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Studies on face recognition have shown that observers are faster and more accurate

at recognizing faces learned from dynamic sequences than those learned from static

snapshots. Here, we investigated whether different learning procedures mediate the

advantage for dynamic faces across different spatial frequencies. Observers learned

two faces*one dynamic and one static*either in depth (Experiment 1) or using a

more superficial learning procedure (Experiment 2). They had to search for the

target faces in a subsequent visual search task. We used high-spatial frequency

(HSF) and low-spatial frequency (LSF) filtered static faces during visual search to

investigate whether the behavioural difference is based on encoding of different

visual information for dynamically and statically learned faces. Such encoding

differences may mediate the recognition of target faces in different spatial

frequencies, as HSF may mediate featural face processing whereas LSF mediates

configural processing. Our results show that the nature of the learning procedure

alters how observers encode dynamic and static faces, and how they recognize those
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learned faces across different spatial frequencies. That is, these results point to a
flexible usage of spatial frequencies tuned to the recognition task.

Keywords: Face recognition; Facial motion; Spatial frequency.

Face recognition is a remarkable human ability. We are not only able to judge

the age or sex of another person but we can also recognize many individuals

based on subtle differences in their facial configurations (for a review see

Maurer, Le Grand, & Mondloch, 2002). This ability is especially impressive

considering that, as objects, faces are highly similar. Several recent studies

have shown that facial motion serves as a cue to person identification and

that facial motion can lead to more robust encoding of information related to

the identity of that person (e.g., Hill & Johnston, 2001; Lander & Bruce, 2003;

Lander, Christie, & Bruce, 1999; Knight & Johnston, 1997; Lander &

Chuang, 2005; Pike, Kemp, Towell, & Philips, 1997; Wallis & Bülthoff, 2001).

In our previous paper (Pilz, Thornton, & Bülthoff, 2006), we showed that

nonrigid motion, the nonrigid deformations of a face when talking or

making expressions, facilitates the encoding of unfamiliar faces using a

detailed questionnaire during learning. We found that observers were faster

at recognizing faces that had been learned from dynamic sequences than

those that had been learned from static images in a visual search task. This

dynamic advantage held across facial expressions and viewpoints, suggesting

that the mental representation of dynamic faces is robust. As observers more

naturally encounter faces as dynamic objects rather than static images, it is

plausible to assume that the visual system has mechanisms that efficiently

encode this common and behaviourally relevant dynamic aspect of faces.

But how does the dynamic advantage arise and how do representations

derived from dynamic faces differ from representations derived from static

images? Following previous work, a hypothesis we put forward is that

observers develop representations for dynamically learned faces that are

more robust against changes to viewpoint and expression. Due to the

familiarity and behavioural relevance of facial motion, our visual system

may have developed efficient mechanisms that facilitate encoding of dynamic

over static facial information (Lander & Bruce, 2000, 2003; Pilz et al., 2006;

Thornton & Kourtzi, 2002). Furthermore, this robust representation for

dynamic faces may arise due to the encoding and representation of different

visual information during learning. To assess possible differences between

the mental representations for dynamically learned and those for statically

learned faces, we tested whether observers show differences in recognizing

the learned faces when these faces were degraded by different spatial filters.

Spatial filtering is thought to be an early step in visual processing.

Luminance variability in the visual field, for example, is encoded by spatial
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filters. High spatial frequencies (HSF) represent fast variations in luminance

and, therefore, emphasize fine details and edges. By comparison, low spatial

frequencies (LSF) represent slow variations of luminance and emphasize the

coarse cues (Morrison & Schyns, 2001).
Visual information contained in different spatial frequencies has long

been of interest in face recognition as different spatial frequencies are linked

to different face recognition mechanisms and to different task demands.

