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Shape perception is important for object recognition. However,
behavioral studies have shown that rigid motion also contributes
directly to the recognition process, in addition to providing visual
cues to shape. Using psychophysics and functional brain imaging,
we investigated the neural mechanisms involved in shape and
motion processing for dynamic object recognition. Observers discrim-
inated between pairs of rotating novel objects in which the 3-
dimensional shape difference between the pair was systematically
varied in metric steps. In addition, the objects rotated in either the
same or the different direction to determine the effect of task-
irrelevant motion on behavior and neural activity. We found that
observers’ shape discrimination performance increased systemati-
cally with shape differences, as did the hemodynamic responses
of occipitotemporal, parietal, and frontal regions. Furthermore, re-
sponses in occipital regions were only correlated with observers’
perceived shape differences. We also found different effects of
object motion on shape discrimination across observers, which were
reflected in responses of the superior temporal sulcus. These results
suggest a network of regions that are involved in the discrimination
of metric shape differences for dynamic object recognition.
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Introduction

For active organisms, shape perception is important for

recognizing and interacting with objects in a dynamic environ-

ment. A number of behavioral studies have shown that humans

have an exceptional ability to estimate the shape of objects from

a combination of visual cues such as shading, texture gradients,

stereo disparity, and motion (Bülthoff 1991). Although shape

plays a dominant role in object recognition (Tarr and Bülthoff

1998), other cues, particularly the motion of an object (e.g.,

rigid rotation in depth), also contribute to the recognition pro-

cess. For example, motion information can be used to estimate

the 3-dimensional structure of an object (Ullman 1979) that

can subsequently be used for object recognition or motion

information can serve as a direct cue to object identity (Stone

1998; Liu and Cooper 2003; Vuong and Tarr 2006).

The roles of shape and motion cues in object recognition

seem to be reflected at the neural level as well. Evidence from

functional magnetic resonance imaging (fMRI) studies points to

a network of occipitotemporal and parietal cortical regions that

are involved in the processing and integration of shape and

motion cues and that may ultimately contribute to object

recognition. These regions are shown in Figure 1. First, there is

a large region in the posterior part of the occipital lobe—the

latero-occipital complex (LOC)—that responds more to

objects (Malach et al. 1995) than to textures or scrambled

images, irrespective of the cues that define the objects’ shape

(e.g., Grill-Spector et al. 1998, 1999, 2000; Kourtzi and

Kanwisher 2000; Kourtzi et al. 2003; Hayworth and Biederman

2006). Second, there is a region at the junction between the

inferior temporal sulcus and the lateral occipital sulcus (hMT+/
V5) that responds more to moving than to stationary stimuli

(Zeki et al. 1991; Tootell et al. 1995). Third, a large posterior

portion of the superior temporal sulcus (STS) seems to

integrate shape and motion cues for important classes of visual

stimuli, such as facial, body, or animate motion (e.g., Grossman

et al. 2000; Puce et al. 2003; Schultz et al. 2005). Fourth, there

are regions along the intraparietal sulcus (IPS) that appear

to play a role in recovering 3-dimensional structure from

2-dimensional motion signals projected onto the retinas (e.g.,

Paradis et al. 2000; Kriegeskorte et al. 2003; Murray et al. 2003;

Peuskens et al. 2004). Again, the estimated 3-dimensional shape

can feed into an object recognition system. Finally, the frontal

lobe may play a role in object recognition through its in-

volvement in cognitive control, working memory, and attention

(Goldman-Rakic 1987; Kanwisher and Wojciulik 2000; Miller

2000; Cabeza et al. 2003). Recent human neuroimaging studies

also show the involvement of prefrontal cortex, in conjunction

with parietal cortex, for object categorization and mental

rotation tasks (Gauthier et al. 2002; Ganis et al. 2007; Jiang et al.

2007; Schendan and Stern 2007).

The broad aim of the present work is to understand the

functional organization of the cortical network involved in

visual object recognition (see Fig. 1). The previous studies

reviewed above highlight distinct regions that process different

visual cues. Our goal was to integrate these results by inves-

tigating the contribution of individual regions to dynamic

object recognition using a single paradigm. Specifically, we

focused on how observers discriminate metric differences in

3-dimensional shape between pairs of dynamic objects. Ob-

servers were shown 2 rotating objects in sequence and had

to decide if these were the same or different objects. The

rotation of the objects in depth provided static views of those

objects and retinal motion signals for shape estimation. Further-

more, the objects rotated in either the same or the different

directions to test whether task-irrelevant motion direction

can modulate neural activity during shape processing. One

possibility is that the same rotation direction may facilitate

shape discrimination, particularly when discrimination be-

tween object pairs is made more difficult by increasing

shape similarity, as has been suggested from behavioral data

(Vuong and Tarr 2006). In addition, the modulation of shape

discrimination performance may also depend on individual

observers’ sensitivity to shape and motion cues. Stone et al.
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(2000), for example, have shown that performance on an

object recognition task could be explained by observers’

sensitivity to shape and motion cues.

In our experiment, we constructed multipart objects whose

3-dimensional shape was controlled by a set of parameters.

These parameters were motivated by the early debate in theo-

ries of object recognition that tried to distinguish between

object representations based on nonaccidental image pro-

perties (such as a curved edge vs. a straight edge; Biederman

and Gerhardstein 1993, 1995; Biederman and Bar 1999) and

those based on metric image properties (such as edges with

different degrees of curvature; Tarr and Bülthoff 1995; Hayward

and Tarr 2000). Biederman (1987), in his influential paper, pro-

posed that a small set of qualitative shape primitives (i.e.,

geons) could serve as the building blocks of object repre-

sentations. These primitives can be rapidly identified from

binary contrasts (e.g., straight vs. curved edges) of 3 or 4 non-

accidental image properties projected by objects. Alternatively,

other researchers have proposed that observers encode metric

variations of image features (Tarr and Bülthoff 1998). In the

present study, we used nonaccidental properties but allowed

their values to vary in a continuous rather than binary manner

(see also Kayaert et al. 2003, 2005).

Figure 2 illustrates examples of the objects used in the

present study and how our parameterization allowed us to

systematically vary the shape difference between 2 objects. The

parametric manipulation of shape differences served 3 pur-

poses. First, it allowed us to measure the extent to which brain

and behavioral responses vary systematically with the magni-

tude of shape difference. Such a relationship between response

and stimulus parameter would support a metric object

representation, as suggested by behavioral and computational

work (e.g., Cutzu and Edelman 1998; Lawson et al. 2003).

