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In the current study, we examined how color
knowledge in a domain of expertise influences the
accuracy and speed of object recognition. In
Experiment 1, expert bird-watchers and novice
participants categorized common birds (e.g., robin,
sparrow, cardinal) at the family level of abstraction.
The bird images were shown in their natural
congruent color, nonnatural incongruent color, and
gray scale. The main finding was that color affected
the performance of bird experts and bird novices,
albeit in different ways. Although both experts and
novices relied on color to recognize birds at the family
level, analysis of the response time distribution
revealed that color facilitated expert performance in
the fastest and slowest trials whereas color only
helped the novices in the slower trials. In Experiment
2, expert bird-watchers were asked to categorize
congruent color, incongruent color, and gray scale
images of birds at the more subordinate, species level
(e.g., Nashville warbler, Wilson’s warbler). The
performance of experts was better with congruent
color images than with incongruent color and gray
scale images. As in Experiment 1, analysis of the
response time distribution showed that the color
effect was present in the fastest trials and was
sustained through the slowest trials. Collectively, the
findings show that experts have ready access to color
knowledge that facilitates their fast and accurate
identification at the family and species level of
recognition.

Introduction

Human object recognition is the end product of a
set of visual processes that first organize the visual
input into an intact percept before interpreting its
meaning. Early specialized neural circuitry is devoted
to extract and separate visual primitives, such as
motion, depth, luminance, and color (Hubel &
Wiesel, 1959, 1977; M. S. Livingstone & Hubel, 1987;
M. Livingstone & Hubel, 1988; Schiller, Finlay, &
Volman, 1976). However, the extent to which these
processes contribute to the later stages of object
recognition in which the input percept is matched
with an object memory is still up for debate.
Although traditional theories of object recognition
emphasize the importance of shape and de-emphasize
the role of color as a useful cue in this matching
process (e.g., Biederman & Ju, 1988), more recent
evidence suggests that color can be a useful cue under
certain conditions (see Bramão, Reis, Petersson, &
Faı́sca, 2011, for a review). However, the extent to
which the effect of color on object recognition is a
product of experience with a specific object domain
has not yet been studied.

Extensive experience with an object domain is
associated with a shift in recognition strategy by which
color information potentially becomes accentuated
(Gauthier & Tarr, 1997; Johnson & Mervis, 1997; J.
W. Tanaka & Taylor, 1991). The point at which an
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object percept initially indexes an object memory (i.e.,
the entry point of recognition) is typically at the basic
category level (e.g., dog, bird, or car) (Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976). This is the
level at which the structural properties (i.e., global
shape) of an object category minimizes the differences
of its members (e.g., all dogs) while maximizing
differences across object categories (e.g., dogs vs. birds
vs. cars). Thus, the diagnostic shape properties of
categories at the basic level drive the entry point of
recognition. However, individuals with an expertise at
visually discriminating objects of a certain domain
(i.e., object experts) show a downward shift of
recognition from the basic level to the more specific,
subordinate category level (e.g., Ford Focus, Labra-
dor retriever, or sparrow) (J. W. Tanaka & Taylor,
1991). At this level, the shapes of different object
categories (e.g., sparrows, warblers, finches) overlap
to a larger degree and are therefore less optimized at
indexing a certain category. Provided that shape
information is less diagnostic for exemplars of a
category, it has been speculated that subordinate
recognition may rely to a larger degree on other cues,
such as color information (Jolicoeur, Gluck, and
Kosslyn, 1984). For example, bird-watchers—whose
objective is to make quick and accurate identifications
of visually homogenous (i.e., subtle differences in
global and internal shapes) objects at a species-specific
level (e.g., Nashville warbler, American tree spar-
row)—are reported to be more likely to list surface
information (e.g., color) as a diagnostic cue for
recognition, relative to bird novices (J. W. Tanaka &
Taylor, 1991). Thus, the process of obtaining object
expertise (i.e., forcing a downward shift of recognition
from the basic to the subordinate level) may act as a
catalyst for coding color-rich expert object represen-
tations.

In this paper, we examine the role that color
information has in object recognition and whether it
can be modulated by experience. We chose bird-
watching as a domain of investigation for several
reasons. First, bird-watching requires quick and
accurate recognition of visually homogenous objects
(in terms of their global shape) at subordinate species
levels (e.g., Nashville warbler) at which surface
details (e.g., color) might play a critical role in
helping to make within-category identifications.
Second, birds carry diagnostic color information that
can be used to aid recognition. Third, experienced
bird-watchers readily report color information in
feature listing tasks (J. W. Tanaka & Taylor, 1991).
Based on these qualities, experienced bird-watchers
form a good population for examining the role of
experience in modulating color effects on object
recognition.

The role of color in object recognition

A distinction is often made between early and late
stages of visual processes. For our purposes, the early
processes are those associated with the production of
an intact percept through edge detection, texture
segmentation, and figure–ground segregation (i.e.,
grouping elements of a component object together
while separating those from elements belonging to
other component objects or to the background) (Marr,
1982). These early processes can be facilitated by color
information (e.g., Cavanagh, 1987; Gegenfurtner &
Rieger, 2000). For instance, Gegenfurtner and Rieger
(2000) showed that participants were better at encoding
rapidly presented colored images of natural scenes in
comparison to gray scale images. The authors sug-
gested that color information provides an additional
perceptual cue upon which the form and structure of
the scene can be defined. Similarly, color information
could potentially help observers decompose objects
into parts. Unlike the later stages of recognition,
processes in the early stages of visual recognition
should not be affected by the extent to which color
appropriately matches the real-world object because
the percept has not yet been matched with representa-
tions in memory. Thus, early visual processes should
benefit from congruent and incongruent color given
that these processes occur at stages before later
representations of object color knowledge has been
accessed.

