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The study of object recognition concerns itself with a two-fold problem. First, what is
the form of visual object representation? Second, how do observers match object
percepts to visual object representations? Unfortunately, the world isn’t color coded or
conveniently labeled for us. Many objects look similar (think about four-legged
mammals, cars, or song birds) and most contain no single feature or mark that uniquely
identifies them. Even worse, objects are rarely if ever seen under identical viewing
conditions: objects change their size, position, orientation, and relations between parts,
viewers move about, and sources of illumination turn on and off or move. Successful
object recognition requires generalizing across such changes. Thus, even if an observer
has never seen a bear outside of the zoo, on a walk in the woods they can tell that the
big brown furry object with teeth 20 ft in front of them is an unfriendly bear and probably
best avoided or that the orange-yellow blob hanging from a tree is a tasty papaya.

Consider how walking around an object alters one’s viewing direction. Unless the
object is rotationally symmetric, for example, a cylinder, the visible shape of the object
will change with observer movement — some surfaces will come into view, other surfaces
will become occluded and the object’s geometry will change both quantitatively and
qualitatively (Tarr & Kriegman, 2001). Changes in the image as a consequence of object
movement are even more dramatic — not only do the same alterations in shape occur,
but the positions of light sources relative to the object also change. This alters both the
pattern of shading on the object’s surfaces and the shadows cast by some parts of the

object on other parts. Transformations in size, position, and mean illumination also alter



the image of an object, although somewhat less severely as compared to
viewpoint/orientation changes.

Recognizing objects across transformations of the image. Theories of object
recognition must provide an account of how observers compensate for a wide variety of
changes in the image. Although theories differ in many respects, most attempt to specify
how perceptual representations of objects are derived from visual input, what processes
are used to recognize these percepts, and the representational format used to encode
objects in visual memory. Broadly speaking, two different approaches to these issues
have been adopted. One class of theories assumes that there are specific invariant cues
to object identity that may be recovered under almost all viewing conditions. These
theories are said to be viewpoint-invariant in that these invariants provide sufficient
information to recognize the object regardless of how the image of an object changes
(within some limits) (Marr & Nishihara, 1978; Biederman, 1987). A second class of
theories argues that no such general invariants exist' and that object features are
represented much as they appeared when originally viewed, thereby preserving
viewpoint-dependent shape information and surface appearance. The features visible in
the input image are compared to features in object representations, either by
normalizing the input image to approximately the same viewing position as represented
in visual memory (Bulthoff & Edelman, 1992; Tarr, 1995) or by computing a statistical
estimate of the quality of match between the input image and candidate representations
(Perrett, Oram, & Ashbridge, 1998; Riesenhuber & Poggio, 1999).

Viewpoint-invariant and viewpoint-dependent approaches make very different
predictions regarding how invariance is achieved (these labels are somewhat misleading
in that the goal of all theories of recognition is to achieve invariance, that is, the
successful recognition of objects across varying viewing conditions). Viewpoint-invariant

theories propose that recognition is itself invariant across transformations. That is,

' Of course invariants can be found under certain contexts. For example, if there are only
three objects to be distinguished and these objects are red, green, and blue, object color

becomes an invariant in this context (Tarr & Bulthoff, 1995).



across changes in viewpoint, illumination, etc. there is no change in recognition
performance — so long as the appropriate invariants are recoverable, the response of the
system remains constant. In comparison, viewpoint-dependent theories hypothesize that
recognition is dependent on specific viewing parameters. That is, across changes in
viewpoint, illumination, etc. there may be changes in recognition performance — because
objects are represented according to how they appeared when originally learned.

Recognizing objects across different instances of a class. Generalization across
object views is only one of several demands placed on the visual recognition system. A
second factor to consider is the ability to generalize across different instances of a visual
object class. Because such instances are typically treated as members of the same
category and should elicit the same response, an observer must be able to use one or
more instances of a class to recognize new instances of the same class — the bear we
are staring at is unlikely to be the same one we saw on our last trip to Alaska or “Animal
Planet”, but it would be fatal to not realize that this too is a bear. At the same time an
observer must not confuse somewhat similar objects that should be recognized as
different individuals — it is important that one does not confuse poisonous Ugli fruit with
edible papayas. Marr and Nishihara (1978) termed these two goals of object recognition
stability and sensitivity, respectively. These two goals seem to trade-off against one
another: as recognition abilities become more stable, that is, the more one can
generalize across objects, the less an observer may be able to distinguish between
those objects. Conversely, as recognition abilities become more sensitive, that is, the
better one is at telling objects apart, the worse an observer may be at deciding that two
objects are really the same thing. How to deal with these two competing goals is at the
heart of most theories of object recognition and central to the debate that has ensued
about the “correct” theory of human recognition abilities.

Recognizing objects at different levels of specificity. A third factor that is important to
developing such theories is the nature of recognition itself. That is, what exactly is the
recognition task? Consider that one might spy a bear in the distance and want to know a
variety of different things: Recognition — is that a bear? Discrimination — is that a bear or

a person wearing a fur hat? Is that a grizzly or a brown bear? Identification — is that the



friendly Gentle Ben? The key point highlighted by these different recognition tasks is that
objects may be visually recognized in different ways and, critically, at different
categorical levels. In the cognitive categorization literature, there is a distinction made
between the superordinate, basic, subordinate, and individual levels (Rosch et al.,
1976). A bear can be classified as an animal, as a bear, as a grizzly bear, and as Gentle
Ben — each of these labels corresponding respectively to a different categorization of the
same object.

Visual recognition can occur roughly at these same levels, although visual
categorization is not necessarily isomorphic with the categorization process as studied
by many cognitive psychologists. For example, some properties of objects are not strictly
visual, but may be relevant to categorization — chairs are used to sit on, but there is no
specific visual property that defines “sitability.” A second distinction between visual and
cognitive categorization is the default level of access. Jolicoeur, Gluck, and Kosslyn
(1984) point out that many objects are not recognized at their basic level. For example,
the basic level for pelicans is “bird,” but most people seeing a pelican would label it
“pelican” by default. This level, referred to as the “entry level,” places a much greater
emphasis on the similarities and differences of an object’s visual features relative to
other known objects in the same object class (Murphy & Brownell, 1985). The features
of pelicans are fairly distinct from those of typical birds, hence, pelicans are labeled first
as “pelicans”; in contrast, the features of sparrows are very typical and sparrows are
much more likely to be labeled as “birds.”

Why are these distinctions between levels of access important to object recognition?
As reviewed in the next section, there are several controversies in the field that center
on issues related to categorical level. Indeed, the stability/sensitivity tradeoff discussed
above is essentially a distinction about whether object recognition should veer more
towards the subordinate level (emphasizing sensitivity) or the entry level (emphasizing
stability). This issue forms the core of a debate about the appropriate domain of
explanation (Tarr & Bulthoff, 1995; Biederman & Gerhardstein, 1995). That is, what is
the default (and most typical) level of recognition? Furthermore, the particular

recognition mechanisms applied by default may vary with experience, that is, perceptual



experts may recognize objects in their domain of expertise at a more specific level than
novices (Gauthier & Tarr, 1997a). Some theorists — most notably Biederman (1987) —
presuppose that recognition typically occurs at the entry level and that any theory of
recognition should concentrate on accounting for how the visual system accomplishes
this particular task. In contrast, other theorists — Bulthoff, Edelman, Tarr, and others
(see, Tarr & Bulthoff, 1998; Hayward & Williams, 2000) — argue that that the hallmark of
human recognition abilities is flexibility and that any theory of recognition should account
for how the visual system can recognize objects at the entry, subordinate, and individual
levels (and anything in between). This distinction is almost isomorphic with the
viewpoint-invariant/viewpoint-dependent distinction raised earlier. Specifically, viewpoint-
invariant theories tend to assume the entry level as the default and concentrate on
accounting for how visual recognition at this level may be achieved. In contrast,
viewpoint-dependent theories tend to assume that object recognition functions at many
different categorical levels, varying with context and task demands.