Second, the shape parameterization allowed us to directly

Figure 1. A network of cortical regions involved in object processing. The shape symbols are Talairach coordinates of peak activations averaged across previous reports
(circle 5 LOC; square 5 hMTþ/V5; triangle down 5 STS; triangle up 5 IPS; triangle right 5 frontal). The following references were selected: Zeki et al. 1991; Malach et al.
1995; Tootell et al. 1995; Grill-Spector et al. 2000; Grossman et al. 2000, 2004; Paradis et al. 2000; Dukelow et al. 2001; Grill-Spector and Malach 2001; Kourtzi et al. 2002;
Beauchamp et al. 2003; Kourtzi et al. 2003; Kriegeskorte et al. 2003; Murray et al. 2003; Peuskens et al. 2004; Sack et al. 2006; and Schendan and Stern 2007. It should be
noted that this list is far from exhaustive. The Talairach coordinates of the peak activations for the current study are shown as white numeric symbols corresponding to Table 1
(1--4 5 clusters from the perceived shape difference analysis; 5--6 5 clusters from the objective shape difference analysis; and 7 5 cluster from the effect of motion analysis).

Figure 2. Examples of morphs between 2 exemplar objects (0% and 100%). For
illustration purposes, these examples were rendered in 3D Studio Max and in a single
color. The stimuli used in the experiment were rendered in color using custom
software.
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compare brain activation to objective shape differences as

measured by our parameterization and perceived shape differ-

ences as measured by observers’ responses. Finally, the para-

metric design increased the statistical and interpretative power

of our fMRI analysis (Friston 2005).

Here, we used an fMRI adaptation paradigm to study the

network of regions that may be involved in dynamic object

recognition. fMRI adaptation refers to the reduction in blood

oxygen level--dependent (BOLD) response that occurs when

a stimulus is repeated or when the presented stimulus shares

a property with a previous stimulus. It is generally thought that

this adaptation is due to reduced responses of neurons

selective for that property (Grill-Spector and Malach 2001;

Grill-Spector et al. 2006). Importantly, researchers have shown

that the magnitude of adaptation can be varied by systemati-

cally changing stimulus parameters of interest, leading them

to suggest a tight functional association between a neural

region and the processing of those parameters. For example,

increasing the visual dissimilarity between 2 faces results in

a corresponding reduction in adaptation in face-selective

regions (e.g., Rotshtein et al. 2005; Fang et al. 2007; Gilaie-

Dotan and Malach 2007). We used this logic to investigate

whether there are regions that show adaptation to parametric

differences in 3-dimensional shape between 2 dynamic objects,

thereby identifying a network of regions that process dynamic

metric shape differences. We further examined neural activa-

tion time courses in significant clusters to explore possible

segregation of functional roles within this network. Consistent

with previous work, our results suggest that occipitotemporal,

parietal, frontal, and superior temporal regions are involved in

metric shape discrimination of dynamic objects and that

different regions within this network process different yet

complementary aspects of dynamic stimuli.

Materials and Methods

Participants
Thirteen observers (5 females and 8 males) from the Tübingen com-

munity volunteered as subjects for pay. Two of the authors also served

as subjects (J.S. and Q.V.). Naive observers did not know the purpose

of the experiment and had not seen the stimuli used. All participants

provided informed consent and filled out a standard questionnaire

approved by the local ethics committee for experiments involving

a high-field magnetic resonance (MR) scanner to inform them of the

necessary safety precautions.

Stimuli
Figure 2 shows examples of the novel multipart objects used as stimuli

(Biederman and Gerhardstein 1993; Vuong and Tarr 2006). Each object

consisted of a large central body part with 3 smaller parts attached to it.

These appendages were approximately 50--70% smaller in volume than

the body. Two appendages, both of the same shape, were attached

laterally to the central body so that the object was symmetric about the

vertical axis of the body. The remaining appendage attached to the

body defined the front of the object (i.e., 0� view). The body, lateral

appendages, and front appendage had different shapes. Each of these

part was a geon (Biederman 1987) specified by continuous values along

3 parameters: the 2-dimensional shape of its cross section (from circle

to square), the magnitude of bending perpendicular to its axis of

elongation (from –45� to 45�), and the tapering of its cross section size

along the axis (from –0.6 to 0.6 arbitrary unit). The effect of varying

these parameters on a geon is shown in Figure 3.

We created 6 arbitrary sets of pairs by fixing the parameter values of

the 4 component parts. The distance between the 2 exemplars of a pair

was normalized to 100%, and new points were sampled along this

‘‘identity vector’’ in equal 5% intervals. Each new point defined a set of

parameter values to create a multipart object that was effectively

a ‘‘morph’’ between the 2 end points. Thus, there were 21 objects in

each set including the 2 end points. The objective similarity between

any 2 objects in a set was defined as the percentage of shape difference

along this identity vector. Figure 2 shows intermediate objects for one

set of exemplar pair. There were a total of 126 multipart objects.

The objects were created in 3D Studio Max v8 (Autodesk, Montreal,

Canada). The 3-dimensional coordinates of the vertices and their

corresponding surface normals were imported into custom software

that rendered the parts of the objects with different matte colors. The

body was red, the lateral appendages were yellow, and the frontal

appendage was green. The same color scheme was used for all objects;

therefore, color was not a cue to identity. Rather, the color was pro-

vided to facilitate segmentation of the object into its constituent parts.

The objects were illuminated by several constant light sources. All

objects were rendered against a uniform black background. The object

models and a viewing program are available at: http://www.staff.ncl.

ac.uk/q.c.vuong/smx.html

Design and Procedure
The experiment consisted of a ‘‘same—different’’ discrimination task in

which observers judged whether 2 sequentially presented objects were

the same object or different objects. It was emphasized to observers

that shape differences could sometimes be very small. Therefore, they

should respond as accurately as possible. The experiment conformed to

a 2 3 6 within-subjects factorial design with the motion direction of the

2 objects (same direction and different direction) and the percentage

of shape difference of the 2 objects (0% [same object] to 50% in 10%

increments) as repeated measures. There were 4 experimental runs

conducted while observers were in the scanner. Each run lasted

approximately 7 min. In each run, the 6 sets were used once in each of

the 12 experimental conditions for a total of 72 experimental trials.