First, observers seem to rely on a critical frequency band for efficient face

recognition. For example, Ginsburg (1978) was one of the first to show that

portraits filtered to contain the frequency band between 8 and 32 cycles/face

were the most recognisable. Since then, various other studies tested the

effects of spatial filtering on face recognition performance. The results of
several experiments to date converge on the conclusion that face recognition

depends on critical spatial-frequency information that is contained in a band

centred between 8 and 17 cycles/face (Costen, Parker, & Craw, 1994, 1996;

Fiorentini, Maffei, & Sandini, 1983; Hayes, Morrone, & Burr, 1986;

Näsänen, 1999; Tieger & Ganz, 1979). Second, the featural processing of

a face may involve HSF (Costen et al., 1996; Goffaux, Hault, Michel,

Vuong, & Rossion, 2005; Sergent, 1986), whereas the configural processing

of a face*the processing of the global spatial relations among these
features*may involve LSF (Fiorentini et al., 1983; Goffaux et al., 2005;

Sergent, 1986; Tieger & Ganz, 1979). Several studies support the view that

observers generally process faces configurally rather than feature-wise (e.g.,

Yin, 1969; for reviews see Valentine, 1988, and Maurer et al., 2002). Third,

there is evidence that the visual system processes coarse (i.e., LSF) image

information faster than fine (i.e., HSF) image information (for reviews see

Morrison & Schyns, 2001, and Snowden & Schyns, 2006). Lastly, there is

evidence that other factors may affect which spatial frequencies observers
use when they encounter faces. For example, there is some evidence that

observers process unfamiliar faces differently from familiar faces. Observers

seem to rely more on featural information when they decide on the identity

of a less familiar face, whereas they seem to rely more on configural

information when they identify a familiar face (Megreya & Burton, 2006;

but see Schwaninger, Lobmeier, & Collishaw, 2002). Such reliance on

different spatial information may also underlie the representations of

dynamic and static faces. Consequently, these differences in mental
representations may lead to differences in the speed and/or accuracy of

recognizing HSF and LSF for both types of learned faces. Overall, these

prior findings point to a flexible usage of spatial information (Morrison &

Schyns, 2001; Oliva & Schyns, 1997; Schyns & Oliva, 1999).

In addition to investigating differences in the encoding and representation

of spatial frequencies when learning dynamic and static faces, we tested

whether the dynamic advantage is due to different depths of encoding
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dynamic and static faces. Facial motion conveys important information

about the intentions and emotions of a person (Bassili, 1978; Kamachi et al.,

2001). Such motion may not only help observers when assessing a person’s

personality, but may also affect how observers encode his or her identity.

That is, the in-depth processing of the face induced by the expressive facial

movements may lead to a more robust representation compared to a static

picture. Therefore, we manipulated the learning procedure so that observers

had to process both dynamic and static faces during learning either at an in-

depth level or at a superficial level (Bower & Karlin, 1974).

In the current study, we tested for possible differences in recognizing

high and low filtered images of faces that were learned dynamically or

statically in full spectrum and in colour. We used a delayed visual search

paradigm as described in our previous paper (Pilz et al., 2006), which

showed a robust dynamic advantage for face recognition. In this task,

observers learned two faces: One face was presented as a dynamic video

sequence, the other one as a static picture. In a subsequent visual search

task, observers had to indicate whether either one of the learned faces was

present or not. We believe that such a visual search paradigm resembles the

natural situation of ‘‘finding a friend in a crowd’’ and therefore provides a

behaviourally relevant task. All faces presented in the search array were

presented as static images to equate the perceptual and response character-

istics of the task. In addition, the images were either high-pass or low-pass

filtered so that only high and low spatial frequency information was

available for recognition. In Experiment 1, observers explicitly judged the

personality and character traits of a statically and a dynamically presented

face during learning. In Experiment 2, we investigate how the depth of

learning, i.e., the observers’ engagement in the learning task, affects the

dynamic advantage, as well as their response characteristics to HSF and

LSF images. Therefore, we used the same visual search procedure as in

Experiment 1 but changed the learning procedure.

GENERAL METHODS

Apparatus

Both experiments were conducted on a Windows computer under the

control of the PsychToolBox extension for MATLAB (Brainard, 1997; Pelli,

1997). Stimuli were presented on a 21-inch monitor with a resolution of 1024

pixels�768 pixels and a frame rate of 75 Hz. Observers were seated 60 cm

from the screen.
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Participants

For both experiments, students from the MPI subject pool served as

observers. All observers gave informed written consent and were paid

8t/hour. They had normal or corrected-to-normal vision and were naı̈ve

regarding the purpose of the study. Observers did not participate in more

than one experiment.

