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Neural Representations of Objects

1. How Small Numbers of Neurons Code
Information About Objects

One of the most commonly measured units of rep-
resentation in the brain is the neuron. Somewhat
surprisingly, functional information about objects

seems to be coded at this incredibly fine scale. Single-
unit recordings of neurons in the visual cortex reveal
activity that is often tuned to individual objects or
classes of objects. That is, a particular stimulus object
presented in the receptive field of a given neuron will
produce significantly greater activity (more spikes per
second) in that neuron as compared to any other tested
stimulus (typically a varied assortment of natural and
artifactual objects). For example, neurons in many
cortical extrastriate areas (the part of the primate
brain that is thought to support high-level vision,
including object recognition) in the monkey brain are
highly selective to primate faces and, sometimes, even
individual faces, and recent evidence has revealed
similar selectivity for many classes of familiar objects
(Sheinberg and Logothetis 2001). There is similar
evidence for cortical neurons specifically tuned to
individual nonface objects, at least when the stimuli
are highly familiar to the monkey (Logothetis and
Sheinberg 1996). At the same time, few researchers
believe that single neurons actually code for individual
objects. Rather, it is commonly held that large
populations of neurons represent objects or object
classes in a distributed fashion. Some evidence for this
hypothesis is provided by single-unit studies that
systematically decompose the response of a given
neuron by exploring which particular features of an
object are actually driving neural activity. It is often
the case that the maximum response is maintained
when only schematic elements of the object are
presented, suggesting that single neurons must work in
concert to represent an object (Tanaka 1996).

To the extent that individual neurons participate in
the representation of a given object, there remains the
question of the format of this representation (Marr
1982). Object representations can be more or less
invariant over changes in the appearance of the object
in the image (see Object Recognition: Theories). Ideal-
ly, perception and recognition should remain robust
when an object is moved, rotated, or illuminated
differently. Most object-tuned neurons exhibit some
invariance: the level of response to a preferred object is
not dramatically affected by changes in the size or the
spatial position of an object for which a given neuron
is selective. On the other hand, these same neurons
often show great sensitivity to changes in orientation,
viewpoint, and illumination direction. For example, a
large percentage of object-tuned neurons are also
‘view-tuned’ in that they show the highest level of
activity to specific objects in specific viewpoints. Face-
selective neurons may respond most strongly when
presented with a frontal view of a face, but show a
progressively diminished response as the face rotates
away from this viewpoint. Similarly, in the visual
cortex of monkeys taught to recognize novel objects,
neurons that become selective for these objects are
typically highly tuned to the particular viewpoints
used during training. These findings are consistent
with much of the behavioral data on object recogni-
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tion, where recognition performance is often strongly
dependent on the familiarity of a given viewpoint
(Tarr and Bu$ lthoff 1998). Thus, at the finest scale of
analysis, single neurons participate in the represen-
tation of objects in a manner that is invariant over
size and location, but specific to viewpoint and
illumination.

1.1 Hierarchical Processing in the Visual Cortex

How can single neurons or populations of neurons
code the complex patterns and feature conjunctions
present in most objects? Many models of object
recognition assume that the answer is that object- or
feature-tuned neurons are the end-point of a hierarchy
of progressively more and more complex visual codes
(see Visual System in the Brain). Supporting this
approach, neurons in the earliest visual areas (see
Occipital lobe) respond to very simple generic proper-
ties of objects, for instance, oriented edges or blobs of
color. As one moves ‘up’ the visual pathway (see
Dorsal and ventral visual systems) the coding becomes
more and more elaborate, with neurons at one level
having responses that generally code more complex
properties of objects than the level(s) below them (Van
Essen and Maunsell 1983). The principle behind this
hierarchy is straightforward: from one level to the
next, neurons respond only if they receive input from
multiple neurons, thereby creating a code that is
necessarily more complex than the individual inputs.
This many-to-one principle not only pools informa-
tion in the straightforward sense, but because of the
pattern of connectivity from one layer to the next,
assembles new and more complex features as one
moves up the hierarchy. Given the strong evidence for
this sort of feed-forward processing in the visual
system, many computational models, even those that
are quite dissimilar in other respects, have adopted a
hierarchical processing architecture to assemble com-
plex object features (Hummel and Biederman 1992).
Although the hierarchical approach is appealing, some
computational theorists have pointed out that con-
structing complex features in this fashion may lead to
overly specific object representations. For instance,
imagine using the features present in the image to
derive a very precise description of an object. If the
object is then rotated in depth how does one combine
the new very precise description with its predecessor?
To address this need for invariance over changes in the
image, some computational models have adopted a
hierarchical architecture in which there is an alter-
nation between conjunctions of features—the stan-
dard hierarchical model—and disjunctions of features
(Riesenhuber and Poggio 1999). For example, one
layer might consist of neurons that respond only if
they receive input from a collection of neurons coding
for simpler features, while the next layer might consist