There were an additional 12 fixation trials in which there was only

a fixation cross to allow hemodynamic responses to decrease toward

baseline levels that increases the power of the experimental design

(Josephs and Henson 1999). There were thus a total of 84 trials per run

(14% of the trials were fixation conditions). All trials, including fixation

trials, were randomly presented for each run and for each observer.

Across the 4 runs, there were 24 repetitions of each experi-

mental condition. The 4 runs were run sequentially with a short break

(2--3 min) between runs to setup the experiment and give observers

a short rest.

Objects were presented rotating in depth about the vertical axis at

an angular velocity of 60�/s. The starting angle of both the first and

the second object was randomly determined between –90� and 90�,
with 0� representing the frontal view of the objects and ±90�
representing the side views. Thus, observers saw all component parts

Figure 3. Each part of a multipart object is controlled by 3 shape parameters: cross-
section shape, bending, and tapering.
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of an object on most trials. The direction of the first object (clockwise

or counterclockwise) was randomly determined per trial. The direction

of the second object was either in the same direction or in the opposite

direction with respect to the rotation direction of the first object.

The 2 objects were always from the same exemplar pair set. As with the

motion factor, the first object was randomly selected from 1 of the 21

possible objects in a set on each trial. The second object was then

selected so that the percentage of shape difference between it and the

first object was between 0% (same object) and 50% (different objects).

Note that only about 17% of the experimental trials were same trials

(0% shape difference).

Each trial lasted either 4400 or 4500 ms for each observer because

2 different stimulus durations were used. The sequence of events on

a given trial was as follows: there was a 500-ms fixation cross, followed

by the first object, followed by a 500-ms blank period, followed by the

second object, and finally followed by a second blank period. For 4 of

the 15 observers, both the first and the second objects were presented

for 750 ms. For the remaining observers, both objects were presented

for 700 ms. Therefore, the objects rotated a total of 45� or 42� about the
vertical axis on each trial. The observers’ task was to respond same or

different using a scanner-compatible response box at any time after the

onset of the second object (or do nothing during fixation trials). The

mapping between response and button was counterbalanced across

observers. If observers did not respond before 2000 ms after the onset

of the second object, the experiment continued to the next trial. No

feedback was provided. Prior to being put in the scanner, observers

were shown some example trials from the experiment to familiarize

them with the stimulus, task, and response.

Observers laid supine on the scanner bed. The stimuli were back

projected onto a projection screen situated behind the observers’ head

and reflected into their eyes via a mirror mounted on the head coil. The

projection screen was 140.5 cm from the mirror so that the stimuli

subtended a maximum visual angle of approximately 9.0�. A JVC LCD

projector with custom Schneider-Kreuznach long-range optics, a screen

resolution of 1024 3 768 pixels, and a 60-Hz refresh rate was used. The

experiment was run on a 3.2-GHz Pentium 4 Windows PC with 2 GB

RAM and an NVIDIA GeForce 7800 GTX graphics card with 256 MB

video RAM. The program to present the stimuli and collect responses

was written in C and relied on the OpenGL 1.2 interface to the PC’s

graphics hardware.

Image Acquisition
All participants were scanned at the MR Centre at the Max Planck

Institute for Biological Cybernetics. All anatomical T1-weighted images

and functional gradient-echo echo-planar T2*-weighted images (EPI)

with BOLD contrast were acquired from a Siemens Trio 3-T scanner

with an 8-channel phased-array head coil (Siemens, Erlangen,

Germany). The imaging sequence for functional images had a repetition

time of 3000 ms, an echo time of 40 ms, a flip angle of 90�, a field of

view of 256 3 256 mm, and a matrix size of 64 3 64 pixels. Each

functional image consisted of 36 axial slices. Each slice had a thickness

of 3.0 3 3.0 3 2.5 mm with a 0.5-mm gap between slices. This volume

was positioned to cover the whole brain based on the information from

a 13-slice parasagittal anatomical localizer scan acquired at the start of

each scanning session. For each observer, 137 functional images (or

140 for 4 observers who were presented with slightly longer stimulus

durations) were acquired in a single session lasting approximately

7 min, including a 12- and 16-s blank period at the beginning and end

of each run. The first 4 of these images were discarded as ‘‘dummy’’

volumes to allow for equilibration of T1 signal. A high-resolution

anatomical scan was also acquired for each observer with a T1-weighted

MDEFT sequence lasting approximately 12 min.

fMRI Data Preprocessing
Prior to any statistical analyses, the functional images were realigned

to the first image and resliced to correct for head motion. The aligned

images were then normalized into a standard EPI T2* template with

a resampled voxel size of 3 3 3 3 3 mm = 27 mm3 (Friston et al. 1995).

Following normalization, the images were convolved with an 8-mm full

width at half maximum Gaussian kernel to spatially smooth the data.

This smoothing enhanced the signal-to-noise ratio and allowed

comparisons across observers.

fMRI Statistical Analyses
Processed fMRI data were analyzed using the general linear model

(GLM) framework implemented in the SPM2 software package from

the Wellcome Department of Imaging Neuroscience (www.fil.ion.

ucl.ac.uk/spm). A 2-step mixed-effects analysis was used. The first step

used a fixed-effects model to analyze individual data sets. The second

step used a random-effects model to analyze the group aggregate of

individual results. No additional smoothing was used in the second step.

For each observer, a temporal high-pass filter with a cutoff of 128 s

was applied to the preprocessed data to remove low-frequency signal

drifts and artifacts, and an autoregressive model (AR 1 + white noise)

was applied to estimate serial correlations in the data and adjust

degrees of freedom accordingly. Following that, a linear combination of

regressors in a design matrix was fitted to the data to produce beta

estimates (Friston et al. 1995) that represent the contribution of

a particular regressor to the data.

For this study, we modeled the full trial duration from the onset

of the first stimulus to simplify the analyses of neural adaptation across

our experimental conditions (see Appendix for rationale and more

details). There were 12 experimental conditions (2 motion 3 6 shape

difference) and 1 fixation condition. Two sets of regressors were

created for each of these conditions in the following manner. For each

condition, we first modeled the onsets of the first stimulus of each trial

(or the onset time for the fixation trials) as a series of delta functions.