Stimuli

In the current study, we used stimuli from the Max-Planck database of

moving faces (Pilz et al., 2006; http://edb.kyb.tuebingen.mpg.de/). We chose

five female and five male faces. Each face made two expressive gestures,

which were surprise and anger. Two of the faces were randomly chosen as

targets for each observer; the others served as distractor faces in the visual

search task. One target face was female and the other was male. All

observers saw the faces in surprise during learning and in anger during test.

We chose different expressions to test whether the dynamic advantage

generalizes to other facial expressions and to reduce the possibility of image

matching during visual search. In addition, we did not counterbalance the

expressions across the learning and search phases to stay in line with our

previous work (Pilz et al., 2006).

Figure 1 shows an example of the last frame of two video sequences. The

movie clips were 26 frames and presented at a frame rate of 25 frames per

second for a total duration of 1040 ms. The clips started with a neutral

expression and ended with the peak of the expression in the last frame. The

stimuli presented during the learning phase subtended a visual angle of

Figure 1. Examples of the last frame (i.e., peak magnitude of the facial expression) of video

sequences of the two expressive gestures used in the current study (left: anger, right: surprise). To view

this figure in colour, please see the online issue of the Journal.
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15.88�15.48, and the stimuli presented during the visual search phase

subtended a visual angle of 6.08�5.88. The radius of the visual search array

subtended an angle of 18.88 with the midpoint of the images presented at

equal distance from the fixation cross in the middle of the screen.

The static pictures shown during learning in both experiments were static

pictures randomly selected from the video sequence on each presentation.

Therefore, observers saw all the frames of the video sequence in both

learning conditions. In addition, static pictures during the visual search

phase were shown from three different viewpoints: Frontal (08, as in the

learning phase), facing 228 left, and facing 228 right. Similar to changing

expressions, the purpose of this viewpoint manipulation was to test whether

the dynamic advantage generalizes across different viewpoint and to reduce

image-matching strategies (Pilz et al., 2006).

The static pictures in the visual search test phase always showed the peak

of the expression, i.e., the last frame of the video sequence, and were spatially

filtered faces. The two filtered versions of these images were created as

follows. The original images were converted to greyscale images before they

were Fourier transformed into the frequency domain. These Fourier

transformed images were then multiplied with a high-pass and low-pass

Gaussian filters with cutoff frequencies of 8 cycles per image width (c/iw) for

the low frequency filter, which preserved frequencies below 8 c/iw, and 32 c/iw

for the high frequency filter, which preserved frequencies above 32 c/iw.1 Prior

to filtering, all images were equated for contrast by equalizing the luminance

histogram across the set of images. The filters are shown in Figure 2, and

example images of filtered faces and a visual search array of LSF faces are

shown in Figure 3.

Analysis

In both experiments, we examined the speed and accuracy of responses. For

response times (RTs), we only analysed correct target-present trials (i.e.,

trials on which one of the learned target face was present). RTs and accuracy

were separated into two blocks in both experiments to investigate effects of

learning during the course of the visual search phase. Table 1 shows correct

RTs and accuracy across all conditions in both experiments.

1 Most previous studies used cycles per face width as they normalize faces to the same size

and crop the images to that size. However, our faces were not normalized and some faces

covered more or less area of the image. Furthermore, the viewpoint manipulation also changed

the area of the image covered by the face (but not to a large extent). Thus, we have used cycles

per image width for our filtering. For the purpose of the present study, the important point is

that our filtered contained only high or low spatial frequencies (see Figure 3)*the precise

frequencies were not critical to our conclusions.
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We excluded observers who had less than 75% correct trials from the

analyses. Because of the spatial degradation, the search task was very

difficult. We therefore used a high performance threshold to ensure that

observers had sufficiently encoded both dynamic and static faces. For both

experiments, repeated measures analyses of variance (ANOVAs) were used

to compare the factors of interest: Target type (dynamically learned face and

statically learned face), filter (high spatial filter and low spatial filter), block

(1 and 2), viewpoint (08, 228 left, and 228 right), and set size (2, 4, and 6). A

significance level of pB.05 was used in all analyses.