of neurons that respond if they receive input from any
of several neurons. This sort of hierarchical coding is
exemplified by a single neuron that codes for a three-
dimensional object regardless of its orientation, but
only by virtue of the fact that this view-invariant
neuron is driven by any one of several view-tuned
neurons, each coding for a different viewpoint of the
same object (Logothetis and Sheinberg 1996).

1.2 The Building Blocks of Object Representation

The hierarchical organization of the visual cortex
suggests that objects are represented in terms of a
‘vocabulary’ of features constructed from simpler
features (Marr 1982). This assumption implies that
somewhere between orientation-tuned neurons in
early vision and object-tuned neurons at the highest
levels of the visual system, are neurons representing
the critical features that distinguish one object from
another. Under one view, these critical features should
look something like object parts; intuitively the first
level of decomposition when we look at objects (Marr
1982). There is, however, little evidence to indicate
that neurons coding for parts as we know them are the
precursors to object-tuned neurons. When the re-
sponses of neurons in intermediate and high-level
visual areas are systematically decomposed, they show
consistent responses to patterns that are more complex
than edges, but less complex than objects. However,
these ‘features’ appear arbitrary, coding for odd,
almost random shape properties. For example, one
neuron might respond most strongly to a lollipop
shape, while another neuron might respond to a eight-
point star. While such features may appear to be
random or, at best, schematic versions of certain
objects, they are not arrayed haphazardly across the
visual cortex. Rather, as with most visual areas, there
is a columnar organization in which neurons within a
column all code for the same feature and adjacent
columns tend to code for similar features, albeit with
columnar boundaries sometimes representing drama-
tic changes in feature selectivity (Tanaka 1996). It is
worth noting that although such features might
provide the ‘building blocks’ for representing objects,
there is, at present, no plausible account that can
explain how this occurs or why these particular
features are used.

2. How Large Numbers of Neurons Code
Information About Objects

As discussed above, despite neurophysiological results
that seem to indicate that objects are represented by
single neurons, there is little fondness for this stance.
Many researchers have observed that single-unit
methods limit the direct measurement of simultaneous
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Figure 1
A novel object known as a ‘Greeble’

neural activity to small numbers of units and it is only
by considering single neuron responses in the context
of population codes that we can understand the true
nature of object representation (Booth and Rolls
1998). Thus, to the extent that a given neuron plays a
larger role in the representation of one object over all
other objects (or at least tested objects), a single-unit
approach may bias the experimenter to interpret the
neural response as ‘tuned’ for one object. The critical
point is that this preference is not equivalent to
‘representation.’ Even if a neuron does not respond
maximally to a given object, its partial (or even low)
response may be part of the code by which a complex
object is represented. Thus, individual objects and
classes of objects may be represented by ensembles of
1,000s or 1,000,000s of neurons—something impos-
sible to assess completely using neurophysiological
measurements. In contrast, neuroimaging (Positron
Emission Tomography—‘PET’; and functional Mag-
netic Resonance Imaging—‘fMRI’) indirectly
measures the conjoint activity of large numbers of
neurons; the smallest unit of measurement being about
a 3mm$ ‘voxel’ which encompasses approximately
1–2 million neurons.

2.1 Category Selecti�ity in the Visual Cortex

The neural representation of objects at this larger
scale, as measured by PET or fMRI, reveals a degree
of organization in extrastriate areas that mirrors the
selectivity observed at the single-neuron level. That is,
much as individual neurons respond preferentially to
individual objects, localized regions of the visual

cortex respond preferentially to classes of objects.
Moreover, as with neurophysiological methods, the
clearest preferences are obtained with highly-familiar
object classes. A region of the visual cortex known as
mid-fusiform gyrus (midFG) shows significantly
higher activity when observers view faces as compared
to when they view common objects (Kanwisher 2000).
Similar selectivity for small regions of the cortex near
the midFG has been found for letters, places, houses,
and chairs. Thus, object classes appear to be repre-
sented minimally by large numbers of neurons in
localized regions of the extrastriate cortex.