The first set of regressors was created by convolving this series of delta

functions with a canonical hemodynamic response function (HRF).

The HRF was implemented in SPM2 as a sum of 2 gamma functions. The

second set was created by convolving the delta functions with the

first temporal derivative of the HRF. Therefore, there were a total of

26 regressors per experimental run in the part of the design matrix

used to model experimentally induced effects. In addition, the design

matrix also included a constant term and 6 realignment parameters

(yaw, pitch, roll, and 3 translation terms). These parameters were

obtained during motion correction and used to correct for movement-

related artifacts not eliminated during realignment.

For our statistical analysis, contrasts of beta estimates were then

used to create contrast images to assess the main effects of motion

(same motion and different motion), shape difference (0--50%, in 10%

increments), and the interaction between these 2 factors. For all con-

trasts involving the shape difference between the 2 objects, 2 sets of

contrast weights were used. One set of contrasts consisted of linearly

increasing weights over shape difference. For the other set, these linear

weights were scaled by each observer’s proportion of different re-

sponses at each level of shape difference. Consequently, the first set

of weights represents the ‘‘objective’’ shape difference, whereas the

second set represents observers’ ‘‘perceived’’ shape difference. Note

that the contrast weights for the perceived shape difference were

necessarily different for each observer, whereas the contrast weights

for the objective shape difference were necessarily the same for every

observer. For each motion condition, all weights were mean subtracted

so that they summed to zero, as required for a GLM. We only report

the results from the group analysis. In this second level of analysis,

1-sample t-tests were performed on observers’ contrast images for

specific contrasts. For all statistical tests, we used P < 0.05 corrected

for multiple comparisons across the whole brain at the cluster level and

a cluster size threshold of 20 voxels (Poline et al. 1997).

We then compared brain activation between the objective and per-

ceived shape difference as follows. First, we thresholded the statistical

maps from both analyses at P < 0.001, uncorrected. Then for each

cluster identified in the perceived shape difference contrast, we

selected the closest cluster in the objective shape difference contrast.

Finally, we calculated the proportion of overlap and nonoverlap for

each pair of clusters. A similar overlap analysis was recently used

by Schendan and Stern (2007), for example, to compare patterns of

activation for saccades, mental rotation, and object decision tasks.

Lastly, we adapted a correlation method used by Haynes et al. (2005;

see also Macaluso et al. 2000) as a simple means to test for possible

synchrony between brain regions while observers performed the task.
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This synchrony may further help segregate functional roles in a network

of regions by finding regions that have similar time courses. Briefly,

after fitting the BOLD signal data for each observer with the GLM using

SPM2, we calculated the residuals, that is, the nonmodeled signal, by

subtracting the fitted data from the real data from all voxels in our

regions of interest. We then averaged these residuals across voxels

within each region and computed pairwise correlations on the

averaged data. The residuals were used to rule out the possibility that

correlations were driven by our stimulus manipulation or by observers’

responses (i.e., the residuals represent the variance not explained by

these factors).

Results

Behavioral Effects of Shape Difference and Motion

Figure 4 presents the behavioral results. The data consisted of

the proportion of trials observers responded different in each

of the experimental conditions. An omnibus analysis of variance

(ANOVA) on these proportions with motion (same motion and

different motion) and shape difference (0% [same] – 50%) as

repeated measures showed only a main effect of shape dif-

ference, F5,70 = 216.5, P < 0.01. As evident in Figure 4, the

proportion of different responses increased with shape differ-

ences between the 2 objects, irrespective of whether the 2

objects rotated in the same direction or in different directions.

We also estimated each observer’s 75% shape discrimination

threshold separately for the same motion and different motion

conditions by fitting a cumulative Gaussian distribution to

individual data using the psignifit toolbox (Wichmann and Hill

2001). This threshold represents the amount of objective shape

difference needed by that observer to discriminate between

the 2 dynamic objects with 75% accuracy. Consistent with the

ANOVA, there was no difference in shape discrimination

thresholds for the 2 motion conditions, t14 = 1.3, P = 0.22.

The mean percentage of shape difference averaged across

observers at threshold was 40.3% (standard error [SE] = 2.4%)

for the same motion condition and 42.5% (SE = 2.0%) for the

different motion condition.

However, when we calculated the difference between the

same motion threshold and the different motion threshold

for each observer, we found an effect of motion on shape

discrimination thresholds that varied across observers. This

distribution is shown in Figure 5. For some observers, their

discrimination threshold decreased if the 2 stimuli had the

same motion pattern. For others, a reverse pattern was ob-

served. Therefore, this distribution suggests that each individ-

ual’s shape discrimination could be modulated by irrelevant

motion information, which would reflect a form of shape-by-

motion interaction. That is, subtle shape discrimination may

depend on individual observers’ sensitivity to shape and motion

cues (Stone et al. 2000). For example, individuals may vary

in their ability to derive shape estimates from the rotation of

the object.

Although these individual differences can be the result of

chance, we also found similar individual differences in brain

activity, which correlated with these behavioral differences

(see below). This correlation argues against a purely chance

account of the observed individual differences in behavior.

fMRI Data

In parallel with the behavioral results, we found main effects

of both objective and perceived shape difference on BOLD

responses. These main effects could not be accounted for by

task difficulty because we did not find regions that significantly

correlated with observers’ accuracy on shape discrimination

performance (as a measure of task difficulty). Furthermore, in

a region of interest analysis described below, we also found

a motion effect on shape discrimination. These findings are

discussed in the following paragraphs, and further details about

the clusters are provided in Table 1. None of the other

contrasts led to any significant clusters. The supplementary

material presents the statistical parametric maps for the

individual clusters identified in these separate analyses.

Neural Correlates of Shape Differences

Figure 6 shows orthogonal projections of voxels specific to

objective shape differences (light gray, outlined in black),

voxels specific to perceived shape differences (dark gray), and

nonspecific voxels that responded to both objective and

perceived shape differences (black). The peak activation of

each cluster is also plotted in Figure 1 to show their spatial

Figure 4. The proportion of different responses as a function of the percentage of
shape difference averaged across observers. Error bars represent the standard errors
of means across observers.

Figure 5. The distribution of 75% same motion threshold � 75% different motion
threshold for each observer. Thresholds were estimated using a cumulative Gaussian
distribution.
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relationship to previous fMRI studies of shape and motion

perception.