Figure 2. Example images of the Gaussian filters applied to faces, given in cycles per image width

(c/iw). The left image illustrates the high-pass filter and the right image illustrates the low-pass filter.

Lighter greyscale intensity indicates the frequencies that are preserved in the filtered faces.

Figure 3. Left: Examples of the frequency filtered target images as used in the current experiments.

Top row: High-pass filtered faces from three different viewpoints (from left to right: 228 from the left,

frontal and 228 from the right). Bottom row: Low-pass filtered faces from the same three viewpoints.

Right: Example picture of a visual search array with six LSF faces shown at 228 from the left.
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EXPERIMENT 1

In Experiment 1, we investigated whether we can replicate the dynamic

advantage found by Pilz and colleagues (2006) with spatially degraded face

images. More importantly, we tested whether observers in Experiment 1

show differences in the recognition of HSF or LSF targets for statically and

dynamically encoded faces. Such differences may hint at differences in the

robustness of the mental representations.

Methods

Participants. Fifteen naive observers (age range: 20�31; mean age: 25; 7

females, 9 males) with normal or corrected-to-normal vision participated in

the experiment. Five observers were excluded from the data analysis since

their performance was below 75%. The mean performance of observers who

did not make criterion was 68.0%.

Design and procedure. We used the delayed visual search paradigm

described by Pilz et al. (2006). Briefly, observers were familiarized with one

male and one female frontal view face showing an expressive gesture of

surprise. One face was presented as a short movie clip (dynamically learned

target) and the other as a static picture (statically learned target). For each

TABLE 1
RT (ms) and accuracy (percentage correct) for dynamic, static, and absent trials for
high spatial frequency (HSF) and low spatial frequency (LSF) conditions in Experi-

ments 1 and 2 (the standard error of the means is in parentheses)

Dynamic Static Absent

LSF HSF LSF HSF LSF HSF

Experiment 1

Accuracy

Block 1 95.1 (2.6) 95.4 (2.2) 88.3 (5.3) 88.6 (1.8) 88.2 (5.2) 87.9 (4.9)

Block 2 96.0 (2.6) 96.9 (2.1) 92.0 (5.0) 94.4 (4.1) 95.8 (2.8) 94.4 (4.2)

RT

Block 1 1755 (177) 1635 (142) 2149 (245) 1893 (182) 2898 (324) 2911 (331)

Block 2 1458 (126) 1297 (88) 1773 (186) 1672 (178) 2178 (158) 2171 (156)

Experiment 2

Accuracy

Block 1 97.3 (1.8) 85.1 (5.9) 93.1 (5.7) 86.6 (5.9) 82.2 (6.8) 77.6 (6.6)

Block 2 98.7 (1.0) 97.8 (1.9) 95.7 (3.0) 96.2 (3.1) 97.8 (2.0) 95.6 (3.1)

RT

Block 1 2054 (239) 2161 (241) 2328 (406) 2018 (273) 3273 (394) 3178 (324)

Block 2 1492 (107) 1406 (133) 1814 (197) 1623 (141) 2269 (172) 2182 (137)
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observer, the male and female targets were randomly assigned to the

dynamic or static presentation condition. Both target faces were presented in

full spatial-frequency spectrum and in colour. The two faces alternated 100

times on the screen, each time presented for 1040 ms with an interstimulus

interval of 2000 ms. While watching the faces, observers filled out a

questionnaire. They were asked to rate the attractiveness, age, kindness,

aggressiveness, and intelligence of the two faces and had to describe the

faces’ prominent facial features and character traits in a few sentences.