A second, somewhat related, debate focuses on the scope of posited recognition
mechanisms. Some theorists argue that there are at least two distinct mechanisms
available for recognition — generally breaking down along the lines of whether or not the
recognition discrimination is at the entry or the subordinate level (Jolicoeur, 1990; Farah,
1992). Some researchers have suggested that there may be several “special purpose
devices” devoted to the task of recognizing specific object classes, for example, a neural
module for face recognition, another for place recognition, and one for common object
recognition (Kanwisher, 2000). Alternatively, it has been argued that recognition at many
levels and for all object categories can be accomplished by a single, highly plastic
system that adapts according to task constraints and experience (Tarr & Gauthier, 2000;
Tarr, in press). This and the aforementioned debates have produced an extensive
research literature addressing the nature of visual object recognition. In order to better
understand these controversies, we next review the particular dimensions typically used
both to characterize object representations and to constrain potential mechanisms of

recognition.



The Nature of Object Representations
There is an overwhelming body of evidence addressing the nature of representation

in object recognition and visual cognition. Despite this, there is an alarming absence of a
comprehensive account of object recognition. Rather, as outlined above, most theorists
have more or less tried to develop a framework along a particular subset of issues in
order to frame a particular theory (Biederman, 1987; Edelman, 1997; Marr & Nishihara,
1978; Pinker, 1984; Poggio & Edelman, 1990; Tarr, 1995). Moreover, while there have
been some attempts to integrate low- and mid-level visual processing into theories of
object perception and recognition (Marr, 1982), most researchers have restricted
themselves to a narrower problem that isolates recognition mechanisms from the
processing that precedes it.

The range of behavioral and neural data indicates that the representations of objects
and the mechanisms used to recognize objects are highly flexible (Tarr & Black, 1994).
This presents a challenge to any theory of object recognition (including those that argue
for flexibility, but cannot explain it). Selecting a representational format typically depends
on how a particular theory addresses a broad set of interdependent issues, including the
factors reviewed above. The critical issues include: (1) the features of the
representation, (2) the degree to which 3D structure, if any, is encoded, (3) the spatial
relationships among features within the representation, (4) the frame of reference used
to specify the locations of features, and (5) the normalization mechanisms, if any, used
to operate on the input image or on the representation. Together, these issues are
crucial to understanding the problem of object recognition; they also provide metrics by
which the strengths and weaknesses of theories can be identified (Bulthoff & Edelman,
1993; Hummel, 1994).

The Nature of Object Features
What are features? A loose definition is that features are the elementary units used

in the representation of objects (Marr & Nishihara, 1978). This definition, however,
leaves open a wide range of possible feature types, from local features that measure
metric properties of objects at specific locations to global features that only represent

qualitative characteristics of objects. Examples of local features include receptive field



responses measuring brightness or color, oriented lines, T-junctions, corners, etc.
(Tanaka, 1996). Examples of global features include 3D component parts realized as
simple volumes that roughly capture the actual shape of an object (Marr & Nishihara,
1978; Biederman, 1987).

Immediately, significant differences between these two approaches are apparent. On
the one hand, an appealing aspect of local features is that they are readily derivable
from retinal input and the natural result of earlier visual processing as discussed in prior
chapters in this volume. In contrast, 3D parts must be recovered from 2D images in a
manner that is not entirely obvious given what is currently known about visual
processing. On the other hand, it is hard to imagine how stability is achieved using only
local features — the set of features visible in one viewpoint of an object is likely to be very
different from the feature sets that are visible in other viewpoints of the same object or
other similar objects. Even slight variations in viewpoint, illumination, or configuration
may change the value of local responses and, hence, the object representation.
Furthermore, 3D parts yield stability — so long as the same invariants are visible, the
same set of 3D parts may be recovered from many different viewpoints and across many
different instances of an object class. Thus, variations in viewpoint, illumination, or
configuration are likely to have little impact on the qualitative representation of the

object.

Dimensionality
The range of features that may form the representation is quite wide, but cutting

across all possible formats is their degree of dimensionality, that is, how many spatial
dimensions are encoded. The physical world is three-dimensional, yet the optic array
sampled by the retinae is two-dimensional. As discussed in earlier chapters, one goal of
vision is to recover properties of the 3D world from this 2D input (Marr, 1982). Indeed,
3D perception seems critical for grasping things, walking around them, playing ping-
pong, etc. However, recovery of 3D shape may not be critical to the process of
remembering and recognizing objects. Thus, one can ask whether object
representations are faithful to the full 3D structure of objects or to the 2D optic array, or

to something in between. As discussed above, some theories argue that complete, 3D



models of objects are recovered (Marr & Nishihara, 1978) or that object representations
are 3D, but can vary depending on the features visible from different viewpoints
(Biederman, 1987). Others have argued that object representations are strictly 2D; that
is, preserving the appearance of the object in the image with no reference to 3D shape
or relations (Edelman, 1993). An intermediate stance is that object representations are
not strictly 2D or 3D, but rather represent objects in terms of visible surfaces, including
local depth and orientation information. Such a representation is sometimes termed
“two-and-one-half-dimensional” (2.5D; Marr, 1982). Critically, both 2D and 2.5D
representations only depict surfaces visible in the original image — there is no recovery
or reconstruction or extrapolation about the 3D structure of unseen surfaces or parts; 3D
information instead arises from more local processes such as shape-from-shading,
stereo, and structure-from-motion. In contrast, 3D representations include not only
surface features visible in the input (the output of local 3D recovery mechanisms) but
also additional globally recovered information about an object’s 3D structure (e.g., the
3D shape of an object part). Such 3D representations are appealing because they
encode objects with a structure that is isomorphic with their instantiation in the physical
world. However, deriving 3D representations is computationally difficult because 3D

information must be recovered and integrated (Bulthoff & Edelman, 1993).

How are Features Related to One Another?
Features are the building blocks of object representations. But by themselves, they

are not sufficient to characterize, either quantitatively or qualitatively, the appearance of
objects. A face, for example, is not a random arrangement of eyes, ears, nose, and
mouth, but rather a particular set of features in a particular spatial arrangement. Object
representations must therefore express the spatial relations between features. One
aspect of how this is accomplished is whether the spatial relations between features are
represented at a single level, in which all features share the same status, or whether
there is a hierarchy of relations. For instance, Marr and Nishihara (1978) hypothesized
that a small number of parts at the top of a hierarchy are progressively decomposed into
constituent parts and their spatial relationships at finer and finer scales — for example, an

arm can be decomposed into an upper arm, forearm, and hand. The hand, in turn, can



be further decomposed at an even finer scale into a palm and fingers. Local image
features can similarly be structured: elaborate features can be decomposed into simpler
ones (Riesenhuber & Poggio, 1999). Thus, entry-level categories might be captured by a
higher level of the hierarchy (in that the common features that define an entry-level
category, for example, “bear,” are typically more global) and subordinate-level
categories might only be captured by finer levels (e.g., the subtle features that
distinguish a grizzly bear from a brown bear). Alternatively, object representations might
only encode the coarsest level of structure: two to three parts (and their relations) at
most with no hierarchy specifying structure at finer scales (Biederman, 1987; Hummel &
Biederman, 1992).

Since visual input is inherently spatial, early and intermediate visual representations
necessarily encode the quantitative positions of features — in essence, representations
within the visual system are inherently spatial early on (Marr, 1982). At issue, however,
is the degree to which metric information is preserved in higher-level, long-term object
representations. Building on the examples cited in the previous section, there is
dichotomy between a local, quantitative approach and a global, qualitative approach. At
one extreme, the metric relations between features present in the image are kept more
or less intact in higher-level object representations. The resulting template would be
highly sensitive to changes in the image, such that any variation in the spatial relations
between features, no matter how slight, would require a new representation (although
this variation may be compensated for using a variety of strategies — see the discussion
on normalization mechanisms below). Typically, however, even if one were to posit local,
quantitative features, the relations between them are assumed to be somewhat more
flexible. For example, many local feature theories posit that the relative positions of
features are probabilistic (Edelman 1995; Tarr & Bulthoff, 1998; Riesenhuber & Poggio,
1999). The resulting object representation would still be sensitive to metric variations
between a known version of an object and a new image of that object, but would not fail
to find correspondences between like features in slightly different locations — a
deformable template, so to speak (Ullman & Basri, 1991). Models that assume local,

quantitative measures as the molar features along with relatively precise localization of
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these features in the image have been dubbed image-based models (although this term
still encompasses a wide variety of approaches).