The beta estimates for the different levels of shape

difference for all significant clusters are shown in Figure 7.

For simplicity, the beta estimates are extracted from clusters

identified by the perceived shape difference analysis. This

analysis was chosen because it identified all 4 clusters.

Furthermore, although the objective shape difference contrast

identified slightly different parietal and frontal clusters, there is

substantial overlap between the 2 contrasts for these clusters

so that the beta estimates were essentially the same. As evident

in Figure 7, BOLD responses generally increased as a function

of the shape difference between the pair of objects, suggesting

that all these clusters are involved in processing metric shape

differences.

There also appears to be a decrease in the beta estimates in

all 4 clusters from the 40% shape difference to the 50% shape

difference in Figure 7. Such a nonlinearity would be an

evidence for some degree of qualitative processing of shape.

To test whether this drop is significant, we submitted the beta

estimates for each cluster to separate repeated-measures

ANOVA with shape differences as a within-subjects factors

(averaging across same motion and different motion conditions,

as there was no main effect of motion). Importantly, reverse

Helmert contrasts showed no significant drop in beta estimates

from the 40% to 50% shape difference levels for any of the

clusters. This contrast compares the beta estimate at 1 stimulus

level with the beta estimate averaged across all preceding

stimulus levels to compare successive levels (and based on the

results of the repeated-measures ANOVA). We stress that the

results from these contrasts are consistent with the fMRI

analyses, which showed a significant correlation between

observers’ perceived shape difference and their BOLD re-

sponse. Table 2 summarizes the analysis using the reverse

Helmert contrasts.

In both the objective shape difference analysis and the

perceived shape difference analysis, we found clusters of

voxels in the cortex surrounding the IPS in the left hemisphere

(objective: –24, –64, 53; perceived: –27, –61, 53) and clusters in

the left frontal lobe (objective: –48, 10, 30; perceived: –45, 10,

27). Clusters from both analyses are almost at the same location

(see discussion of overlap below). These findings are consistent

with previous studies that showed that parietal regions are

involved in structure-from-motion processing (e.g., Paradis

et al. 2000; Kriegeskorte et al. 2003; Murray et al. 2003;

Peuskens et al. 2004) and that frontoparietal regions may

be involved in mental rotation and object categorization

(Gauthier et al. 2002; Ganis et al. 2007; Jiang et al. 2007;

Schendan and Stern 2007).

We also found bilateral activation in occipitotemporal cortex

only in the perceived shape difference analysis, consistent with

earlier findings that occipitotemporal regions are directly

involved in processing shape (e.g., Grill-Spector et al. 1998,

1999, 2000; Kourtzi and Kanwisher 2000; Kourtzi et al. 2003).

The Talairach coordinates of the peak activations in these

lateral occipital clusters (right: 48, –61, –5; left: –45, –56, –5) fell

within the spread of LOC coordinates reported in previous

studies (e.g., Malach et al. 1995) but were displaced more lat-

erally and more anterior relative to previous peaks (see Fig. 1).

Overlap between Objective and Perceived Shape
Differences

To further investigate the sensitivity of significant clusters to

objective and perceived shape differences, we compared the

spatial overlap between voxels across the whole brain that

responded to objective shape differences and those that

responded to perceived shape differences (Schendan and Stern

2007). Table 3 presents the percentage of overlap between

these 2 contrasts (P < 0.001, uncorrected). We highlight 2 main

findings from this analysis. First, clusters in the occipitotem-

poral cortex are predominantly driven by perceived shape

differences. There is only a 10.3% overlap of voxels between

the objective and the perceived set of contrast weights for the

right occipitotemporal cluster and a 10.8% overlap for the left

cluster. Second, by comparison, voxels in parietal and frontal

cortices are driven by either objective or perceived shape

Table 1
The 4 clusters identified by the perceived shape difference contrast (1--4), the 2 clusters

identified by the objective shape difference contrast (5--6), and the single cluster identified by the

effect of motion on shape discrimination (7)

Cluster Coordinates Z score Pcorr Volume
(mm3)

Structure

x y z

1 �45 �56 �5 3.60 0.035 999 Left lateral occipital
(inferior temporal gyrus)

2 48 �61 �4 3.78 0.028 1053 Right lateral occipital
(inferior temporal gyrus)

3 �27 �61 53 4.18 0.01 1323 Left superior parietal lobule
4 �45 10 27 4.56 0.000 2430 Left middle frontal gyrus
5 �24 �64 53 4.18 0.004 1512 Left superior parietal lobule
6 �48 10 30 4.22 0.000 2106 Left middle frontal gyrus
7 �59 �48 25 3.58 0.036 108 Left posterior superior

temporal gyrus

Note: Note that the P value for cluster 7 was corrected by a SVC for STS.

Figure 6. Maximum intensity projection images of the fMRI data (L 5 left;
R 5 right; A 5 anterior; P 5 posterior). Significant activation for the objective
shape difference analysis (light gray regions, outlined in black) and the perceived
shape difference analysis (dark gray regions). The overlap between these 2 analyses
is shown in black. See also Table 2. Thresholds for both analyses were Height:
t14 5 3.79, Extent: k 5 20.
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differences, as indicated by the large amount of overlapping

voxels (66.7% for the parietal cluster and 71.4% for the frontal

cluster). It is important to emphasize that although observers’

performance are highly correlated with objective shape

difference (i.e., the perceived and objective contrast weights

are correlated), activation in occipitotemporal regions are

almost exclusively driven by perceived shape difference.

Time Course of Residual Activation

To assess whether these clusters show similar activation

patterns over and above any similarity of response induced by

our experimental conditions, we tested the pairwise correla-

tions between residual time courses (Macaluso et al. 2000;

Haynes et al. 2005). These residuals are fluctuations in the

BOLD signal not explained by our GLM. We used this residual

analysis only to make ‘‘relative comparisons’’ of possible shared

pattern of activation between cluster pairs, which may reflect

their stimulus- and response-independent neural synchrony

for our task. Table 4 shows pairwise correlations across the 4

clusters from the perceived shape difference analysis. Consis-

tent with the overlap analysis above, we found the largest

pairwise correlations between the left and the right occipito-

temporal clusters, r = 0.67, and between the parietal and the

frontal clusters, r = 0.68. The other pairwise correlations for

these 4 clusters ranged from r = 0.46 to r = 0.55 (see Table 3).