After the learning phase, observers took a short break of approximately 3

min before continuing with the visual search phase. On each trial of this

phase, two, four, or six static faces expressing anger were shown in a circular

search array. Faces in the search array were either high-pass or low-pass

filtered, and they were shown at 228 left, 228 right or frontal (08) view (see

Figure 3). Observers were asked to decide as quickly and accurately as

possible whether either one of the learned faces was present in the search

array or not. Observers responded ‘‘target present’’ by pressing the ‘‘s’’ key

and ‘‘target absent’’ by pressing the ‘‘l’’ key. Auditory feedback was given for

incorrect responses. Each trial started automatically after a response was

given. The experiment consisted of 540 trials, in which each of the two target

faces was present on 180 trials (hence, 360 target-present trials). In the

remaining 180 trials, no target was presented (target-absent trials). All target

type, filter, viewpoint, and set size trials occurred with equal frequency, and

the order of the trials was randomized for each observer.

Results

Reaction time. The right column of Figure 4 and Table 1 show mean

RTs over all observers. A repeated measures ANOVA revealed a main effect

of target type: Observers were faster at recognizing dynamically learned

targets than statically learned ones, F(1, 9)�9.8, p�.012. There was also a

main effect of filter: Observers were faster for LSF targets than HSF targets,

F(1, 9)�8.6, p�.016. In addition, observers were faster at finding targets in

block 2 as compared to block 1, F(1, 9)�9.0, p�.015. Lastly, there was a set

size effect, F(2, 18)�78.4, pB.001. There were no other main effects or

interactions.

Accuracy. The left column of Figure 4 and Table 1 show mean accuracy

data over all observers. A repeated measures ANOVA revealed a marginal

effect of target type, F(1, 9)�3.9, p�.081, and a main effect of block,

F(1, 9)�5.1, p�.05. However, these effects were modulated by a target

type�block interaction, F(1, 9)�7.2, p�.025. This interaction was due to

observers’ performance being worse for statically learned than for dynami-

cally learned faces in block 1. This difference vanished in block 2. Therefore,
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Figure 4. Accuracy (left) and RT (right) data from Experiment 1 for block 1 (top row), block 2

(middle row), and average (bottom row).
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the rate of improvement across blocks was higher for the statically learned

face. There were no indications of any speed�accuracy tradeoffs. In addition,

as shown in Table 1, there were no effects of interest on absent trials in both

Experiments 1 and 2, so these will not be discussed in further detail.

Discussion

The results from Experiment 1 showed an RT advantage for dynamically

learned faces, which replicated the visual search advantage for dynamically

learned faces found by Pilz et al. (2006). Observers were about 370 ms faster

at finding the dynamically learned faces than they were at finding the

statically learned faces in the search array. In addition, observers were faster

at finding LSF than HSF targets in the search array regardless of whether

faces were presented statically or dynamically during learning. This RT

advantage for LSF faces suggests a configural processing of both target faces

(Goffaux & Rossion, 2006). This advantage can also be explained by a

coarse-to-fine bias for low spatial frequencies. Several studies have shown

that observers process low spatial frequencies, i.e., the coarse details of an

image, preferentially to high spatial frequencies, i.e., the fine details of an

image (for reviews see Morrison & Schyns, 2001, and Snowden & Schyns,

2006). The set size effect in RT is typical for visual search tasks and shows

that observers are slower at finding targets when more distractors are present

in the visual search array (for a review see Wolfe, 1998).

In accuracy, observers showed a significant improvement for statically

learned faces across block 1 and block 2. From this finding we infer that

dynamic faces are encoded more robustly than static faces, for which the

process of learning still seemed to occur during visual search. Interestingly, in

our previous study, we did not find accuracy differences between dynamically

and statically learned faces when these were tested in full spectrum (Pilz et al.,

2006). However, the stimuli were degraded in this study which may have given

rise to additional learning for statically but not dynamically learned targets

during visual search. Furthermore, the feedback observers received may have

facilitated additional learning of the degraded stimuli. Consistent with these

possibilities, we found that there was no significant accuracy difference

between dynamically and statically learned targets in block 2.

The present results suggest that the dynamic advantage is not driven by

differences in the representation of spatial frequencies during the learning

phase when observers processed faces in depth (Bower & Karlin, 1974), as

observers were faster at searching for the LSF faces for both target types.