However, even this level of analysis may be mis-
leading. Evidence for localized category-selective cor-
tical regions comes from neuroimaging methods that
compare the activation observed for one object class,
e.g., faces, to a second object class, e.g., flowers. In
truth, viewing any class of objects produces a pattern
of activity across much of the ventral temporal cortex
that is different from the activation pattern obtained
for any other class. These differences, however, are
often subtle and relatively small compared to the large
differences seen between highly-overlearned categories
such as faces and less familiar objects. Such differences
may be critical elements in the complete neural code
for objects; if so, objects and classes of objects may be
represented as large-scale networks of neurons distri-
buted over much of the visual cortex.

2.2 The Origins of Category Selecti�ity

If category selectivity is not a marker for the rep-
resentation of objects per se, how can we explain the
preferential responses obtained in localized regions of
the visual cortex? One interpretation is that the visual
cortex is organized into dedicated modules that are
prewired to be selective for the geometries of particular
object classes (Kanwisher 2000). Alternatively, cat-
egory selectivity may reflect particular computations
that, with experience, become automatically executed
on distributed representations of objects and classes
(Tarr and Gauthier 2000)—the ‘Process Map’ hypo-
thesis. Again, the most salient example is faces: we
are trained from birth to recognize faces at the
individual level. The result of this lifetime experience is
that, as adults, we are experts at processing faces and,
by default, apply a degree of perceptual analysis that is
not necessary for recognizing objects at more cat-
egorical levels. This interpretation suggests that the
same computational resources should be applied to
any object class (not just faces) for which observers are
experts at recognizing individuals. Several studies bear
out this prediction. Neuroimaging reveals that both
car and bird experts show selectively higher activation
in midFG for their domain of expertise. Similarly, for
novel classes of objects (e.g., ‘Greebles’; see Fig. 1),
trained experts, but not untrained novices, exhibit
increased midFG activation for the trained object
class (Tarr and Gauthier 2000). Apparently, visual
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experience with many similar objects ‘tunes’ midFG,
as well as other category selective extrastriate areas, to
respond automatically when those or other objects
from the class are seen again (see Neural Plasticity).
Consequently, category selectivity is perhaps best
understood as a consequence of how experience re-
organizes the visual recognition process, rather than
an indicator of how objects themselves are neurally
represented.

3. The Functional Role of Localized Brain
Regions in Object Representation

Neuroimaging methods are useful for localizing where
in the brain particular computations occur, but are less
informative regarding the different roles these neural
substrates play in producing behavior. In contrast,
neuropsychological methods allow us to explore defi-
cits in behavior as a direct consequence of brain
injuries to particular brain regions. Given the neuro-
imaging results discussed in the previous section,
damage to category-selective areas such as midFG
should impair face recognition, and, perhaps, perfor-
mance in any difficult individual-level recognition
task. Such neuropsychological cases have been docu-
mented: Patients who suffer damage to extrastriate
visuals areas often lose the ability to recognize many
or all object classes—a syndrome known as agnosia
(see Agnosia). Although these patients are grouped
under a single label, agnosia includes damage to many
different cortical regions and many different recog-
nition deficits.

Accounts of category selectivity as revealed by
neuroimaging argue for either modular subsystems
organized by geometrically-defined object classes or
for a flexible process map of distributed representa-
tions and processing mechanisms that are recruited by
expertise and individual-level recognition. If the mod-
ularity argument is correct, then damage to the module
specialized for faces should only result in deficits at
face recognition but no deficits in nonface object
recognition. Conversely, damage to the module
specialized for objects or classes of objects should only
result in deficits in object recognition, but not face
recognition. The logic of the double dissociation
method is clear: if two distinct brain regions perform
independent functions, then lesions to one region
should not affect the functioning of the other region
and vice versa. Alternatively, if the process map model
is correct and processing mechanisms can be recruited
for the recognition of any object class, there should be
common deficits in face and object recognition when
there is damage to the ventral temporal cortex. It is
critical, however, that the recognition tasks be equated
in such comparisons: spurious differences may be
found simply because different computational compo-
nents of the recognition process are being recruited for
different tasks.

3.1 Patterns of Sparing and Loss in Visual Object
Recognition

Given knowledge about the location of the brain
damage in an individual, a clear pattern of sparing and
loss may help reveal the functional role of intact and
damaged brain regions (see Cogniti�e Neuropsych-
ology, Methodology of ). Patients with injuries to their
ventral temporal cortex often suffer a specific form of
agnosia referred to as prosopagnosia (see Prosop-
agnosia) in which face recognition appears to be
disproportionally impaired relative to object recog-
nition (Farah 1990). At the same time, there is one
case study in which the brain-injured patient appears
to have intact face recognition, but severely impaired
object recognition. Although this pattern is consistent
with the modularity account, further examination of
prosopagnosia does not support this conclusion.
When patients with apparent face recognition deficits
perform difficult individual-level discriminations with
nonface objects (e.g., snowflakes), they show equal
impairment with faces and nonfaces (Gauthier et al.
1999). Thus, neuropsychology yields a mixed bag of
results supporting both modular and nonmodular
accounts.