That is, regions that responded with the same degree of

specificity to objective or perceived shape differences also had

similar residual time courses. The higher correlations across

hemispheres and across parietal and frontal lobes indicate that

these correlations are not necessarily due to artifacts such as

smoothing or spatial proximity.

Figure 7. The beta estimates from the perceived shape difference analysis as a function of the percentage of shape difference. The estimates were extracted from the clusters
as indicated in Materials and Methods. These estimates were first averaged across voxels in each cluster and then averaged across observers. Error bars represent the standard
errors of means across observers. Similar functions were obtained for parietal and frontal regions if the estimates were extracted from these regions based on the objective shape
difference contrast.

Table 2
F values with 1 and 14 degrees of freedom for the reverse Helmert contrasts of beta estimates

for the 4 clusters identified by the perceived shape difference contrast

10% 20% 30% 40% 50%

1 Left lateral occipital
(inferior temporal gyrus)

0.52 17.80** 7.27* 24.19** 0.45

2 Right lateral occipital
(inferior temporal gyrus)

1.24 0.13 3.20 12.82** 0.08

3 Left superior parietal lobule 0.03 0.21 12.81** 26.47** 1.41
4 Left middle frontal gyrus 0.27 0.48 17.99** 20.68** 0.43

Note: Each F value compares the current shape difference level with the mean of all

preceding levels.

*P\ 0.05.

**P\ 0.01.
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Effect of Motion on Shape Discrimination

As discussed in the behavioral results and shown in Figure 5,

motion direction had different effects on individual observers’

75% discrimination threshold, which may reflect an interaction

between shape and motion cues. To test for neural regions that

responded to this interaction, we used the regression model in

SPM2 to find voxels in which there is a correlation between

individual observers’ difference in threshold (same motion

threshold – different motion threshold) and a corresponding

difference in their BOLD signal (same motion beta estimate –

different motion beta estimate). An initial whole-brain analysis

revealed a small cluster in left STS that did not survive our

stringent corrections for multiple comparisons across the

whole brain (P < 0.001, uncorrected; left: –59, –48, 25; Z

score = 3.58; 135 mm3). There was one other small cortical

cluster in frontal region (left: –39, 24, 4; Z score = 3.53; 54

mm3) that reached the same uncorrected P value. Statistical

parametric maps for these 2 clusters (P < 0.001, uncorrected)

are shown in the supplementary material.

We were, however, motivated to focus our analysis in

cortical surfaces along posterior STS because several studies

have shown that regions here integrate shape and motion cues

(e.g., Grossman et al. 2000). We defined anatomical regions to

perform a small volume correction (SVC) for multiple

comparisons of voxels within these regions along STS (Poline

et al. 1997). Like analyses across the whole brain, SVC uses

random field theory to correct for multiple comparisons within

the smaller defined regions. These regions were defined on the

basis of an anatomical atlas of the human brain (Duvernoy

1999) and drawn using MRIcro software (Rorden and Brett

2000; www.mricro.com). The region in left STS extended from

–67 to –51 mm in the x dimension, from –64 to –32 mm in the y

dimension, and from 5 to 29 mm in the z dimension. The region

in right STS extended from 50 to 69 mm in the x dimension,

from –63 to –35 mm in the y dimension, and from 1 to 28 mm in

the z dimension. The volumes were 6049 mm3 for the left STS

and 7284 mm3 for the right STS. As shown in Figure 8, within

these search regions, we found again the small cluster in the

left posterior STS that was also identified in the whole-brain

analysis that showed significant correlation between individual

threshold differences and individual BOLD signal differences.

This cluster survived correction for multiple comparisons

across all voxels of the search regions (left: –59, –48, 25;

P < 0.05, SVC; Z score = 3.58; 108 mm3).

To highlight this correlation between brain and behavior,

Figure 9 shows a scatterplot of the beta estimate difference

and the threshold difference for the same motion and different

motion condition per observer. The beta estimates were

extracted from the voxel in the cluster that showed the peak

activation. There is a significant negative correlation, r13 = –0.80,

P < 0.001, which suggests that activations in left posterior

STS are modulated by individual observers’ sensitivity to shape

and motion cues. This modulation was suggested by previous

behavioral results (Stone et al. 2000). Again, we stress that the

correlation between BOLD signal differences and behavioral

threshold differences across observers provides strong sup-

port that these individual differences in either brain or

behavior are not due to chance.

Task Difficulty

Our main hypothesis is that BOLD responses are driven by

either objective or perceived shape differences between object

pairs. Another possibility—which is not necessarily mutually

exclusive with this hypothesis—is that BOLD responses may

be driven by the difficulty of the shape discrimination. To test

for this task difficulty, we looked for brain regions that cor-

related with observers’ accuracy on the shape discrimination

task.

For this analysis, we scaled linear contrast weights by each

observer’s proportion of correct responses (i.e., responding

same at 0% shape difference and responding different at all

other levels of shape difference) rather than their proportion of

different responses. Again, for each motion condition, all

weights were mean subtracted so that they summed to zero.

This analysis revealed no significant clusters using the same

stringent threshold used for the other analyses (P < 0.05,

corrected for multiple corrections across the whole brain).

There were, however, small bilateral clusters in the anterior

portions of temporal cortex and parahippocampal regions

that survived a less stringent threshold, P < 0.001, uncorrected

(right: 53, –18, –17, Z score = 3.58, 216 mm3; left: –45, –18, –12,

Z score = 3.68, 270 mm3; left: –24, –33, –21, Z score = 3.65,

405 mm3). These clusters, unlike the cluster reported earlier

in the STS, did not lie within areas known or thought to be

of particular importance for object recognition or motion

perception. The areas in which these clusters lie were thus

not of a priori interest in our study, and we did not have

predefined search regions of interest as we did for the STS.

As before, statistical parametric maps for these clusters

(P < 0.001, uncorrected) are shown in the supplementary

material.