Rather, the advantage may be due to a more robust representation of the

dynamically learned face, as suggested by the accuracy data. Facial motion

conveys important information about nonverbal communicational informa-
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tion, as well as a person’s emotional state (Bassili, 1978; Kamachi et al.,

2001). This motion may lead to a more robust representation. Thus,

choosing a learning procedure that requires observers to explicitly judge a

person’s personality, a task observers usually do when encountering an
unknown person in everyday life, may facilitate encoding of dynamically

presented faces. For example, Bower and Karlin showed that faces judged

for the deep characteristics of personality traits were recognized more

accurately than faces judged for surface characteristics of sex. Thus, in

Experiment 2, we used a learning procedure that only required observers to

judge the faces superficially according to predefined traits on an online scale

to investigate whether this would modulate the effect.

EXPERIMENT 2

To directly investigate the effect of learning on the dynamic advantage and
how learning impacts the processing of HSF and LSF faces, we used a

learning procedure that was less demanding to the observers but still

engaged their attention on both dynamic and static target faces. Therefore,

instead of answering a questionnaire on facial features and character traits,

observers in Experiment 2 judged the faces according to predefined

personality traits using an online rating scale (Bower & Karlin, 1974).

Methods

Participants. Fifteen naive observers (age range: 25�37; mean age: 28;

10 females, 5 males) participated in the experiment. Five observers were

excluded from the data analysis since their performance was below

75%. The mean performance of observers who did not make criterion
was 67.7%.

Design and procedure. The visual search phase was the same as the

search phase described in Experiment 1. The only difference between the

two experiments was in the learning phase. In Experiment 2, observers did

not receive an in-depth questionnaire for the two faces during the learning

phase but simply had to rate the faces according to age, intelligence,

friendliness, extraversion, attractiveness, aggressiveness, nervousness, and
happiness on an online scale from 1 to 5. Before a face appeared on the

screen, observers were informed of which trait they would have to rate on

that trial. Then the dynamic face appeared eight times on the screen.

Afterwards a scale appeared on the screen, which observers used to rate the

given character trait. After rating the dynamic face on one of the character

traits, the static face appeared eight times on the screen and had to be rated

by the same procedure. Eight different frames were shown for the static face
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randomly taken from the dynamic sequence. Each frame was shown for

1040 ms.

Results

Reaction times. The right column of Figure 5 and Table 1 show mean

RT for all observers. In contrast to Experiment 1, there were no main effects

of target type (dynamically or statically learned faces) or filter (high or low
SFs). A repeated measures ANOVA revealed a main effect of block:

Observers were faster at identifying targets in block 2 than block 1,

F(1, 9)�15.3, p�.003. There was also a main effect of set size, F(2, 18)

�167.0, pB.001, and a block�set size interaction, F(2, 18)�7.0, p�.007.

There were no other effects on RTs.

Accuracy. The left column of Figure 5 and Table 1 show accuracy data

averaged over all observers. A repeated measures ANOVA revealed a main
effect of filter, F(1, 9)�10.0, p�.011, and block, F(1, 9)�14.3, p�.04.

However, these main effects were modulated by a filter�block interaction,

F(2, 18)�10.0, pB.001. This significant interaction was due to a larger filter

effect in block 1 than block 2.

Also, in contrast to Experiment 1, there was a main effect of viewpoint,

F(1,9)�3.6, pB.07, and a block�target type�viewpoint interaction,

F(2, 18)�4.0, p�.036. This finding points to a less robust representation

as search accuracy did not generalize to novel viewpoints. There were no
indications of speed�accuracy tradeoffs.

Discussion

In Experiment 2, dynamically and statically learned faces were recognized

equally quickly during visual search after observers superficially rated the

target faces’ personality during a learning phase.

We also did not find a difference between the dynamically and statically

learned faces in recognition accuracy. However, the accuracy data showed an

effect of filter, which varied across blocks. These effects were due to observers

being more accurate at identifying HSF than LSF targets on block 1. This

HSF advantage nearly vanished on block 2, which suggests that observers
learned to identify the LSF targets as accurately as HSF faces by block 2.

There are two possible reasons for these filter effects. First, observers may rely

more on high-frequency featural processing for both target faces (Costen et

al., 1996; Goffaux et al., 2005; Sergent, 1986). The learning procedure used in

this experiment may encourage encoding strategies that do not exploit the

dynamic aspects of faces during learning (Bassili, 1978; Kamachi et al., 2001).