Global, qualitative models tend to assume a much coarser coding of the spatial
relations between features. Biederman (1987; Hummel & Biederman, 1992) argues that
spatial relations are encoded in a qualitative manner that discards metric relations
between object features yet preserves their critical structural relations. On this view, for
example, the representation would code that one part is above another part, but not how
far above or how directly above (a “top-of” relation). The resulting concatenation of
features (in Biederman’s model, 3D parts) and qualitative structural relations is often
referred to as a structural description.

One other possibility should be noted. All spatial relations between features might be
discarded and only the features themselves represented: so a face, for instance, might
just be a jumble of features! Such a scheme can be conceptualized as an array of non-
localized feature detectors uniformly distributed across the retinal array (dubbed
“Pandemonium” by Selfridge, 1959). The resulting representation might be more stable,
but only so long as the same features or a subset of these features are present
somewhere in the image and their presence uniquely specifies the appropriate object.
Although there are obvious problems with this approach, it may have more merit than it
is often given credit for, particularly if one assumes an extremely rich feature vocabulary

and a large number of features per object (see Tarr, 1999).

Frames of Reference
As pointed out in the previous section, most theorists agree that intermediate stages

of visual processing preserve at least the rough geometry of retinal inputs. Thus, there is
implicitly, from the perspective of the observer, a specification of the spatial relations
between features for intermediate-level image representations. Ultimately, however, the
spatial relations between features are typically assumed to be explicit in high-level object
representations. This explicit coding is generally thought to place features in locations

specified relative to one or more anchor points or frames of reference (Marr, 1982).
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The most common distinction between reference frames is whether they are
viewpoint-independent or viewpoint-dependent. Embedded in these two types of
approaches are several different kinds of frames, each relying on different anchor points.
For example, viewpoint-independent models encompass both object-centered and
viewpoint-invariant representations. Consider what happens if the features of an object
are defined relative to the object itself: although changes in viewpoint alter the
appearance of the object, they do not change the position of a given feature relative to
other features in the object (so long as the object remains rigid). Thus, the
representation of the object does not change with many changes in the image. The best

known instantiation of an object-centered theory was proposed by Marr and Nishihara

a) b)

Figure 1. Different viewpoints of objects often reveal (or occlude) different features.
Thus, it seems unlikely that a complete 3D object representation could be derived from
any single viewpoint.

(1978). They suggest that an object’s features are specified relative to its axis of
elongation, although other axes, such as the axis of symmetry, are also possible

(McMullen & Farah, 1991). So long as an observer can recover the elongation axis for a
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given object, a canonical description of that object can be constructed for any image of
it. ldeally, only a single viewpoint-independent representation of each object would be
encoded in visual memory in order for that object to be recognized from all viewpoints.
Although this approach has some advantages, in practice it has proven rather difficult to
develop methods for the reliable derivation of canonical axes of elongation for most
objects without recourse to at least some aspects of the object’s identity. Moreover, it
seems unlikely that a single representation of an object could suffice when there exist
many viewpoints from which some significant features of the object are completely
occluded (Figure 1).

Biederman’s (1987) theory of recognition attempts to address some of these
shortcomings. Like Marr and Nishihara, he assumes a structural description comprised
of 3D parts, but his theory posits viewpoint-invariant (not object-centered) object
representations. What precisely is the distinction? Rather than attempt to encode the
position of features in any specific coordinate system, Biederman side-stepped the
problem by proposing that particular collections of viewpoint-invariant features
(sometimes referred to as “non-accidental” properties, i.e., local configurations of edges
that are so unlikely to have occurred by accident that they must reflect meaningful 3D
structure) map onto a given 3D volume. For example, if several Y-vertices and arrow-
vertices appear in an image along with three parallel lines, they might specify a brick. In
Biederman’s model the brick 3D primitive would entirely replace the image features that
specified the part. Because the parts themselves and their relations are represented
only at a non-metric, qualitative level, for example, brick on-top-of cylinder, the
representation does not use a strictly object-centered frame of reference (although the
spatial relations are still object relative). The trick here is that the particular features
specifying the 3D parts are invariants with respect to viewpoint (and possibly
illumination). Thus, many changes in viewpoint would not change which particular 3D
primitives were recovered. Biederman, however, acknowledges that it is impossible to
recover parts that are not visible from a given viewpoint. Thus, he allows for multiple
representations for each object — each depicting different collections of visible parts for

the same object under different viewing conditions (Biederman & Gehardstein, 1993).
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In contrast to viewpoint-invariant models, viewpoint-dependent models inherently
encompass retinotopic, viewer-centered (egocentric), and environment-centered
(spatiotopic or allocentric) frames, anchored to the retinal image, the observer, or the
environment, respectively. That is, objects are represented from a particular viewpoint,
which entails multiple representations. Put another way, object representations that use
a viewer-centered reference frame are tied more or less directly to the object as it
appears to the viewer or, in the case of allocentric frames, relative to the environment.
As such, they are typically assumed to be less abstract and more visually-rich than
viewpoint-independent representations (although this is simply a particular choice of the
field; viewpoint-dependence/independence and the richness of the representation are
technically separable issues). It is often thought that viewpoint-dependent
representations may be more readily computed from retinal images as compared to
viewpoint-independent representations. However, there is an associated cost in that
viewpoint-dependent representations are less stable across changes in viewpoint in that
they necessarily encode distinct viewpoints of the same object as distinct object
representations. Thus, theories adopting this approach require a large number of
viewpoints for each known object. Although this approach places higher demands on
memory capacity, it does potentially reduce the degree of computation necessary for

deriving high-level object representations for recognition.

Normalization Procedures
Regardless of the molar features of the representation — local features, 3D parts, or

something in between — if some degree of viewpoint dependency is assumed, then the
representation for a single object or class will consist of a set of distinct feature
collections, each depicting the appearance of the object from a different vantage point.
This leads to a significant theoretical problem: different viewpoints of the same object
must somehow be linked to form a coherent representation of the 3D object. One
solution might be to find a rough correspondence between the features present in
different viewpoints. For example, the head of the bear is visible from both the front and
the side, so this might be a clue that the two images arose from the same object.

Unfortunately, simple geometric correspondence seems unlikely to solve this problem —
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if such correspondences were available (i.e., if it were possible to map one viewpoint of
an object into another viewpoint of that same object), then recognition might proceed
without the need to learn the new viewpoint in the first place! So it would seem that
viewpoints are either distinct or they aren’t (Jolicoeur, 1985).

The conundrum of how an observer might recognize a novel viewpoint of a familiar
object was addressed by Tarr and Pinker (1989). They built on the finding that human
perceivers have available a “mental rotation” process (Shepard & Metzler, 1971) by
which they can transform a mental image of a 3D object from one viewpoint to another.
Shepard and others had reasoned that although the mental rotation process was useful
for mental problem solving, it was not appropriate for object recognition. The argument
was that in order to know the direction and “target” of a given rotation, an observer must
already know the identity of object in question; therefore executing a mental rotation
would be moot. Put another way, how would the recognition system determine the
correct direction and magnitude of the transformation prior to recognition? Ullman (1989)
pointed out that an “alignment” between the input shape and known object
representations could be carried out on the basis of partial information. That is, a small
portion of the input could be used to compute both the most likely matches for the
current input, as well as the transformation necessary to align this input with its putative
matches. In practice, this means that a subset of local features in the input image are
compared, in parallel, to features encoded in stored object representations. Each
comparison returns a goodness-of-fit measure and the transformation necessary to align
the image with the particular candidate representation (Ullman, 1989). The
transformation actually executed is based on the best match among these. Thus,
observers could learn one or more viewpoints of an object and then use these known
viewpoints plus normalization procedures to map from unfamiliar to familiar viewpoints
during recognition.