Table 3
The percentage of overlap and specificity for the objective and perceived shape difference

contrasts

Structure % Overlap % Specificity Number of voxels

Objective Perceived Objective Perceived

Left lateral occipital
(inferior temporal gyrus)

10.8 2.7 86.5 5 36

Right lateral occipital
(inferior temporal gyrus)

10.3 0.0 89.7 4 39

Left superior parietal
lobule

66.7 22.2 11.1 56 49

Left middle frontal gyrus 71.4 8.2 20.4 78 90

Note: The union of these 2 contrasts resulted in a total number of significant voxels in each of

the 4 structures indicated. From this total number of voxels, the percentage of overlap was

computed as the intersection of the 2 contrasts (i.e., contrast A and contrast B), and the

specificity for each contrast was computed as the percentage of voxels unique to a particular

contrast (e.g., contrast A and not contrast B). Percentages in each row sum to 100%.

Table 4
Pairwise correlations of residual time courses between clusters identified by the perceived shape

difference contrast

1 2 3 4

1 0.67 (0.09) 0.55 (0.15) 0.53 (0.13)
2 0.48 (0.12) 0.46 (0.08)
3 0.68 (0.05)

Note: These correlations were computed for each observer and then averaged across observers.

Parentheses are standard deviations across observers. The shaded correlations reflect the

occipitotemporal pair and the frontal--parietal pair. 1 5 left lateral occipital; 2 5 right lateral

occipital; 3 5 left superior parietal lobule; 4 5 left middle frontal gyrus.
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Discussion

In the present study, observers were required to integrate

shape and motion information across low-level visual cues (e.g.,

particular views) and early visual processes (e.g., structure from

motion or segmentation) to successfully discriminate objects

that had metric differences in their 3-dimensional shape. We

found that performance on this task correlated with neural

activity in regions along ventral and dorsal streams, which have

previously been shown to play important roles in shape per-

ception and object recognition. Furthermore, this performance

is due to the processing of 3-dimensional shape differences

rather than the difficulty of the task per se.

Our main findings are as follows. First and most critically, we

found that lateral occipital regions early in the visual hierarchy

process perceived shape differences irrespective of motion

direction. Grill-Spector, Kourtzi and their colleagues have

shown that LOC responds to familiar and novel objects that

have large variations in 2-dimensional and 3-dimensional shapes

(e.g., Malach et al. 1995; Grill-Spector et al. 1998, 1999, 2000;

Kourtzi and Kanwisher 2000; Kourtzi et al. 2003). Recently,

Hayworth and Biederman (2006) showed that LOC processes

parts defined by nonaccidental image properties rather than

local image features. These parts also had large shape variations

across objects. At the same time, all these researchers have

shown a degree of invariance in LOC with respect to object

parts, image size, position, and viewpoint and with respect to

the visual cues that define shape (e.g., luminance, texture, or

motion). Our results imply that lateral occipital regions are

not invariant to subtle shape changes as perceived by the

observers, but these regions are invariant to motion. Thus, in

contrast to these previous studies, our parametric manipulation

of shape revealed subtle metric shape processing in LOC. This

perceptual sensitivity to shape is important as subtle changes to

the shape of an object could imply a change in object identity.

The fine-grain analysis of shape reported here has been

demonstrated further downstream in the fusiform gyrus. For

example, Jiang et al. (2006) recently found that responses

in this region were correlated with the objective similarity

between pairs of morphed faces. This region also seems to

be recruited in recognizing visually similar exemplars of the

same category such as faces, birds, dogs, and cars (e.g., Gauthier

et al. 1997). Interestingly, Rotshtein et al. (2005) also found

that the fusiform face area responded to perceptual differences

between morphed famous faces (e.g., Margaret Thatcher and

Marilyn Monroe), whereas earlier occipital face areas

responded to physical differences. Recent fMRI findings also

suggest that fine-grain shape analysis by regions along

occipitotemporal cortex requires some degree of training

(e.g., Gauthier and Tarr 2002; Op de Beeck et al. 2006; Jiang

et al. 2007). Importantly, in contrast to previous studies, we

find metric shape discrimination early in the visual hierarchy

without explicit training (each observer received a total of

336 discrimination trials with no feedback). Along a related

line, our findings extend earlier fMRI work, which looked at

perceptual similarity and categorization. Edelman et al. (1998),

for example, found a correlation between the clustering of

categories (e.g., car and fish) based on brain activity in LOC and

clustering based on human similarity ratings.

Second, we found that parietal and frontal regions are also

engaged in processing metric shape differences. This finding

provides evidence that parietal regions play a role in object

recognition beyond recovering 3-dimensional shape informa-

tion from retinal motion signals as found in previous studies

(Paradis et al. 2000; Kriegeskorte et al. 2003; Murray et al. 2003;

Peuskens et al. 2004). If parietal regions only or predominantly

recovered shape from motion, then we would not have

expected this region to respond systematically to the shape

difference between objects as the information to recover shape

from motion was constant (i.e., every object rotated by the

same amount). Similarly, our results suggest that frontal regions

may also be involved in metric shape discrimination for

recognition purposes. Consistent with this claim, other fMRI

studies have further shown that parietal and frontal regions are

involved in both mental rotation and recognition of static

images (Gauthier et al. 2002; Ganis et al. 2007; Jiang et al. 2007;

Schendan and Stern 2007). It is important to note, however,

Figure 8. Maximum intensity projection images of the search region in the left and
right posterior STS (light gray regions) and the significant cluster from the effect of
motion on shape discrimination (black region) (L 5 left; R 5 right; A 5 anterior;
P 5 posterior). The search region was used for SVC (P\ 0.05, SVC). Threshold was
Height: t13 5 3.85, Extent: k 5 0.

Figure 9. A scatterplot showing the correlation between the difference of beta
estimates and the difference of 75% thresholds for the same motion and different
motion conditions in the STS cluster. Each point represents an observer.
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that both parietal and frontal regions do not show the same

specificity to perceived shape differences as occipitotemporal

regions (see Fig. 6), suggesting that clusters in ventral and

nonventral streams may have different, but potentially com-

plementary, functional roles in the recognition process. Note

again that task difficulty cannot explain the BOLD responses

to shape differences in these regions as responses in these

regions did not correlate with observers’ accuracy.

In line with this functional segregation of regions, our

analysis of residuals (i.e., BOLD signals that were not explained

by our experimental design) revealed an interesting temporal

pattern of activation across regions in occipitotemporal, pari-

etal, and frontal cortices. We found that clusters in occipito-

temporal cortex had similar residual time courses and both had

the same specificity to perceived shape difference. Likewise,

clusters in frontal and parietal cortices had similar residual

time courses and both responded to objective and perceived

shape differences. Thus, regions with correlated residuals may

be involved in similar processes, such as encoding perceived

shape or estimating shape from motion signals for recognition

purposes. This synchronous neural activity between regions

may therefore reflect important interactions between regions

(Macaluso et al. 2000; Haynes et al. 2005).

