used. Overall,
the extension of Bayesian cue combination to the important
variable of multidimensional location should be useful in a
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wide range of estimation, categorization, and identification
tasks.
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