Jolicoeur (1985) provided some of the first data suggesting that such a process
exists by demonstrating that the time it takes to name a familiar object increases as that
object is rotated further and further away from its familiar, upright orientation. However,

this result was problematic in that upright viewpoints of mono-oriented objects are
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“canonical” in that they are the most frequently seen and most preferred views (Palmer,
Rosch, & Chase, 1981). Thus, the pattern of naming times obtained by Jolicoeur might
speak more to the “goodness” of different object views than to the mechanisms used in

recognition.
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Tarr and Pinker’s (1989) innovation was to use novel 2D objects shown to subjects in
multiple viewpoints. Subjects learned the names of four of the objects and then practiced

naming these objects plus three distractors (for which the correct response was “none-
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of-the-above”) in several orientations generated by rotations in the picture-plane
(Figure?a). Tarr and Pinker’s subjects rapidly became equally fast at naming these
objects from all trained orientations. Subjects’ naming times changed when new picture-
plane orientations were then introduced: they remained equally fast at familiar
orientations, but naming times were progressively slower as the objects were rotated
further and further away from a familiar orientation (Figure 2b). Thus, subjects were
learning to encode and use those orientations that were seen most frequently (and not
merely geometrically “good” views). This suggests that observers were able to invoke
normalization procedures to map unfamiliar orientations of known objects to familiar
orientations of those same objects. Tarr and Pinker (1989) hypothesized that these
normalization procedures were based on the same mental rotation process discovered
by Shepard and Metzler (1971). Tarr (1995) reported corroborating evidence using novel
3D versions of Tarr and Pinker’s 2D objects rotated in depth.

Some researchers have pointed out that mental rotation is an ill-defined process.
What does it really mean to “rotate” a mental image? Several researchers have offered
computational mechanisms for implementing normalization procedures with behavioral
signatures similar to that predicted for mental rotation. These include linear
combinations of views (Ullman & Basri, 1991), view interpolation (Poggio & Edelman,
1990), and statistical evidence accumulation (Perrett, Oram, & Ashbridge, 1998). Some
of these normalization mechanisms make further predictions regarding recognition
behavior for new viewpoints of known objects. For example, Bulthoff and Edelman
(1992) obtained some evidence consistent with the view-interpolation models of
normalization and Perrett, Oram, and Ashbridge (1998) found that responses of
populations of neurons in monkey visual cortex were consistent with the evidence
accumulation account of normalization.

Note that viewpoint-invariant theories of recognition do not require normalization as a
way for recognizing unfamiliar viewpoints of familiar objects. In particular, both Marr and
Nishihara (1978) and Biederman (1987) assume that viewpoint-invariant recovery
mechanisms are sufficient to recognize an object from any viewpoint, known or

unknown, or that viewpoint-invariant mechanisms are viewpoint limited, but span
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extremely wide viewpoint regions, effectively making recognition behavior viewpoint-
independent (Biederman & Gerhardstein, 1993; see Tarr & Bulthoff, 1995, for a critique
of these claims and Biederman & Gerhardstein, 1995 for their reply).

Although these normalization mechanisms show how disparate viewpoints of objects
may be mapped onto one another, they still leave open one of our original questions:
When two viewpoints of a single object are so distinct as to require separate
representations, how does the recognition system ever map these onto the same object
name or category (or are observers destined to never know that it was the same thing
coming as going)? One intriguing possibility is that statistical mechanisms similar to
those that seem to function in learning distinct viewpoints are used to connect disparate
visual information over time. Consider that when viewing an object the single image one
is most likely to see next is another viewpoint of that same object (Tarr & Bulthoff, 1998).
Thus, a mechanism that associates what one sees at one instant with what one sees at
the next instant would produce the necessary relationships. Recent neural (Miyashita,
1988) and behavioral (Wallis, 1996) evidence indicates that primate visual memory does
learn to associate distinct images if they co-occur over time. Thus, whether views are
defined by 3D parts or by local features, temporal associations may provide the “glue”

for building coherent mental representations of objects (Tarr & Bulthoff, 1998).

Theories of Object Recognition

Structural-Description Models
We have now set the stage for an enumeration of two primary approaches to visual

object recognition: structural-description and image-based theories. For historical
reasons we will begin by reviewing the structural-description approach. One
consequence of the computing revolution of the late 1960’s and early 1970’s was the
development of sophisticated tools for generating realistic computer graphics (Foley &
Van Dam, 1982). To generate images of synthetic 3D objects, graphic programmers
employed volumetric primitives — that is, 3D volumes that depicted the approximate
shape of a part of a real 3D object. Thus, a teakettle might be synthesized by a sphere

flattened on the top and bottom, a very flat cylinder for the lid, and two bent thin
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cylinders for the handle and spout. Based on such techniques, some researchers
suggested that similar representations might be used by both biological and machine
vision systems for object recognition (Binford, 1971). Specifically, objects would be
learned by decomposing them into a collection of 3D parts and then remembering that
part configuration. Recognition would proceed by recovering 3D parts from an image
and then matching this new configuration to those stored in object memory. One
appealing element of this approach was the representational power of the primitives —
called “generalized cones” (or “generalized cylinders”) by Binford. A generalized cone
represents 3D shape as three sets of parameters: (1) an arbitrarily shaped cross-section
that (2) can scale arbitrarily as (3) it is swept across an arbitrarily shaped axis. These
three parameter sets are typically defined by algebraic functions that together capture
the shape of the object part.

Marr and Nishihara built on this concept in their seminal 1978 theory of recognition.
In many ways they proposed the first viable account of human object recognition,

presenting a model that seemed to address the factors of invariance, stability, and level

arm

fore=arm

i 111

Figure 3. Schematic diagram of the multi-scale 3D representation of a human figure
using object-centered generalized cones. Although cylinders are used for illustrative
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of access. As mentioned previously, they placed a significant computational burden on
the reconstruction of the 3D scene. In particular, in their model a necessary step in the
recognition process is recovering 3D parts from the input image. Recognizing the power
of generalized cones, Marr and Nishihara suggested that observers use information
about an object’s bounding contour to locate its major axis of elongation. This axis can
then be used as the sweeping axis for the creation of a generalized cone structural
description relating individual 3D parts to one another at multiple scales (Figure 3).
Invariance was accomplished by virtue of the object-centered coordinate system in
which these 3D parts were parameterized. Thus, regardless of viewpoint and across
most viewing conditions, the same viewpoint-invariant, 3D structural description would
be recovered by identifying the appropriate image features, (e.g., the bounding contour
and major axes of the object) recovering a canonical set of 3D parts, and matching the
resultant 3D representation to like representations in visual memory.

Biederman’s (1987; Hummel & Biederman, 1992) model — “Recognition-By-
Components” (RBC) — is quite similar to Marr and Nishihara’s theory. However, two
innovations made the RBC model more plausible in the eyes of many researchers. First,
RBC assumes a restricted set of volumetric primitives, dubbed “geons” (Figure 4).
Second, RBC assumes that geons are recovered on the basis of highly stable non-
accidental image properties, that is, shape configurations that are unlikely to have
occurred purely by chance (Lowe, 1987). One example of a non-accidental property is
three edges meeting at a single point (an arrow or Y junction) — it is far more likely that
this image configuration is the result of an inside or outside corner of a rectangular 3D
object than the chance meeting of some random disconnected edges. Biederman
considered the set of 36 or so 3D volumes specified by the combinations of non-
accidental properties in the image: the presence of particular edge junctions or vertices,
the shape of the major axes, symmetry of the cross section around these axes, and the
scaling of the cross section. For example, a cylinder is specified as a curved cross
section (i.e., a circle) with rotational and reflection symmetry, constant size, and a
straight axis. An important point to keep in mind is that these attributes are defined

qualitatively, for instance, a cross section is either straight or curved, there is no in-
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between or degree of curvedness. Although the reader might be skeptical about how
one might represent the huge range of objects that exist using this limited toolkit,
consider tinker-toys; there are only a few different kinds of building blocks and
connectors in the can, yet one can construct models that approximate almost any type of
object.