Lastly, we found a small modulatory effect of task-irrelevant

motion direction on BOLD signals only in left STS when we

restrictedour analysis to anatomically definedbilateral STS regions.

This small modulation is somewhat surprising because previous

findings found strong STS responses in the perception and

recognition of facial and bodymotion that requires the integration

of shape and motion cues (e.g., Grossman et al. 2000; Puce et al.

2003; for similar integration by neurons in superior temporal

polysensory area, the monkey homologue of STS, see Oram and

Perrett 1994). This small modulatory effect in our study under-

scores the fact that shape information often plays the dominant

role in object recognition (Tarr and Bülthoff 1998; Vuong and

Tarr 2006). However, the significant modulation suggests that

STS can integrate shape and motion cues for unfamiliar objects,

even if motion cues are not relevant for the task. By

comparison, previous studies have found strong STS activation

for highly familiar dynamic stimuli (such as faces and bodies) in

which the motion was relevant for the task. Importantly, the

extent to which this integration occurs may depend on individual

observers’ sensitivity to these separate cues. Future work using

a variety of paradigms and stimuli is needed to characterize the

role of STS and possibly other areas involved in the integration of

shape and motion cues. For example, work in preparation

by Sarkheil, Vuong, Bülthoff and Noppeney (unpublished data)

found adaptation effects in hMT+/V5 that depended on shape

and motion using an fMRI adaptation paradigm.

Connections with Single-Cell Recordings in Monkey
Inferior Temporal Cortex

Our fMRI results in lateral occipital regions have interesting

parallels to single-cell recording studies in macaque monkeys.

In particular, Kayaert et al. (2003, 2005) found neurons in

inferior temporal cortex that responded in a graded fashion to

quantitative variations in shape, although these neurons were

generally more sensitive to qualitative shape changes (what the

researchers referred to as nonaccidental properties; Vogels

et al. 2001). The parameters of 2-dimensional and 3-dimen-

sional shapes of Kayaert et al. (2003, 2005), such as curvature,

are similar to the shape parameters used here. Importantly, the

inferior temporal region in monkeys is a likely homologue of

LOC in humans. Thus, our results also help bridge findings in

human fMRI and monkey single-cell recordings.

Implications for Theories of Object Recognition

Our finding that several regions, particularly early shape

processing regions such as LOC, are involved in the discrim-

ination of metric shape differences between dynamic objects

has 2 important implications for theories of object recognition.

Consistent with the majority of behavioral data, our findings

suggest that the human visual system encodes metric repre-

sentations as opposed to qualitative shape primitives in the

visual processing hierarchy (Tarr and Bülthoff 1998). At the

same time, our results show that motion has behavioral and

neural consequences on individual observers’ performance

even though this information was not relevant for the task. This

finding implies that theories of object recognition need to

explain, at least to some extent, how dynamic information is

represented. Neural models that integrate both shape and

motion cues have been developed for biological motion

perception but can naturally be extended to dynamic objects

(Giese and Poggio 2003).

Conclusion

The present results point to a network of occipitotemporal,

parietal, and frontal regions that work in tandem for dynamic

object recognition (see Fig. 1). In this network, there are fur-

ther functional segregations of regions into complementary

processes hypothesized for object recognition. First, ventral

regions encode perceived shape as opposed to objective shape.

Second, parietal and frontal regions contribute further to pro-

cessing objective shape differences (e.g., through estimating

structure from motion). Lastly, there are small contributions

from STS that reflect individual observers’ sensitivity to shape

and motion cues. This study therefore provides a promising

empirical link between different early visual processes and

higher level object recognition. Overall, these results integrate

a diverse set of studies that have identified individual regions

that process specific cues into a single dynamic object-

processing network.
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Appendix

The SPM2 regressors we used to analyze the data were

created by convolving delta functions time locked to the start

of each trial with the canonical HRF. These single delta
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functions are a simplification of the neural signal we would

expect during a trial composed of 2 stimuli and with varying

degrees of neural adaptation to the second stimulus. To show

the validity of our analysis, we compared mean time courses

extracted from the significant clusters in the lateral occipital

cortex with calculations of the expected BOLD response to

varying degrees of adaptation.

These calculations were made as follows. We created a time

series in which boxcar functions represent periods of neural

activity for each trial. The durations of these boxcars were the

duration of the trial events (i.e., 700 or 750 ms for each

stimulus, with a 500-ms interstimulus interval). The height of

these boxcar functions represented the intensity of neural

activity. To model the neural events on a given trial, we set the

height of the boxcar functions for the first stimulus to a height

of 1 arbitrary unit and the height of the boxcar function for the

second stimulus to either 1 unit (representing no adaptation)

or some fraction of a unit (representing adaptation). We then

convolved these boxcars with the canonical HRF to calculate

the time course of the expected BOLD signal. The event-

related time courses time locked to the onset of the first

stimulus are plotted in Figure A1. Two observations are evident

in the leftmost plot of the expected response. First, the general

form of the response, with or without adaptation, is of the same

shape as the canonical HRF. Second, the effect of adaptation is

mostly evident as a change in height (smaller with increasing

adaptation) with negligible shifts of the peaks in time (earlier

with increasing adaptation). These results are compatible with

previous work on BOLD signal adaptation (Grill-Spector et al.

2006). Of course, these expected effects are to be taken with

caution, as neither the BOLD signal is perfectly modeled by this

canonical HRF nor are the responses to 2 stimuli perfectly

additive. However, the effect seen in these simulations allowed

us to expect findings in an SPM-based GLM analysis.

The middle and rightmost plots of Figure A1 show the

observed event-related time course averaged across voxels in

occipitotemporal clusters for a single subject. As evident in

these plots, we found decreasing response heights for in-

creasingly similar stimulus pairs. As these clusters were iden-

tified using the regressors described above, these regressors

were effective in identifying regions with BOLD signal corre-

sponding to the adaptation profile predicted from our experi-

mental design. Deviations from the expected effects seen in

the middle and rightmost panels could be due to the smaller

precision of trial-based averages compared with the weighted

least squares fitted GLM analyses performed using SPM2.
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