In contrast to early processes, later processes involve
the recognition of the object by matching the percept
with representations stored in long-term memory.
Whether or not color information contributes to this
matching process has been controversial. On the one
hand, edge-based theories of object recognition pro-
pose that object representations are stored in memory
by simple shape and edge information and can
therefore not be indexed by surface information. One
example is Biederman’s (1987) recognition-by-compo-
nents model, which postulates that objects are repre-
sented by simple, geometrical shapes (e.g., cylinders,
bricks, wedges, cones, circles, rectangles) named geons.
The initial findings indicated that color effects on object
recognition were only observed in tasks in which name
retrieval was necessary (Biederman & Ju, 1988;
Davidoff & Ostergaard, 1988; Ostergaard & Davidoff,
1985). Based on this evidence, Biederman and Ju (1988)
theorized that color information did not facilitate the
initial point of recognition but had an effect at a later,
postrecognition stage related to verbal knowledge and
name retrieval.

In contrast to edge-based theories, shape-plus-
surface theories propose that color information can
facilitate the initial recognition of objects (Bramão,
Faı́sca, Forkstam, Reis, & Petersson, 2010; Joseph,
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1997; Joseph & Proffitt, 1996; Lewis, Pearson, & Khuu,
2013; Nagai & Yokosawa, 2003; Naor-Raz, Tarr &
Kersten, 2003; Price & Humphreys, 1989; Rossion &
Pourtois, 2004; J. W. Tanaka & Presnell, 1999; J.
Tanaka, Weiskopf, & Williams, 2001). J. W. Tanaka
and Presnell (1999) reported that color could indeed
facilitate the recognition of some objects. Similar to
Biederman and Ju’s (1988) work, they classified objects
as either not associated (low-color diagnosticity), or
associated with a specific color (high-color diagnostic-
ity). However, unlike Biederman and Ju, J. W. Tanaka
and Presnell used a more controlled approach to
determine objects’ color diagnosticity (i.e., used nor-
mative data as opposed to a panel of three judges),
which led them to categorize some of Biederman and
Ju’s high-color diagnostic objects (e.g., fork) as low in
color diagnosticity. J. W. Tanaka and Presnell dem-
onstrated that participants were faster to identify
congruently colored versions of high-color diagnostic
objects than achromatic versions and incongruent color
versions. In contrast, participants were no faster to
identify color versions of low-color diagnostic objects
than achromatic and incongruent color versions (see
Nagai & Yokosawa, 2003, for a replication). System-
atically degrading shape information by image blurring
impaired the recognition of high-color diagnostic
objects less than low-color diagnostic objects, showing
that both shape and color cues can aid the recognition
of color-diagnostic objects. Thus, although color plays
a role in low-level and high-level vision, only the latter
is sensitive to color congruency (i.e., correct color of the
object).

In the real world, the color diagnosticity is correlated
with category membership. Whereas color is frequently
diagnostic for objects from natural categories (e.g.,
fruits, vegetables), it is less so for human-made objects
(e.g., cars, furniture) (Price & Humphreys, 1989;
Wurm, Legge, Isenberg, & Luebker, 1993). However,
Nagai and Yokosawa (2003) found that, regardless of
object category (natural vs. human made), participants
showed a color effect for high-color diagnostic objects
but not for low-color diagnostic objects. The impor-
tance of color diagnosticity is supported by a meta-
analysis examining the influence of various moderator
variables (e.g., color diagnosticity, experimental task,
object category) on color effects in object recognition
(Bramão et al., 2011). Thus, color diagnosticity appears
to be an important moderator for the role of color in
object recognition.

In these experiments, we will test the interaction
between color diagnosticity and expertise. We were
interested in whether color knowledge as a result of
extensive perceptual experience influences the recogni-
tion of objects in the domain of expertise. To test this
question, bird experts and novices were asked to
recognize familiar birds shown in their congruent color,

an incongruent color, or gray scale at either the
subordinate family level (e.g., hummingbird, wood-
pecker, sparrow; Experiment 1) or at the species level
(e.g., Tennessee warbler, Wilson’s warbler; Experiment
2). We hypothesized that, as a result of extensive
experience with discriminating species of birds, the
experts will be more affected by color congruency than
novices. Moreover, if access to color information is
automatic, the experts should demonstrate a color
advantage at even their fastest response times. Alter-
natively, if color only plays a low-level role in
segmenting the internal details of the object, we predict
that both experts and novices will show an advantage
for congruently and incongruently colored birds
relative to gray scale versions.

Experiment 1

In Experiment 1, the effects of color on subordinate
family-level categorization of birds (e.g., robin, spar-
row, cardinal) were assessed with bird experts and bird
novices. The two groups were tested in a category
verification task in which the task was to make YES/
NO judgments about the correspondence between a
category label and a subsequently presented object
image. For example, if the label ‘‘Cardinal’’ preceded
the image of a cardinal, the correct answer was YES
(i.e., the label and the image corresponded). In
contrast, if the label ‘‘Robin’’ preceded the image of a
cardinal, the correct answer was NO (i.e., the label and
the image did not correspond).

We expected that bird experts would be faster and
more accurate when categorizing the birds relative to
the novices. Moreover, as a result of extensive
experience and color knowledge of birds, we predicted
that the bird experts would recognize congruently
colored birds faster than gray scale and incongruently
colored birds.

Methods

Participants

Fifteen expert participants, ranging from 23 to 62
years of age (five female, M¼ 38.13, SD¼ 14.78), were
selected based on nominations from their bird-watch-
ing peers. Fifteen participants were selected to serve as
the novice control participants who were matched for
age, 25–66 years of age (six female, M ¼ 37.27, SD¼
14.76), and education with the expert participants. The
novice participants had no prior experience in bird-
watching. The data from one additional expert
participant was lost due to technical issues. Moreover,
three additional novice participants were dropped from
the study due to their insufficient knowledge of
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common bird species. Participants received monetary
compensation for their participation.