Not only do the possible combinations of non-accidental properties enumerate a

restricted set of 3D volumes — geons — but they also allow a method for recovering these

° 4

Figure 4. Ten of the 30 or so geons — 3D volumetric primitives — that Biederman’s
(1987) RBC model posits as the building blocks of object representations.

particular volumes. The fact that geons are generated by contrasting qualitative
differences in non-accidental properties is crucial to this process. Consider a brick and
cylinder. Most non-accidental projections of a brick have three parallel edges and three
outer arrow vertices (points of co-termination). In contrast, most non-accidental
projections of a cylinder have only two parallel edges and two tangent Y-vertices. These
and other contrasts provide the leverage for inferring the presence of specific geons in
the image. Hypothetically an observer only needs to examine the image of a 3D object
for the presence of the critical non-accidental properties and then replace these
properties with the appropriate, qualitatively-specified geon. The complete configuration
is referred to as a Geon-Structural-Description. Because the RBC approach restricts the

set of possible 3D volumes and, consequently, can rely on a more plausible method of
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3D part recovery, RBC is computationally more tractable than Marr and Nishihara’s
theory.

RBC deviates from Marr and Nishihara’s model in three other, related respects: RBC
assumes only one level of representation, that is, 2 or 3 geons per object; RBC only
attempts to account for object recognition at the entry level; and, as reviewed earlier,

RBC posits qualitative spatial relations between parts.

Evaluating Structural-Description Models
What are the strengths and weaknesses of Marr and Nishihara’s approach to object

recognition? Perhaps the two most appealing aspects of the model are: 1) The
invariance across viewpoint and other image transformations obtained by adopting a
viewpoint-independent object-centered frame of reference for the description of parts;
and, 2) the balance between stability and sensitivity achieved by representing objects at
multiple scales in a hierarchical fashion. However, the model is in some ways almost too
powerful. That is, generalized cones are represented by an arbitrary axis and cross
section, therefore the mathematical description of these elements may be quite complex.
Moreover, even at coarser scales, it is not clear that different instances of an object
class will give rise to the same generalized cone descriptions and, thus, class
generalization may be difficult. Another serious issue is that the method for recovering
generalized cones is not well-specified and has never been implemented successfully.
Finally, empirical studies of human object recognition have not obtained much evidence
in support of the sort of in invariances predicted by Marr and Nishihara. All in all, while
promising in some respects, these and other shortcomings of Marr and Nishihara’s
model rendered it a less than plausible account of human object recognition. Indeed,
many of the extensions to Marr and Nishihara’s model proposed in RBC seem explicitly
designed to address these shortcomings.

What are the implications of these additional assumptions in RBC? On the positive
side, RBC provides a more specific account of how 3D primitives might be derived from
2D images. Moreover, by severely restricting the vocabulary of 3D primitives to only 36
or so geons, RBC removes the potential computational complexity of describing

complicated 3D parts as a series of mathematical functions. Further efficiency is derived
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from the fact that RBC limits the number of parts in each object description. Finally, the
fact that geons and the relations between geons are qualitatively defined provides
invariance across a wide range of viewpoints, as well as position, size, and other
variations in viewing conditions. Moreover, different instances of an object category
often contain similar parts, thus the use of geons facilitates a many-to-one mapping
between individual exemplars and their visual object class.

At the same time, some researchers have argued that, much as with Marr and
Nishihara’s model, RBC specifies a theory that does not account for many aspects of
human visual recognition behavior. First, consider the recovery process. RBC relies
heavily on particular configurations of edges. Yet there is little evidence to suggest that
early and mid-level vision provide an edge map that looks anything like a clean line
drawing (Sanocki, Bowyer, Heath, & Sarkar, 1998). For instance, depending on the
direction of the lighting, shadows may produce spurious edges on many of an object’s
surfaces. Thus, although using edge-based non-accidental properties may seem
appealing at first blush, the reliability of recovery mechanisms based on such features
remains suspect. Moreover, by insisting on a singular approach that is edge-based, RBC
relegates surface characteristics, including color, texture, and shading, to a secondary
role in recognition (Biederman & Ju, 1988). Yet there is a growing body of data
indicating that surface properties are critical to the recognition process and more or less
integrated into object representations (see Price & Humphreys, 1989; Tarr, Kersten, &
Bulthoff, 1998; Tanaka, Weiskopf, & Williams, in press).

Second, consider the nature of the representation. RBC assumes a single level of
two to three qualitatively-defined geons. This is a major reason why the theory only
attempts to explain entry-level recognition. Such an impoverished object representation
would be useless for the recognition of objects at the subordinate level or of specific
individuals, could easily confuse objects that are actually distinct at the entry level (but
visually-similar), or distinguish between objects that are actually members of the same
entry-level class (Tarr & Bulthoff, 1995).

Third, as discussed earlier, RBC (as well as Marr & Nishihara’s theory) predicts that

over a wide range of changes in viewpoint, recognition performance should be viewpoint
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invariant. Although there are some limited circumstances in which observers are able to
invariantly recognize known objects when shown in never-before-seen viewpoints, by
and large the common finding has been some cost in both accuracy and response time
when objects must be recognized across changes in viewpoint (Hayward & Tarr, 1997;
Tarr, Bulthoff, Zabinski, & Blanz, 1997; Tarr, Williams, Hayward, & Gauthier, 1998).

In sum, there are limitations to RBC and a need for alternative mechanisms. Indeed,
Hummel and Biederman (1992) and Biederman and Gerhardstein (1995) acknowledge
that RBC captures some, but not all, recognition phenomena. The question is whether
RBC forms the bulk of the explanation or, as claimed by Tarr and Bulthoff (1995),
constitutes a restricted model that is inconsistent with much of the psychophysical and
neural data. Thus, although some aspects of the structural-description approach are
appealing and have been incorporated into recent models of recognition, it is still unclear
whether the overall concept of a single-level, 3D qualitative part-based representation

can account for human object recognition abilities.

Image-Based Models
The most common alternative to a structural-description account is an image-based

representation. Although the term “image-based” (or “view-based”; within the computer
vision community such models are also sometimes called “appearance-based”) has
been criticized as too vague, there are assumptions that constrain the theories. Perhaps
the most critical element of any image-based model is that the features of the
representation preserve aspects of an object as it originally appeared in the image. Note
that this statement does not restrict the representation only to shape features, but allows
for measures of almost any object property, including color, texture, shading, local
depth, and spatial frequency, as well as shape (e.g., Edelman, 1993). The inclusion of
non-shape properties is a significant difference between the image-based and structural-
description approaches. A second important difference is how image-based theories
encode 3D structure: Instead of a single 3D object model or a set of 3D models, image-
based theories represent 3D objects as a collection of views, each view depicting the

appearance of the object under specific viewing conditions (Tarr, 1995). This “multiple-
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views” representation supports the invariant recognition of 3D objects in much the same
manner as structural descriptions.

In light of the framework outlined earlier, the majority of image-based models posit
local features that are generally thought of as visual information processed over
restricted regions — the output of the filtering that is implemented in early and mid-level
vision. Often this information is characterized as part of the surface representation, and,
indeed, there are many reasons why surfaces are attractive as the molar unit of high-
level visual representations. At the same time, how individual surfaces are spatially
related to one another is an issue of some debate. At one extreme, some researchers
have argued that the overall representation simply preserves the quantitative 2D spatial
relations visible in the image (Poggio & Edelman, 1990), for example, a rigid template.
At another extreme, others have argued for a completely unordered collection of
features that preserve nothing about their spatial relationship (Mel, 1997). Both
approaches have some merit, but break under fairly obvious conditions. Thus, the trend
has been to implement hybrid models in which the features are image-based, but are
related to one another in a hierarchy that captures multiple levels of object structure
(Hummel & Stankiewicz, 1996; Riesenhuber & Poggio, 1999; Lowe, 2000; Ullman &
Sali, 2000). In some sense, such models are structural descriptions in that they relate
the positions of object features to one another in a multi-scale hierarchy, but they are
different from either Marr and Nishihara’s or Biederman’s models in that they assume
the features are viewpoint-dependent local features rather viewpoint-independent 3D
parts.