Second, the results may be due to coarse-to-fine processing strategies during
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Figure 5. Accuracy (left) and RT (right) data from Experiment 2 for block 1 (top row), block 2

(middle row), and average (bottom row).
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the recognition stage. Previous results from a number of psychophysical

studies have suggested that our visual system has a coarse-to-fine bias in the

processing of sinusoidal gratings (Breitmeyer, 1975; Gish, Shulman, Sheehy,

& Leibowitz, 1986) as well as natural scenes and faces (Parker, Lishman, &

Hughes, 1992, 1997; Schyns & Oliva, 1994, 1999). Because the superficial

learning procedure used in Experiment 2 may lead to less robust face

representations for both dynamic and static targets compared to the more in-

depth learning procedure used in Experiment 1, observers may generally need

more information to process both target faces in Experiment 1. Therefore,

they may be better with HSF than LSF faces because HSF faces contain more

visual information.

GENERAL DISCUSSION

In two experiments, we investigated whether differences in the encoding of

dynamically and statically presented faces lead to differences in recognizing

HSF and LSF target faces in a delayed visual search task (Pilz et al., 2006).

In addition, we examined how different learning procedures affected the

encoding process and the subsequent recognition of spatially degraded faces.

Figure 6. Accuracy (left) and RT (right) data from Experiments 1 and 2 for high-spatial frequency

(HSF) and low-spatial frequency (LSF) targets, and for dynamically and statically learned faces.
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To summarize, the two main results from these experiments are as follows.

First, observers showed an overall RT advantage for dynamically learned

faces in Experiment 1 but not in Experiment 2 (Pilz et al., 2006). Second,

observers in Experiment 1 showed an RT advantage for LSF targets, whereas

in Experiment 2 they show an accuracy advantage for HSF targets. Figure 6

provides an overview of these two results to allow a direct comparison of the

effects of dynamically and statically learned target faces and spatial filter.

Interestingly, observers continued to learn targets across the visual search

blocks. In Experiment 1, this improvement was found for statically learned

but not dynamically learned faces. In Experiment 2, this improvement across

block was found for both dynamically learned and statically learned faces

and was dependent on the spatial frequency. These noticeable block effects

may be due to the fact that we degraded the stimuli, which made it possible

for observers to encode additional information during visual search. The

additional learning may also have been enhanced by the feedback observers

received.

Overall, given that identical visual search tasks were used in both

experiments, the only explanation that can account for these results lies in

the learning procedure used. That is, these different procedures lead to

different encoded mental representations for dynamically and statically

learned faces in Experiments 1 and 2.

Bower and Karlin (1974) showed that faces judged for the deep

characteristics of personality traits were recognized more accurately than

faces that were only judged for surface characteristics of sex. The

questionnaire used in Experiment 1 required observers to explicitly write

down their impressions of the targets’ personality and facial features in their

own words. By comparison, observers in Experiment 2 only had to tick

marks on an online scale to judge the faces according to predefined

character traits. Using a questionnaire that requires observers to explicitly

assess personality, which is a judgement observers frequently make when

encountering unfamiliar people, may have induced observers to adopt a

strategy that was more sensitive to study the role of motion in face

recognition. Moreover, observers in Experiment 1 may have encoded the

dynamically learned face more robustly than the statically learned one

because the visual system may integrate the facial expressions over time into

a representation of the facial identity for the dynamic target. This

integration may account for the large RT advantage for dynamically learned

faces in Experiment 1 (see also Pilz et al., 2006). Such integration was absent

with a more superficial learning procedure used in Experiment 2. Future

research is needed to investigate how the learning context affects the

temporal integration of behaviourally important facial motion for recogni-

tion purposes.
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Our results further suggest that the nature of the representation encoded

for the different learning procedure (in-depth vs. superficial) and different

target types (dynamically learned vs. statically learned) lead to processing

strategies that exploit different spatial frequencies during recognition. It is
evident that different spatial frequencies convey different kinds of informa-