To assess the level of bird expertise in our
participants, we used the Blackstone Expertise Test (a
bird expertise test), a brief sequential matching task
with images of birds. A local bird-watcher helped select
birds common to the region that ranged from easy to
more difficult to recognize. The test consisted of 48
trials. The experts obtained a higher d’ score (M¼ 1.96)
relative to the novices (M¼0.71, t¼6.84, p , 0.001) on
this test.

Stimuli

Three exemplars from each of eight common bird
(total of 24 images) species (cardinal, oriole, hum-
mingbird, robin, sparrow, swallow, woodpecker, wren)
were collected in part from the Internet and from an
existing bird data set (Wahlheim, Teune, & Jacoby,
2011). The birds selected were among the 20 most
frequently mentioned birds in a category norms study
by Battig and Montague (1969).

Using customized Matlab code, the images were
transformed to create an incongruent-color condition
and a gray scale condition, using the L*a*b color space.
This color space has been used in previous studies
investigating color effects on scene recognition (Oliva &
Schyns, 2000). The L*a*b color space separates the
luminance on its own axis (L*) and chroma on the two
remaining axes (a*b*). The a* axis extends from red to
green, and the b* dimension extends from blue to
yellow. Thus, color can be transformed while leaving
luminance values relatively intact. Moreover, this color
space reflects the structure of the color and luminance
pathways at the retinogeniculate stage. The color-
incongruent condition was created by either flipping the
color axis (e.g., red to green or blue to yellow or vice
versa), by swapping the two color axes (e.g., blue to

red), or by both swapping and flipping the color axes.
The decision of which transformation to use depended
on which transformation created the subjectively best
incongruent condition. Figure 1 illustrates the stimuli
and the transformations used in this experiment.

The color transformation chosen for a specific bird
(e.g., cardinal) would be the same for each of the
exemplars of that bird (e.g., cardinal 01, cardinal 02,
cardinal 03). This was done to keep the color statistics
of the incongruent condition the same as that of the
congruent condition (e.g., the cardinal would be
presented an equal amount of times in red—the
congruent condition—and in, e.g., green—the incon-
gruent condition). However, the type of transformation
(e.g., swap vs. inversion) varied across the different bird
families (e.g., robin vs. cardinal). The benefit of varying
the kind of color transformations (e.g., flip vs. swap) is
to prevent the participants from learning the mapping
of the original color and its color transformation.
Images were cropped and scaled to fit within a frame of
250 · 250 pixels and pasted on a gray background
using Adobe Photoshop CS4. Images subtended a
visual angle of approximately 6.818 vertically and 6.578
horizontally.

Procedure

Participants were tested in a category verification
task. At the beginning of the trial, a ready prompt (i.e.,
‘‘Get Ready’’) was displayed for 1.0 s before it was
replaced by a category label (e.g., ‘‘Robin’’). After 2.5 s,
the category label was replaced by an image of a bird
that remained on the screen until the participant made
a YES/NO judgment. If the label and the image
corresponded (e.g., the label ‘‘Robin’’ was followed by
an image of a robin), the participant was instructed to
press the button on a keyboard labeled YES (‘‘m’’ on
the keyboard). If the label and the image did not

Figure 1. Examples of the stimuli used in Experiment 1. Top row shows the congruently colored birds. Middle row shows the gray scale

versions. Bottom row shows the incongruent versions.
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correspond (e.g., the label ‘‘Robin’’ was followed by an
image of a cardinal), the participant was instructed to
press the button labeled NO (‘‘c’’ on the keyboard).
Before the task started, the participants were told
which birds they would see in the experiment and
instructed to respond as quickly and as accurately as
possible. Crucially, they were told that the birds would
be presented in either congruent color, incongruent
color, or in gray scale. Thus, they were told to disregard
color and solve the task by using other kinds of
information (e.g., external and internal shape infor-
mation).

The foils (e.g., the label ‘‘Robin’’ followed by the
image of an oriole) were based on the names of the bird
species in the experiment. Thus, the only labels that
could appear in the experiment were the following:
‘‘Cardinal,’’ ‘‘Oriole,’’ ‘‘Wren,’’ ‘‘Robin,’’ ‘‘Humming-
bird,’’ ‘‘Woodpecker,’’ ‘‘Swallow,’’ and ‘‘Sparrow.’’ In a
given block, every bird was used as a foil exactly three
times, and each foil was used approximately twice for
each bird (e.g., ‘‘Robin’’ was paired with the image of a
sparrow twice throughout the experiment). Each bird
was used as a foil and a correct label an equal amount
of times.

Each bird exemplar (e.g., Cardinal 01) was displayed
once in a matching trial and once in a nonmatching
trial in each of the three color conditions (congruent,
incongruent, gray scale). Thus, each bird exemplar was
presented three times in YES trials and three times in
NO trials. Three blocks were created to prevent the
same bird exemplar from being presented in different
color conditions close in time. Each block consisted of
48 trials (eight bird families, three exemplars, two types
of trial) for a total of 144 trials. The order of the blocks
was counterbalanced across participants.

Results

Accuracy

Trials with response time three standard deviations
above the overall mean were excluded from any of the
following analysis. In addition, we excluded participant
data for any bird family that was miscategorized on
50% (or more) in the congruent color condition. In
total, six bird families were excluded across five novice
participants (two wren, two oriole, one sparrow, one

swallow) that amounted to 5% of the total trials for the
novices.