Consider two other aspects that are used to characterize object representations. In
terms of dimensionality, image-based models rarely assume a unitary 3D representation.
Rather, they posit either features that remain 2D or, through the recovery of local depth,
are 2.5D. Thus, at most, image-based features represent local depth, that is, surface
slant and orientation from the perspective of the viewer. Critically, this representation of
depth does not impart viewpoint invariance (Bulthoff & Edelman, 1992). This brings us to
the last characteristic of image-based models, the use of a viewpoint-dependent frame

of reference — something implied by the nature of the features themselves and the way
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in which depth information is represented (if at all). Indeed, a major characteristic of
image-based theories is that they are viewpoint dependent, that is, as the input image
deviates from the originally learned viewing conditions, there are systematic costs in
recognition accuracy and speed. This prediction is central to many studies that have

examined the object recognition process.

Image Normalization
One other aspect of image-based models is important to elucidate. Because an

object’s representation is tied to specific viewing conditions, even minimal changes in
viewing conditions may produce a mismatch between a viewpoint-based representation
and a new viewpoint of the same object. Consequently, one must either posit a large
number of views to represent a single object — with the potential to exceed the limits of
human memory capacity — or a mechanism to normalize the processed input image to
object viewpoints encoded in visual memory. As discussed earlier, there are several
different proposals for how normalization might be accomplished. These can be divided
roughly into four classes: mental transformation models (Shepard & Metzler, 1971; Tarr
& Pinker, 1989); interpolation models (Poggio & Edelman, 1990; Bulthoff & Edelman,
1992; Ullman & Basri, 1991); alignment models (Ullman, 1989); and evidence
accumulation models (Perrett, Oram, & Ashbridge, 1998).

What do these different approaches to normalization have in common and how do
they differ from one another? First and foremost, they almost all predict that the
normalization process is capacity limited so that the magnitude of the normalization
impacts recognition performance. That is, the larger the difference between the input
image and stored representations, the larger the cost in recognition time and accuracy.
At the same time, different view-based models make different predictions regarding how
these costs will manifest themselves, particularly across changes in viewpoint.

Mental transformation models (Tarr & Pinker, 1989; Tarr, 1995) predict that the costs
will vary as a direct function of the angular difference between familiar and unfamiliar
viewpoints of an object. Put another way, recognition performance will be
straightforwardly determined by how far away a new viewpoint is from a known

viewpoint. This prediction is based on the idea that mental transformations are analogs
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to physical transformations, following a continuous path that traverses the same space
that the object would if it were actually being rotated. Thus, larger transformations take
more time and incur more errors as compared to smaller transformations and the
magnitude of both response times and error rates is proportional to the magnitude of the
transformation (Shepard & Cooper, 1982).

View-interpolation models (Poggio & Edelman, 1990; Bulthoff & Edelman, 1992; see
also Ullman & Basri, 1991) predict that costs will vary depending on how the view space
is spanned by familiar viewpoints. That is, a better estimate, and consequently smaller
performance costs, of how the image of an object is likely to change with rotation in
depth can be made if the rotation is bounded by two or more known viewpoints. On the
other hand, if a rotation in depth is not bounded by known viewpoints, approximations of
the appearance of an object from a new view will be poorer and the costs associated
with normalization will be larger. Remember interpolating between points on a graph in
high-school math: you could do a better job predicting the shape of the curve if you
interpolated between two points and the points were closer together; if there were few
points and they were far apart, your ability to predict was diminished. The same applies
to view interpolation — simply think of each known viewpoint as a point on a 3D graph
and a new viewpoint as a point between these actually plotted points. Unfamiliar
viewpoints between familiar viewpoints are likely to fall on the “line” connecting the two
known points and hence are better recognized than unfamiliar viewpoints that do not fall
on this “line”.

Alignment models (Ullman, 1989) actually do not predict performance costs per se,
although they do posit that 3D objects are represented as multiple viewpoint-specific
feature sets. The reason is that they assume that once the alignment transformation has
been determined between an input image and the correct view in memory, the alignment
may be executed in a single step. There are several reasons why, in practice, this
single-shot approach is unlikely to work. First, the appropriate alignment transformation
is determined by comparing a small subset of the input with object representations in
visual memory (the same sort of pre-processing used to determine the rotation in mental

transformation models). Although this process might appear to be time consuming, there
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are methods for executing the comparison in parallel, thereby simultaneously comparing
a given feature subset from the input with all candidate object representations. However,
the reliability of this process will decrease as the alignment features increase in their
dissimilarity from those in visual memory. Thus, larger viewpoint differences will, in all
probability, lead to less reliable recognition performance. Second, the idea that an
alignment can be performed by a single-step transformation, regardless of magnitude,
works only if object features are represented in a form that allows rigid, 3D rotations to
be applied to all features simultaneously (e.g., a 3D matrix of shape coordinates). If the
features of the representation are not in this format — for example, their 3D positions are
unknown — then other, most likely incremental, processes must be used to align input
images with views in object memory. Indeed, most researchers now consider alignment
models to be mathematical approximations of the normalization process, rather than
actual models of how normalization is implemented in biological systems (Uliman, 1996).

Finally, evidence accumulation models (Perrett, Oram, & Ashbridge, 1998) attempt to
account for normalization-like behaviors without actually positing any transformation of
the input image. Recall that image-based representations are often characterized by a
large number of local viewpoint-specific measures of image properties: color, shape,
texture, etc. What happens to these measures if viewing conditions change? Here
intuition may fail us: it might seem that even a small object rotation or shift in lighting
direction would change every local feature in a manner that would lead to an entirely
different image description. In truth, this is not the case. The appearance of some
features will not change at all or only marginally, others will change more dramatically,
but generally in a systematic fashion; and only a fraction of the visible features will
appear entirely different or disappear. Thus, for a large collection of local image
features, the overall difference between the original image of an object and a new image
of the same object under different viewing conditions will be related to how much
viewing conditions have changed. That is, given a large number of features in an object
representation, the cumulative response of these features is related almost
monotonically to the degree of rotation or the magnitude of lighting change from the

known to unknown image. The implication is that objects may be represented as image-
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specific views, but that rather than using normalization mechanisms, image similarity
across large numbers of features provides a means for generalizing from known to
unknown viewpoints.

Why is this approach referred to as an “evidence accumulation” model? Consider
that each measure of an object image can be thought of as a statistical feature detector
— for a given location the better an actual feature matches the preferred feature of the
detector, the stronger the response. Thus, each detector “accumulates evidence” about
the presence of particular features, while the overall response of the collection provides
an estimate of the likelihood of a particular image of a particular object given the current
image. What is perhaps most interesting about such models is that they make
predictions quite similar to those of mental transformation and interpolation models. That
is, as the magnitude of the change increases so will the magnitude of response times
and error rates. Consequently, a recognition system that relies on evidence
accumulation to generalize from known to unknown viewpoints will produce a response

pattern that appears as if the image is being normalized.

Evaluating Image-Based Models
How do the assumptions of image-based models stand up to the data? Let’s

consider the most critical characteristic of the approach, that object representations are
view-based. The implication is that observers should better remember what objects
looked liked under familiar viewing conditions, that is, when seeing viewpoints that they
have seen before. A corollary of this prediction is that recognition performance should
decrease as the object image is transformed further and further from a known viewpoint.
The precise pattern of how performance will change in relation to changes in the image
will depend on the particular version of normalization that one adopts, but the basic point
of diminished performance with larger changes remains constant in most image-based
models.

A considerable body of behavioral and neurophysiological results is consistent with
this basic prediction of image-based models. As mentioned earlier, several studies
observed that it took longer for subjects to name familiar common objects as those

objects were rotated in the picture-plane away from their upright, canonical orientation
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(Jolicoeur, 1985) or for subjects to name novel objects in new, unfamiliar viewpoints as
those objects were rotated away from trained viewpoints (Tarr & Pinker, 1989, Tarr,
1995). These and other results provide evidence for viewpoint-specific image-based
object representations that are generalized to new viewing conditions using a mental
transformation process.