tion. HSF information is known to mediate the processing of fine details

such as bars and edges. By comparison, LSF information is known to

mediate the processing of coarse cues like pigmentation and shape-from

shading information (for reviews see Morrison & Schyns, 2001, and

Snowden & Schyns, 2006). Importantly, several studies have suggested a

coarse-to-fine processing bias bias for the extraction of different spatial

frequency information. This bias was first demonstrated in studies that
showed that the time to detect an onset or offset of a sinusoidal grating

increases monotonically with spatial frequency (Gish et al., 1986). Further

experiments were able to extend the coarse-to-fine processing bias to natural

scenes. In an experiment by Parker et al. (1992), for example, observers had

to rate the image quality of natural scenes. Those scenes were presented in

sequences of three filtered versions over an interval of 120 ms. Performance

was significantly better when the order of spatial information in a sequence

moved from coarse to fine detail than when the order moved from fine to
coarse. The results of our study provide direct evidence that the nature of the

representation can lead to different recognition strategies using a single

paradigm. The RT results from Experiment 1, which showed that observers

are faster at identifying LSF targets for both dynamic and static targets, may

be explained by coarse-to-fine processing. By comparison, in Experiment 2,

this effect may vanish because observers did not learn the faces robustly

enough and need more ‘‘fine’’ featural information to identify faces.

The depth of encoding across the two experiments may also lead to
different strategies in terms of the facial information that observers use

during visual search. In particular, observers may use configural face

recognition strategies in Experiment 1, whereas they may use featural

strategies in Experiment 2. Goffaux and colleagues (Goffaux et al., 2005;

Goffaux & Rossion, 2006) suggested that the configural processing of faces

is mediated by LSF, whereas featural processing is mediated by HSF.

According to this assumption, the results from Experiment 1 suggest that

observers recognize faces configurally rather than featurally, as they are
faster at recognizing LSF than HSF targets. But why is this bias for

configural face processing absent in Experiment 2? It has been suggested

that the relationship between featural/configural and HSF/LSF processing

of faces is far from unequivocal (Palmer, 1993). For instance, configural

information can be conveyed by both LSF and HSF (Peyrin, Chauvin,

Chokron, & Marendaz, 2003). Indeed, early studies testing for featural and

configural face processes used line drawings of faces which contain
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predominantly high spatial frequencies (e.g., Tanaka & Farah, 1993). Again,

future work is necessary to determine how learning interacts with

subsequent configural and featural processing of dynamic and static faces.

More generally, HSF faces may contain more or additional information
than the information contained in LSF images (e.g., HSF faces have both

configural and featural information). In Experiment 2, observers may have

encoded a less robust representation of the target faces because of the

superficial learning procedure used. Therefore, they may need more

information to recognize target faces during visual search, and consequently,

they were more accurate with HSF target faces but did not show an RT

advantage for LSF targets. In a related paper, Megreya and Burton (2006)

suggested that less familiar faces are represented more featurally, whereas
familiar faces are represented more configurally. This dissociation may be

due to the fact that HSF faces contain both featural and configural

information and, therefore, observers are better able to recognize HSF faces

when they are less familiar with target faces. As noted earlier, however, other

studies have shown that observers may rely on both configural and featural

information to process familiar and unfamiliar faces (e.g., Schwaninger

et al., 2002). Our present findings help resolve some of these earlier

contradictory findings. In conjunction with previous work, the present
results support a flexible usage hypothesis in which task demands bias the

recognition process to operate at the most informative scale for the task at

hand (Morrison & Schyns, 2001; Oliva & Schyns, 1997; Schyns & Oliva,

1999).

The results of the current study have two major implications for face

recognition. First, we replicated the dynamic advantage found by Pilz et al.

(2006). This dynamic advantage emphasizes the hypothesis that the visual

system uses mechanisms that mediate the processing of behaviourally
relevant dynamic information, such as facial expressions and movements.

Second, we found that different learning procedures may tune these

mechanisms to those spatial frequency scales that convey the most relevant

information to solve a certain task. Moreover, these mechanisms may be

affected by additional factors such as the depth of encoding during learning,

rather than facial motion per se, which ultimately allows the visual system to

flexibly optimize visual spatial information for face recognition in a dynamic

environment.
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