The accuracy data for experts and novices were
analyzed in a mixed-design analysis of variance (AN-
OVA) using color (congruent, gray scale, incongruent)
and trial type (YES, NO) as within-subjects factors and
group (novices, experts) as a between-subjects factor.
The significant main effect of trial type, F(1, 28)¼ 13.57,
p¼ 0.001, partial eta2¼ 0.33, demonstrated that NO
trials (M¼ 96%, SE¼ 0.6%) were more accurate than
YES trials (M¼ 92%, SE¼ 0.9%). The significant main
effect of color, F(2, 56)¼ 8.18, p¼ 0.001, partial eta2¼
0.23, demonstrated that the color manipulations had a
differential influence on the accuracy rates. The signif-
icant main effect of group, F(1, 28)¼ 97.09, p , 0.001,
partial eta2¼ 0.78, demonstrated that the experts were
more accurate than the novices.

Color interacted with group, F(2, 28)¼ 4.39, p¼
0.017, partial eta2¼ 0.14, indicating that the color
manipulations had a differential impact on expert and
novice performance. Trial type interacted with group,
F(1, 28)¼ 13.12, p¼ 0.001, partial eta2¼ 0.32, showing
that while the experts were equally accurate in the YES
trials (M¼ 99%, SE¼ 1%) and the NO trials (M¼ 99%,
SE¼ 0.8%, p¼ 0.964), the novices were more accurate
in the NO trials (M¼ 93%, SE¼ 0.8%) than in the YES
trials (M ¼ 85%, SE¼ 1%, p , 0.001). However, the
two-way interaction between trial type and color was
not significant, F(2, 56)¼ 0.28, p¼ 0.754. Similarly, the
three-way interaction between trial type, color, and
group was not significant, F(2, 56) ¼ 1.40, p ¼ 0.255.
Thus, the color manipulations did not differentially
influence YES and NO trials.

To analyze the group by color interaction, we carried
out separate ANOVAs for the novice and expert
groups with color (congruent, gray scale, incongruent)
as a within-subjects factor. For the novices, the main
effect of color, F(2, 28)¼ 6.82, p¼ 0.004, partial eta2¼
0.33, demonstrated that color influenced the recogni-
tion of the birds. The novices were more accurate at
categorizing the birds shown in congruent color (M ¼
92%, SE¼ 1%) relative to birds shown in gray scale (M
¼ 86%, SE¼1%, p¼0.003) and incongruent color (M¼
88%, SE ¼ 2%, p ¼ 0.031) (Table 1). For the bird
experts, the main effects of color, F(2, 28) ¼ 1.54, p ¼
0.231, was not significant (congruent: M ¼ 99%, SE ¼

Experts Novices

Condition Percentage correct Response time (ms) Percentage correct Response time (ms)

Congruent 99.6 (0.2) 819 (76) 91.7 (1.3) 1060 (61)

Gray scale 98.7 (0.5) 878 (83) 86.2 (1.3) 1051 (52)

Incongruent 99.0 (0.4) 858 (79) 88.0 (1.5) 1092 (65)

Table 1. Response time and accuracy in Experiment 1 for each group (expert, novice) and color condition (congruent, gray scale,
incongruent). Notes: Values within brackets represent standard error.
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0.2%; gray scale: M¼ 99%, SE¼ 0.5%; incongruent: M
¼ 99%, SE¼ 0.4%) (Table 1).

Response time

The response time data for the correct trials for
experts and novices were analyzed in a mixed-design
ANOVA using color (congruent, gray scale, incongru-
ent) and trial type (YES, NO) as within-subjects factors
and group (novices, experts) as a between-subjects
factor. The significant main effect of color, F(2, 56) ¼
3.85, p ¼ 0.027, partial eta2¼ 0.12, demonstrated that
the color manipulations had a differential influence on
the response time. The significant main effect of group,
F(1, 28)¼ 4.81, p¼ 0.037, partial eta2¼ 0.15, indicated
that the experts were faster than the novices. The main
effect of trial type was not significant, F(1, 28)¼ 0.30, p
¼ 0.591.

Color interacted with group, F(2, 28)¼ 3.81, p¼
0.028, partial eta2¼ 0.12, indicating that the color
manipulations had a differential impact on expert and
novice performance. Trial type did not interact with
color, F(2, 56)¼ 1.07, p¼ 0.351, or with group, F(1, 28)
¼ 3.10, p ¼ 0.089. Similarly, the three-way interaction
between trial type, color, and group was not significant,
F(2, 56) ¼ 0.35, p ¼ 0.704. Thus, the color manipula-
tions did not differentially influence YES and NO
trials.

To analyze the group by color interaction, we carried
out separate ANOVAs for the novice and expert
groups with color (congruent, gray scale, incongruent)
as a within-subjects factor. For the novices, the main
effect of color, F(2, 28) ¼ 1.58, p ¼ 0.224, was not
significant (congruent: M¼ 1060 ms, SE¼ 61 ms; gray
scale:M¼1051 ms, SE¼52 ms; incongruent:M¼1092

ms, SE¼ 65 ms) (Table 1). In contrast, for the bird
experts, the main effect of color was significant, F(2, 28)
¼ 17.59, p , 0.001, partial eta2¼ 0.56, demonstrating
that color influenced the recognition of the birds. The
experts were faster at categorizing the birds shown in
congruent color (M ¼ 819 ms, SE¼ 76 ms) relative to
birds shown in gray scale (M¼878 ms, SE¼83 ms, p ,
0.001) and incongruent color (M¼ 858 ms, SE¼ 79 ms,
p¼ 0.001) (Table 1).

Inverse efficiency score

Inverse efficiency scores (IESs) were analyzed using
a mixed-design ANOVA. The IES is computed by
dividing correct response time by proportion correct
within each condition for each participant; a lower
score means better performance. This measure is
commonly used in situations of speed–accuracy trade-
off or when some participants show an effect in
accuracy and other participants show the effect in
response time (Akhtar & Enns, 1989; Christie &
Klein, 1995; Goffaux, Hault, Michel, Vuong, &
Rossion, 2005; Jacques & Rossion, 2007; Kennett,
Eimer, Spence, & Driver, 2001; Kuefner, Cassia,
Vescovo, & Picozzi, 2010; Townsend & Ashby, 1983).