An analogous result was obtained by Bulthoff and Edelman (1992; Edelman &
Bulthoff, 1992). They found that recognition performance diminished as novel viewpoints
were located further and further away from familiar viewpoints, but they also observed
differences in the magnitude of the cost depending on whether new viewpoints were
located between or beyond familiar viewpoints (a pattern also obtained in Tarr, 1995).
Thus, not only did Bulthoff and Edelman provide further evidence for object
representations based on multiple image-based views, but also their data suggest that
the normalization mechanism used for the recognition of novel viewpoints is view
interpolation, not mental transformation. Over the past decade researchers have added
to these results, generating a sizeable collection of data that clearly support image-
based models (Humphrey & Khan, 1992; Lawson & Humphreys, 1996; Srinivas, 1995;
Tarr et al., 1998; for a review see, Tarr & Bulthoff, 1998).

Similar conclusions can be made based on results from single-unit recording studies
in the inferior temporal cortex (IT) of monkeys. For example, Logothetis, Pauls, and
Poggio (1995) found that if monkeys were trained to recognize novel 3D objects (the
same as those used in Bulthoff and Edelman, 1992) from specific viewpoints, neurons in
their inferior temporal cortex became “view-tuned.” That is, individual neurons were
found to be selective for specific objects, but only for familiar viewpoints that the monkey
had actually seen (Figure 5). At the same time, the monkey’s recognition performance
was invariant across these highly-familiar viewpoints — similar to the finding by Tarr and
Pinker (1989) that following familiarization with a set of viewpoints, human observers
represent 3D objects as multiple image-specific views at those viewpoints. Although it
seems unlikely that objects or views of objects are represented by single neurons (Booth
& Rolls, 1998), the fact that neurons selective for particular objects — indicating that such

neurons at least participate in the object representation — are also selective for familiar
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viewpoints of those objects provides evidence that the overall object representations
are, themselves, image-based (a similar study by Booth & Rolls, 1998, was interpreted
as evidence for viewpoint-invariant coding, but in fact they obtained approximately the
same proportion of view-tuned cells as observed in Logothetis et al., 1995).

Further evidence for this claim comes from several studies that examined the
viewpoint sensitivity of single IT neurons selective for human and monkey heads. That

is, not only do researchers often find neurons that are highly active when presented with
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particular faces, but their strongest response is viewpoint dependent; typically for the
frontal or profile viewpoints (Perrett, Rolls, & Caan, 1982; Perrett, Mistlin, & Chitty,
1987). Recently, Perrett, Oram, and Ashbridge (1998) have built on this finding, showing

view-tuned single neurons selective for various body parts (head, hands, arms, legs,
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torso) in their upright orientations. Perrett, Oram, and Ashbridge found that the
cumulative response of the neurons coding for different features of the figure predicted
the monkey’s recognition performance. That is, as the stimulus figure was rotated in the
picture-plane, the response of the individual feature detectors diminished — when
summed together, their responses decreased in monotonic manner with increasing
misorientation — much as would be predicted by a mental transformation or interpolation
model. Note, however, the response of the system was actually determined by a set of
summed local responses — exactly what the evidence accumulation model predicts (see
also Gauthier & Tarr, 1997b).

Overall, a great deal of behavioral and neurophysiological data may be
accommodated in an image-based model. There is, however, one oft-cited criticism that
must be addressed. Specifically, it has been argued that while image-based models are
quite good at identifying specific instances of objects, they are poor at generalizing
across instances, that is, recognizing objects at the entry level. For example, given
known images of several bears, within an image-based framework how is a new bear
recognized as a bear (Biederman & Gerhardstein, 1993). The answer is surprisingly
simple. Most recent image-based models rely on stochastic feature detectors that
respond more or less as the input feature deviates from the originally measured feature.
It is this sort of response that mediates the overall responses in Perrett, Oram, and
Ashbridge’s (1998) evidence accumulation model and Riesenhuber and Poggio’s (1999)
HMAX model. Thus, such models can explain decreases in recognition performance, for
instance due to changes in viewpoint, as a consequence of decreases in image
similarity (typically computed over image features, not single pixels or undifferentiated
images). The same principle may be used to account for generalization across specific
instances in an image-based framework. Two instances from the same object class are
likely to be similar to one another in image-feature space; therefore stochastic feature
detectors representing a given object will respond more strongly to that object’s cohorts
— other instances of the same object class. Not only does this account provide a
plausible mechanism for class generalization in image-based models, but two recent

psychophysical studies provide evidence for image-based class generalization (Gauthier
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& Tarr, 1997b; Tarr & Gauthier, 1998). The critical result in both studies is that observers
are able to recognize novel objects that are visually similar to previously-learned novel
objects and that their pattern of responses implicates viewpoint-dependent, image-
based mechanisms. At the same time, there is no generalization for visually-different
objects, suggesting that the observed viewpoint-dependent generalization is used for
recognizing new instances of a known object class.

A second criticism of image-based models is that they are memory intensive. That is,
there is a potential “combinatorial explosion” in the number of images/views that may be
needed to represent completely each known object. Consider even a relatively simple
object such as our bear. Depending upon what information is encoded in each familiar
view of the bear, even a slight change in its appearance or one’s viewing position would
produce a new collection of features in the image of the bear and, hence, lead to the
representation of a new separate view. Thus, even a single, individual bear might come
to be represented by 1000’s of views — a combinatorial explosion that would tax the
capacity of our visual memory. One possible response to this concern is that memory in
the human brain is plentiful and 1000’s of views per an object is not actually implausible.
This is not an entirely satisfying response in that the same argument may not hold if the
numbers increase by an order of magnitude or more. Perhaps a more plausible answer
is that only a small number of views are used to describe each object and that images
that deviate from known views are recognized using normalization mechanisms. If a new
image is sufficiently different from known views or occurs quite frequently, it too will
come to be represented. However, this explanation does not provide any hard and fast
numbers on exactly how many views per an object are necessary or exactly what
features are used to determine the similarity between views.

In summary, image-based models are able to posit a single mechanism that appears
to account for behavior in a wide range of recognition tasks, including both entry-level
recognition and the recognition of specific individuals within a class (Tarr, in press). At
the same time, important aspects of image-based models are still under-specified in

many respects, including the specific features of the representation, the number of views
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sufficient to represent an object or object class, and the exact normalization

mechanisms used to match unfamiliar views to familiar ones.

Is A Single Mechanism Really Sufficient?
In the previous section we raised the possibility that a single recognition mechanism

might be capable of supporting a wide array of recognition tasks, ranging from the
individual level to the entry level. Although some image-based computational
implementations appear to be able to handle this range of recognition tasks, there looms
the larger question of whether there is any empirical evidence to support such unified
approaches. Indeed, a logical argument regarding the nature of object recognition has
often been used to argue for dual systems: one system that supports the recognition of
objects at the entry level (discriminating between visually-dissimilar objects such as dogs
and chairs) and that relies on separable object parts, and another system that supports
the recognition of objects at the subordinate level (discriminating between visually-
similar objects such as different faces) and relies on more “holistic’ object
representations (Humphreys & Riddoch, 1984; Jolicoeur, 1990; Farah, 1992). Different
versions of this approach are possible, but generally they are all motivated not only by
the processing demands of different levels of recognition, but more specifically by the
demands of face recognition as compared to “normal” object recognition (Biederman,
1987; Farah 1992; Kanwisher, 2000).

The argument is as follows: however normal object recognition is accomplished, face
recognition (and possibly other forms of subordinate-level recognition) is different in that
it requires subtle discriminations between individuals that are members of a highly
homogeneous object class. As such, face recognition recruits more “holistic” or
“configural” information than is ordinarily called for. Therefore, according to this view,
face and object recognition should be seen as separable processes. Supporting this
claim are a wide range of behavioral studies that appear to demonstrate “face-specific”
processing (e.g., Yin, 1969; Tanaka & Farah, 1993). Reinforcing this conclusion, there is
a neuropsychological impairment from brain-injury — prosopagnosia — of object
recognition that appears to be restricted exclusively to the recognition of individual faces

(Farah, 1990). Finally, there are recent findings from neuroimaging (PET and fMRI) that
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seem to reveal a small region of inferotemporal cortex — the “fusiform face area” (FFA) —
that is selectively more active for faces as compared to other objects (Kanwisher,
McDermott, & Chun, 1997).