See also: Agnosia; Binding Problem, Neural Basis of;
Face Recognition Models; Face Recognition: Psych-
ological and Neural Aspects; Neural Synchrony as a
Binding Mechanism
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Neuronal Synchrony as a Binding

Mechanism

Neuronal systems have to solve immensely complex
combinatorial problems and require efficient binding
mechanisms in order to generate representations of
perceptual objects and movements. In the context of
cognitive functions, combinatorial problems arise
from the fact that perceptual objects are defined by a
unique constellation of features, the diversity of
possible constellations being virtually unlimited.
Combinatorial problems of similar magnitude have to
be solved for the acquisition and execution of motor
acts. Although the elementary components of motor
acts—the movements of individual muscle fibres—are
limited in number, the spatial and temporal diversity
of movements that can be composed by combining the
elementary components in ever-changing constel-
lations is again virtually infinite. In order to establish
neuronal representations of perceptual objects and
movements the manifold relations among elementary
sensory features and movement components have to
be encoded in neural responses. This requires binding
mechanisms that can cope efficiently with combi-
natorial complexity. Evolved brains have acquired an
extraordinary competence to solve such combinatorial
problems and it appears that this competence is a
result of the evolution of the cerebral cortex.

1. Two Complementary Binding Strategies

In the primary visual cortex of mammals, relations
among the responses of retinal ganglion cells are
evaluated and represented by having the output of
selected arrays of ganglion cells converge in diverse
combinations onto individual cortical neurons. Distri-
buted signals are bound together by selective con-
vergence of feed forward connections (Hubel and
Wiesel 1962). Through iteration of this strategy
neurons in higher cortical areas acquire increasingly
sophisticated response properties, representing com-
plex constellations of features and, in the special case

of faces, even whole perceptual objects (Gross 1992,
Tanaka 1997).

However, this strategy—of binding features to-
gether by recombining input connections in ever-
changing variations and representing relations
explicitly by responses of specialized binding cells—
results in a combinatorial explosion of the number of
required binding units. This problem is further accen-
tuated by the fact that perceptual objects are often
defined by conjunctions of features encoded in dif-
ferent sensory systems; they have specific visual,
haptic, or acoustic properties. Moreover, if binding is
achieved solely by the formation of conjunction-
specific neurons, difficulties arise if novel objects with
unfamiliar feature constellations need to be repre-
sented. It has been proposed, therefore, that the
cerebral cortex uses a second, complementary strategy,
which permits utilization of the same neurons for the
representation of different objects (Hebb 1949). Here,
the particular constellation of features characterizing
perceptual objects is thought to be represented by the
joint and coordinated activity of a dynamically associ-
ated ensemble of cells, whereby each of the participat-
ing neurons represents explicitly only one of the
elementary features that characterize a particular
perceptual object. Different objects can then be repre-
sented by recombining in various constellations
neurons tuned to elementary features, whereby a
particular cell can participate at different times in
different assemblies. This sharing of neurons econom-
izes on neuron numbers and copes effectively with the
huge combinatorial space occupied by real-world
objects.

For assembly coding two constraints need to be
met, however. First, a selection mechanism is required
that permits dynamic, context-dependent association
of neurons into distinct, functionally coherent assem-
blies. Second, grouped responses must get labeled so
that they can be distinguished by subsequent process-
ing stages as components of one coherent represen-
tation and do not get confounded with other unrelated
responses.

Such labeling can be achieved by jointly raising the
saliency of the selected neurons, because this ensures
that they are processed and evaluated together at the
subsequent processing stage. Neuronal systems have
three options to increase the relative saliency of
selected responses: first, non-grouped responses can be
inhibited; second, the amplitude of the selected
responses can be enhanced; and third, the selected cells
can be made to discharge in precise temporal syn-
chrony. Inhibition simply eliminates potentially con-
founding signals, while enhanced firing raises the
impact of the grouped responses through temporal
summation and synchronization through spatial sum-
mation of synaptic potentials (Singer 1999). Selection
of responses by enhancing discharge rates is common
in attentional gating (Luck et al. 1997) but it has
certain disadvantages when used as the only mech-
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