Collapsing over trial type, the IESs for both groups
were analyzed in a mixed-design ANOVA using color
(congruent, gray scale, incongruent) as a within-
subjects factor and group (novices, experts) as a
between-subjects factor. The main effect of group was
significant, F(1, 28) ¼ 10.85, p ¼ 0.003, partial eta2 ¼
0.28. The main effect for color was also significant,
F(2, 56) ¼ 12.92, p , 0.001, partial eta2 ¼ 0.32.
However, color did not interact with group, F(2, 28)¼
1.48, p¼ 0.236, showing that color manipulations had
an equal influence on expert and novice performance
(Figure 2).

Response time distribution analysis

To examine the distribution of IESs as a function of
response time, the trials of each participant (collapsed
across trial type) were ranked from the fastest to the
slowest, irrespective of accuracy (i.e., both correct and
incorrect trials), within each color condition before
being grouped into four bins containing the fastest 25%
of the responses (i.e., quartile bin 1), the next 25% of
responses (i.e., quartile bin 2), and so on. Within each
bin, average correct response time as well as the
proportion correct for each condition for each partic-
ipant was calculated. IES for each participant was
computed by dividing the average correct response time
by the proportion correct. For example, the IES for the
congruent condition in the 25% fastest trials was based
on the correct response time and proportion correct
associated with the congruent condition in the 25%

Figure 2. Experiment 1: IESs for each group (expert, novice) as a

function of color condition (congruent, gray scale, incongruent).

Error bars represent standard error. * , 0.05; ** , 0.01; *** ,

0.001.
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fastest trials. Thus, this approach allowed us to
independently analyze the impact of color on perfor-
mance in trials in which response time was fast (e.g.,
25% fastest trials) and slow (e.g., 25% slowest trials).
This procedure was done separately for the experts and
the novices.

The data were first analyzed in a mixed-design
ANOVA using color (congruent, gray scale, incongru-
ent) and bin (1, 2, 3, 4) as within-subjects factors and
group (novices, experts) as a between-subjects factor.
The main effects of bin, F(3, 84)¼ 71.08, p , 0.001,
partial eta2¼ 0.72; color, F(2, 56)¼ 15.32, p , 0.001,
partial eta2¼ 0.34; and group, F(1, 28) ¼ 13.74, p¼
0.001, partial eta2¼ 0.33, were significant. The two-way
interactions between bin and color, F(6, 168)¼3.34, p¼
0.004, partial eta2¼ 0.11, and between bin and group,
F(3, 28) ¼ 20.57, p , 0.001, partial eta2¼ 0.42, were
significant. Crucially, the three-way interaction be-
tween bin, color, and group was significant, F(6, 28) ¼
2.92, p ¼ 0.01, partial eta2 ¼ 0.1.

Next, the groups were independently analyzed in a
repeated-measures ANOVA using color (congruent,
gray scale, incongruent) and bin (1, 2, 3, 4) as within-
subjects factors. For the novices, the main effects of
color, F(2, 28)¼ 8.80, p¼ 0.001, partial eta2¼ 0.39, and
bin, F(3, 42)¼44.55, p , 0.001, partial eta2¼0.76, were
significant. The two-way interaction between color and
bin, F(6, 84)¼ 3.20, p¼ 0.007, partial eta2 ¼ 0.19, was
significant. In bin 3, congruently colored images (M ¼
1207 ms, SE¼ 67 ms) were recognized better than gray
scale images (M¼ 1320 ms, SE¼ 82 ms, p¼ 0.03) and
incongruently colored images (M¼ 1416 ms, SE¼ 120
ms, p¼ 0.007). In bin 4, although the comparison
between congruently colored images (M¼ 2110 ms, SE
¼ 194 ms) and gray scale images (M ¼ 2606 ms, SE¼
323 ms) were significant (p ¼ 0.028), the comparison
between congruently colored images and incongruently

colored images (M ¼ 2372 ms, SE¼ 284 ms) were not
significant (p¼ 0.082).

For the bird experts, the main effects of color, F(2,
28)¼ 19.10, p , 0.001, partial eta2¼ 0.58, and bin, F(3,
42)¼ 66.17, p , 0.001, partial eta2 ¼ 0.83, were
significant. The experts were better at categorizing the
birds shown in congruent color (M¼ 822 ms, SE¼ 77
ms) relative to birds shown in gray scale (M¼ 889 ms,
SE¼ 84 ms, p , 0.001) and incongruent color (M¼ 866
ms, SE¼ 79 ms, p¼ 0.001) (Figure 2). The interaction
between color and bin was not significant, F(6, 84) ¼
0.54, p ¼ 0.777, suggesting that color affected catego-
rization performance in all bins (i.e., fast and slow
trials). This finding contrasts with the novices, for
whom color affected performance predominantly for
slow trials (Figure 3).

To summarize, the main finding of Experiment 1 was
that both bird experts and bird novices benefitted from
congruently colored birds but not incongruently
colored birds. These results implicate the use of color
for purposes of high-level object recognition but not for
low-level feature segmentation. Although both novices
and experts benefitted from congruently colored birds,
its presence affected the performance in different ways.
Based on the IES distribution analysis, the novices
applied their knowledge of color primarily in slower
trials as evidenced by the advantage for congruent
color relative to gray scale (i.e., bins 3 and 4) and
incongruent conditions (i.e., bin 3). In contrast, experts
demonstrated an advantage for congruent color in the
fastest quartile of trials, and the color advantage was
maintained in the second, third, and fourth quartiles.
Thus, whereas the experts apply their color knowledge
quickly and automatically as evidenced in the first
quartile of responses, novices apply color knowledge
more slowly and deliberately as shown in the later
quartiles.

Figure 3. Experiment 1: Distribution of IESs for the experts and novices. Bin 1 contains the 25% fastest responses of each participant.

Bin 2 contains the next 25% fastest responses and so on. Error bars represent standard error. * , 0.05; ** , 0.01; *** , 0.001.
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Experiment 2

In Experiment 1, bird experts and novices were asked
to categorize common birds at the subordinate,
taxonomic family level (e.g., cardinal) of the bird.
However, the true measure of bird expertise is
recognition of birds at the more specific species level of
categorization. Moreover, birds at the species level
share, to a larger degree, object shape relative to family
level birds, potentially increasing the role that internal
details (e.g., color) might play in recognition. In
Experiment 2, the experts were tested for color effects
at the specific species level of American tree sparrow,
Nashville warbler, and house finch. Similar to Exper-
iment 1, the participants were tested in a category
verification task in which they were required to make
YES/NO judgments about the correspondence between
a category label and a subsequently presented object
image.

Similar to the predictions in Experiment 1, if the
elicited object representation contains color informa-
tion, a bird with congruent color should be a better
match with the representation than a bird with
incongruent colors or gray scale. In contrast, images
presented in gray scale or with congruent or incon-
gruent colors should not affect performance if the
representation does not contain color information.
Moreover, if the color removal disrupts segregation of
internal part features, gray scale objects should suffer
more relative to congruent and incongruent colored
objects. Similar to Experiment 1, we expected that the
experts’ recognition would be impaired with birds
presented in gray scale and incongruent colors relative
to congruent colors. We once again applied a response
time distribution analysis to investigate whether the
knowledge of color information is automatically

applied in the experts’ recognition of birds at the
species level.

Methods

Participants

Fifteen expert bird-watchers, 23–62 years of age (M
¼ 38.33, SD ¼ 14.94), took part in Experiment 2. The
participants received monetary compensation for their
participation. With the exception of one bird expert,
the experts who participated in Experiment 1 partici-
pated in Experiment 2. Fourteen trials for one expert
participant were lost due to technical issues (0.29% of
the total amount of trials).

Stimuli

The stimuli were selected from the sparrow (e.g.,
chipping sparrow, field sparrow, song sparrow),
warbler (e.g., Wilson’s warbler, Canada warbler,
Nashville warbler), and finch (e.g., house finch, pine
siskin, Cassin’s finch) bird families. Six species from
each family were selected with three exemplars of each
species. Thus, a total of 54 bird images were used in
Experiment 2 (three families · six species · three
exemplars). The stimuli were collected from the
Wahlheim et al. (2011) bird data set and supplemented
by images from the Internet that were independently
verified by a bird expert.

Following the procedures used in Experiment 1,
the bird images were transformed to create color-
incongruent and gray scale conditions in addition to
the color-congruent condition (Figure 4). Images
were cropped and scaled to fit within a frame of 250
· 250 pixels and pasted on a gray background using
Adobe Photoshop CS4. Images subtended a visual

Figure 4. Examples of the stimuli used in Experiment 2. Top row shows the congruently colored birds. Middle row shows the gray scale

versions. Bottom row shows the incongruent versions.
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angle of approximately 6.818 vertically and 6.578

horizontally.

Procedure

The experimental procedure was identical to Exper-
iment 1. The six species of birds from the sparrow,
warbler, and finch families were tested in congruent
color, incongruent color, and gray scale. In Experiment
2, each experimental trial was repeated three times for a
total of 324 experimental trials (three families · six
species · three exemplars · two types of trial · three
repetitions). The trials were divided into three blocks of
108 trials, and participants were provided with a rest
break between blocks. For YES trials, the species label
(e.g., ‘‘Nashville Warbler,’’ ‘‘Wilson’s Warbler’’)
matched the subsequently presented picture. For the
NO trials in which the species label did not match the
picture, the foil picture was selected from the same
family as the species label (e.g., the label ‘‘Wilson’s
Warbler’’ was followed by a picture of a Nashville
warbler).

Results

Accuracy

Trials with response time three standard deviations
(SD) above the overall mean were excluded from all
of the following analysis. No trials were deleted due
to low accuracy with a given bird family (i.e., less
than 50% accuracy). The accuracy data were ana-
lyzed in a repeated-measures ANOVA using color
(congruent, gray scale, incongruent) and trial type
(YES, NO) as within-subjects factors. The significant
main effect of trial type, F(1, 14) ¼ 5.47, p ¼ 0.035,
partial eta2 ¼ 0.28, indicated that NO trials (M ¼
95%, SE ¼ 1%) were more accurate than YES trials
(M ¼ 92%, SE ¼ 2%). The main effect of color
(congruent: M¼ 95%, SE¼ 1%; gray scale: M¼ 93%,
SE ¼ 1%; incongruent: M ¼ 93%, SE ¼ 2%) was not
significant, F(2, 28) ¼ 2.78, p ¼ 0.079 (Table 2).
Similarly, color did not interact with trial type, F(2,
28) ¼ 2.56, p ¼ 0.096.

Response time

The response time data for the correct trials were
analyzed in a repeated-measures ANOVA using color
(congruent, gray scale, incongruent) and trial type
(YES, NO) as within-subjects factors. The main effect
of color, F(2, 28)¼ 15.48, p , 0.001, partial eta2¼ 0.53,
was significant. The congruently colored images (M ¼
1351 ms, SE ¼ 204 ms) were faster than the gray scale
images (M ¼ 1481 ms, SE ¼ 212 ms, p , 0.001) and
incongruently colored images (M¼ 1466 ms, SE¼ 204
ms, p¼ 0.003) (Table 2). The main effect of trial type,
F(1, 14) ¼ 4.13, p ¼ 0.062, was not significant.

The two-way interaction between trial type and color
was significant, F(2, 28)¼ 3.54, p¼ 0.043, partial eta2¼
0.20. In the YES trials, the congruently colored images
(M¼ 1411 ms, SE¼ 235 ms) were identified faster than
gray scale images (M ¼ 1611 ms, SE ¼ 257 ms, p ,
0.001) but not incongruently colored images (M¼ 1512
ms, SE¼ 218 ms, p ¼ 0.083). In the NO trials, the
congruently colored images (M ¼ 1291 ms, SE¼ 177
ms) were identified faster than the gray scale images (M
¼ 1351 ms, SE¼ 171 ms, p¼ 0.041) and incongruently
colored images (M¼ 1420 ms, SE¼ 196 ms, p¼ 0.002).

Inverse efficiency scores

Collapsing over trial type, the IESs were analyzed in
a repeated-measures ANOVA using color (congruent,
gray scale, incongruent) as a within-subjects factor. The
main effect of color, F(2, 28)¼ 10.17, p , 0.001, partial
eta2¼ 0.42, was significant (Figure 5). The experts were
better at categorizing birds shown in congruent color
(M¼ 1430 ms, SE¼ 221 ms) relative to birds shown in
gray scale (M¼ 1611 ms, SE¼ 243 ms, p , 0.001) and
birds shown in incongruent color (M ¼ 1594 ms, SE¼
233 ms, p¼ 0.007).

Experts

Condition Percentage correct Response time (ms)

Congruent 95.2 (1.2) 1351 (204)

Gray scale 93.2 (1.4) 1481 (212)

Incongruent 93.4 (1.6) 1466 (204)

Table 2. Response time and accuracy in Experiment 2 for each
color condition (congruent, gray scale, incongruent). Notes:
Values within brackets represent standard error.

Figure 5. Experiment 2: IESs for the experts as a function of

color condition (congruent, gray scale, incongruent). Error bars

represent standard error. * , 0.05; ** , 0.01; *** , 0.001.
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Response time distribution analysis

Similar to Experiment 1, to examine the distribution
of IESs as a function of response time, the IES data
were collapsed over trial type and analyzed in a
repeated-measures ANOVA using color (congruent,
gray scale, incongruent) and bin (1, 2, 3, 4) as within-
subjects factors. The main effects of color, F(2, 28) ¼
4.97, p¼ 0.014, partial eta2 ¼ 0.26, and bin, F(3, 42)¼
22.96, p , 0.001, partial eta2 ¼ 0.62, were significant.
The interaction between color and bin was significant,
F(6, 84)¼ 2.37, p¼ 0.036, partial eta2¼ 0.15. In bin 1,
the congruent condition (M¼ 744 ms; SE¼ 80 ms) was
different than the gray scale condition (M¼ 803 ms, SE
¼ 93 ms, p¼ 0.007) and the incongruent condition (M¼
791 ms, SE¼ 87 ms, p¼ 0.001). In bin 2, the congruent
condition (M ¼ 1008 ms, SE ¼ 139 ms) was different
than the gray scale condition (M¼ 1095 ms, SE¼ 148
ms, p , 0.001) and the incongruent condition (M ¼
1108 ms, SE ¼ 148 ms, p , 0.001). In bin 3, the
congruent condition (M ¼ 1436 ms, SE ¼ 257 ms) was
different than the gray scale condition (M ¼ 1757 ms,
SE¼ 319 ms, p ¼ 0.002) whereas it approached a
significant difference in the incongruent condition (M¼
1834 ms, SE ¼ 376 ms, p¼ 0.055). In bin 4, the
congruent condition (M ¼ 3065 ms, SE ¼ 616 ms) was
different than the gray scale condition (M ¼ 3976 ms,
SE¼ 928 ms, p¼ 0.027) and the incongruent condition
(M¼ 4023 ms, SE¼ 886 ms, p¼ 0.027) (Figure 6). No
other comparisons were significant.

The main finding of Experiment 2 was that color
influenced the performance of bird experts when
recognizing birds at the species-specific level. A color
effect was found in the fastest trials in which
recognition for congruently colored birds was better

than its gray scale or incongruently colored version.
This effect was also found in the slower trials. Thus,
similar to the family-level birds of Experiment 1, the
experts utilized the color information of birds at the
species-specific level irrespective of whether they were
quick or slow at responding. Thus, the experts seem to
automatically incorporate the color information of the
birds in their perceptual analysis.

General discussion

The aim of the current study was to test the
interactions of perceptual experience and color knowl-
edge in object recognition. In Experiment 1, expert
bird-watchers and bird novices performed subordinate
family-level categorizations of congruent color, incon-
gruent color, and gray scale images of common birds
(e.g., cardinal). Consistent with previous work (J. W.
Tanaka & Taylor, 1991), the bird experts were better at
categorizing birds at the family level than the bird
novices. However, the experts performed at ceiling in
all color conditions (i.e., congruent color, gray scale,
incongruent color), making it difficult to compare
expert and novice performance based on accuracy and
response time.

To compare novice and expert performance, we
computed IESs, which combine response time and
accuracy (for other studies using IES, see Akhtar &
Enns, 1989; Christie & Klein, 1995; Goffaux et al.,
2005; Jacques & Rossion, 2007; Kennett et al., 2001;
Kuefner et al., 2010; Townsend & Ashby, 1983). In
Experiment 1, group analysis with IES of the experts
and novices showed that recognition of both groups
was affected by color. Analysis of the distribution of
the IES in which trials were ranked from fastest to
slowest showed that the experts recognized congruently
colored birds better than gray scale and incongruently
colored birds in the fastest trials (i.e., bin 1) whereas
novices recognized congruently colored birds better
than gray scale (i.e., bin 3 and 4) and incongruently
(i.e., bin 3) colored birds in the slower trials. Thus,
color had an immediate effect on expert recognition but
a slower effect on novice recognition. The color
advantage cannot be attributed to low-level segmenta-
tion of internal features because incongruent color
images with good segmentation properties were recog-
nized equally as fast as gray scale images that offered
no color segmentation. Collectively, the findings from
Experiment 1 suggest that color information contrib-
utes to both novice and expert recognition, albeit in
different ways. Although color knowledge of the
experts has an immediate impact on their fastest
recognitions, color knowledge for the novices plays a
larger role in their later responses.

Figure 6. Experiment 2: Distribution of IESs as a function of

response time for the experts. Bin 1 contains the 25% fastest

responses of each participant. Bin 2 contains the next 25%

fastest responses and so on. Error bars represent standard error.

* , 0.05; ** , 0.01; *** , 0.001.
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In Experiment 2, the experts performed subordinate
species-level categorizations (e.g., Nashville warbler) of
congruent color, incongruent color, and gray scale
images of warblers, sparrows, and finches. Here, color
was found to play a prominent role in the expert
recognition. Although recognition accuracy was
equivalent in the congruent, incongruent, and gray
scale conditions, the experts were faster at recognizing
congruently colored birds relative to their incongru-
ently colored and gray scale versions. Similarly, in
terms of IES, the performance of the experts was better
with congruently colored images relative to incongru-
ently colored and gray scale images. The distribution of
IES showed that the color effects were present in both
fast and slow trials. The main finding of Experiment 2
was that congruent color did improve the performance
with which birds were categorized at the specific species
level.

The role of multicoded object representations in
expert object recognition

Results from these experiments indicate that color
facilitates recognition of objects in a specific category
domain. Further, domain-specific experience can
modulate the temporal dynamics of the influence that
color has on recognition. To account for the difference
in the time with which color influenced expert and
novice recognition, we propose that domain-specific
expertise with birds modulates the degree to which
color representations are utilized in early recognition.

In the fastest trials, the performance of the novices
was unaffected when asked to match a percept of either
a color-congruent, color-incongruent, or gray scale bird
to its stored representation. In contrast, in slower trials,
the performance declined in the incongruent and gray
scale conditions in bin 3 and in the gray scale condition
in bin 4. For experts, on the other hand, the
performance was enhanced in the fastest trials when
asked to match a percept with congruent color to its
stored representation. Similarly, images with congruent
color also facilitated performance in the slower trials.
Thus, whereas the novices needed additional time to
utilize color, the experts had immediate access to the
color information, suggesting that the color represen-
tations were tightly coupled with the shape represen-
tations.

Although much research has focused on the opera-
tional definition of perceptual object expertise as the
fast and accurate recognition of domain-specific objects
at the subordinate level of abstraction (e.g., Gauthier &
Tarr, 1997; Johnson & Mervis, 1997; J. W. Tanaka &
Curran, 2001; J. W. Tanaka & Taylor, 1991), little
attention has been devoted to examining the underlying
representations that mediate expert behavior. This

study, however, takes a step toward mapping out the
diagnostic features stored in object memories that
support the expert behavior. Our results demonstrate
that the expert behavior is supported in part by
perceptual analysis, or routines, that readily extracts
color from the object. This suggests that extensive
experience encoding and retrieving object memories has
resulted in object representations that, to a larger
degree, incorporate color information.

A defining quality of expert behavior is that it is
guided by fast and effortless implicit procedures rather
than slow and effortful explicit procedures (Johansen &
Palmeri, 2002). Our findings suggest that analysis of
color information has become more of an implicit
procedure for the expert. Even though structural
information was sufficient for accurate recognition and
the experts were instructed to disregard color and focus
on shape information, color, nevertheless, contributed
to the recognition advantage. Thus, experts found it
harder to inhibit color information due to a recognition
strategy in which color encoding is an implicit and
automatized process. This interpretation is supported
by analysis of the distribution of IESs of Experiments 1
and 2 in which color had an immediate effect (i.e.,
quartile bin 1). However, one might have expected that
the incongruent color should have produced an
interference effect relative to the gray scale condition
(as opposed to an interference effect relative to the
congruent color condition) (e.g., Stroop, 1935). The
fact that this effect was not observed could have two
explanations. First, it seems likely that the gray scale
condition is not a typical neutral condition but instead
represents a form of an incongruent color transforma-
tion, in which case an interference effect cannot be
measured. Second, it is possible that an interference
effect has been attenuated due to color accentuating
internal object features. In any case, we suggest that the
expert behavior is partly supported by a perceptual
strategy by which color information is automatically
accessed, which, in turn, facilitates the recognition of
color-congruent birds.

Our study suggests that the content of the robust
object memories depends on experience. However, the
content of the object memory is also a function of the
physical properties that provide diagnostic cues to the
recognition of the members of the object domain. For
instance, it is well documented that most people are
face experts and that face expertise is supported by a
more holistic processing strategy (e.g., J. W. Tanaka &
Farah, 1993). Given that faces differ in the facial
features (e.g., eyes, nose, mouth) and the distances
among them, an efficient way to encode and retrieve
faces would be through a strategy in which these
differences are efficiently computed, using a holistic
processing strategy. Similarly, color is an important
diagnostic cue for subordinate-level bird identification,
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and therefore, it is efficient for the expert to incorporate
color in their mental representations. Thus, it seems
logical that the mechanisms responsible for forming
robust object memories code for information that is
beneficial for the discrimination of those objects in the
domain of expertise.

In summary, our results support the idea that
extensive experience in an object domain can influence
the way in which we encode and retrieve objects.
Experiments 1 and 2 showed that as a result of
extensive experience with birds, color information
became a salient feature that was actively and quickly
employed during the recognition process. The extent to
which object representations incorporate color are
constrained by the physical properties of the object
category. However, the content of object representa-
tions also depends on the keen abilities of the expert,
who identifies the relevant, diagnostic cues that
distinguish within-category objects. Thus, the processes
of perceptual expertise in high-level vision naturally
depend on the interaction between the environment and
the individual acting upon it.

Keywords: expert object recognition, color informa-
tion, object categories
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