Evaluating this evidence, however, requires careful consideration of both the default
level of categorical access for control object class (faces are recognized at the individual
level by default) and the degree of perceptual expertise with the object class (all subjects
are perceptual experts at face recognition). When these two factors are taken into
account, a far different picture of visual object recognition emerges. Specifically,
behavioral studies have found that once subjects are perceptual experts with a class of
novel objects (“Greebles” — one Greeble is shown in Figure 1), subjects show the same
recognition behaviors that all individuals show with faces. Consider what makes
someone an expert: it is the fact that they recognize objects in the domain of expertise
automatically at the individual level (Tanaka & Taylor, 1991). This is true for faces (I
recognize my sister first as “Joanna” not as a woman or a Caucasian) and for Greebles
once a subject has become a Greeble expert (i.e., they apply the individual-level names
for Greebles by default). Given such perceptual expertise, the same “holistic” or
“configural” effects obtained for faces and for Greebles: within a domain of expertise
moving some parts of an object affects the recognition of other parts (Gauthier & Tarr,
1997a); the same is not true for objects that are not from a domain of expertise.
Similarly, when prosopagnosic subjects are forced to make individual-level
discriminations between Greebles, snowflakes, or even familiar, common objects, their
recognition impairment for faces and objects appears equivalent across all object
classes. Therefore these brain-injured subjects do not have the hypothesized face-
specific recognition deficit (Gauthier, Behrmann, & Tarr, 1999). Finally, neuroimaging
studies that have compared the subordinate-level recognition of familiar, common
objects to the recognition of faces have revealed common neural substrates for both
recognition tasks (Gauthier et al., 1997, 2000b). At the same time, the putative FFA has
been found to activate not only for faces, but also for Greebles once subjects are made
to be Greeble experts (Gauthier et al., 1999). Reinforcing the importance of expertise in

putatively face-specific effects, bird and car experts also show activation in their FFA for
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birds and cars, but only in their domain of expertise (Gauthier et al., 2000a). Thus, there
is little evidence to support the existence “face-specific’ perceptual processes or neural
substrates. Rather current results point to a single visual recognition system that can be
“tuned” by experience to recognize specific object classes by default at a more
subordinate level than is ordinarily the case (Tarr & Gauthier, 2000). The exact nature of

this system, however, is still open to debate.

Conclusions: Is Any Model Adequate?
Despite our earlier statement that image-based models do a better job of accounting

for extant data, it is unclear whether any model provides an adequate explanation of
human object recognition. Although various groups have argued that one model or
another offers a comprehensive theory (Tarr & Bulthoff, 1995; Biederman &
Gerhardstein, 1995), the truth is, at present, there is no single model that can explain the
range of behavioral, neurophysiological, and neuropsychological data that has been
obtained under various conditions. Indeed, perhaps the most significant challenge to any
theory is that human object recognition is so flexible, supporting accurate recognition
across a myriad of tasks, levels of specificity, degrees of expertise, and changing
viewing parameters.

Consider the case of viewpoint. Many studies have attempted to assess whether
object recognition is viewpoint dependent or viewpoint invariant (Biederman &
Gerhardstein, 1993; Bulthoff & Edelman, 1992; Lawson & Humphreys, 1996; Tarr, 1995;
Tarr et al., 1998), yet asking the question in a strictly dichotomous manner is futile. The
fact is, recognition performance varies almost continuously depending on the similarity
of the target object relative to the distractor objects (Hayward & Williams, 2000). There is
no canonical “viewpoint dependent” result and there are few cases in which recognition
is truly viewpoint invariant (Tarr & Bulthoff, 1995). As an alternative, one might abandon
the notion of viewpoint-dependency as a guiding principle in favor of similarity metrics
between to-be-recognized objects, rendering viewpoint-dependent effects a by-product
of the way in which similarity is measured (Edelman, 1995; Perrett, Oram, and
Ashbridge, 1998). The problem is that there is currently no reasonable notion of how to

measure “similarity.” What is the correct feature set? How are features compared to one
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another? These questions are thus far unanswered, yet they are central to any theory of
object recognition even if one sidesteps many other potentially difficult issues.

Given that there is no such thing as a definitive experiment and data exists that can
in some sense invalidate every theory, what can be said about the current state of
models of visual object recognition? To begin with, the debate between proponents of
structural-description models and image-based models boils down to an argument about
the molar features of object representations. On one side, researchers such as
Biederman (1987) and Hummel (Hummel & Stankiewicz, 1996) have posited the use of
3D volumes that approximate the 3D appearance of individual object parts — an
approach that has its origins in computer graphics (Foley and Van Dam, 1982) and long-
standing popularity in the field of computer vision (Binford, 1971; Brooks, 1983; Marr &
Nishihara, 1978). On the other side, theorists such as Tarr (Tarr & Pinker, 1989; Tarr,
1995), Poggio and Edelman (1990), and Bulthoff and Edelman (1992) have posited the
use of local 2D and 2.5D image features — an approach that is rooted in what is known
about the architecture of the primate visual system (Hubel & Wiesel, 1959).

At the same time, both camps effectively agree about many of the properties that are
critical in any plausible model of recognition:

* The decomposition of an image into component features.

* The coding of the spatial relations between such features.

* Multiple views for single objects to encode “different” collections of features
arising from different viewpoints.

* Generalization mechanisms to normalize over viewpoint and other changes in
viewing conditions.

* Plasticity that can support recognition tasks ranging from the highly specific
individual level to the categorical entry level.

In the end, things might not be so bleak after all. That there is any agreement at all

about such a list suggests that vision scientists have made some progress.

References



38

Biederman, |. (1987). Recognition-by-components: A theory of human image
understanding. Psychological Review, 94, 115-147.

Biederman, 1. (1988). Aspects and Extensions of a Theory of Human Image
Understanding. Paper presented at the Computational processes in human vision:
An interdisciplinary perspective, Norwood, NJ.

Biederman, 1., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects:
Evidence and conditions for three-dimensional viewpoint invariance. Journal of
Experimental Psychology: Human Perception and Performance, 19(6), 1162-1182.

Biederman, I., & Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual
object recognition: Reply to Tarr and Bulthoff (1995). Journal of Experimental
Psychology: Human Perception and Performance, 21(6), 1506-1514.

Binford, T. O. (1971, December). Visual perception by computer. Paper presented at the
IEEE Conference on Systems and Control, Miami, FL.

Booth, M. C. A., & Rolls, E. T. (1998). View-invariant representations of familiar objects
by neurons in the inferior temporal visual cortex. Cerebral Cortex, 8(6), 510-523.

Brooks, R. A. (1983). Model-based three-dimensional interpretations of two-dimensional
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2), 140-
149.

Bulthoff, H. H., & Edelman, S. (1992). Psychophysical support for a two-dimensional
view interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA, 89, 60-64.

Bulthoff, H. H., & Edelman, S. (1993). Evaluating object recognition theories by
computer graphics psychophysics. In T. A. Poggio & D. A. Glaser (Eds.), Exploring
Brain Functions: Models in Neuroscience (pp. 139-164). New York, NY: John Wiley &
Sons Ltd.

Edelman, S. (1993). Representing three-dimensional objects by sets of activities of
receptive fields. Biological Cybernetics, 70, 37-45.

Edelman, S. (1995). Representation, similarity, and the chorus of prototypes. Minds and
Machines, 5(1), 45-68.

Edelman, S., & Bulthoff, H. H. (1992). Orientation dependence in the recognition of
familiar and novel views of three-dimensional objects. Vision Research, 32(12),
2385-2400.

Farah, M. J. (1990). Visual Agnosia: Disorders of Object Recognition and What They
Tell Us About Normal Vision. Cambridge, MA: The MIT Press.



39

Farah, M. J. (1992). Is an object an object an object? Cognitive and neuropsychological
investigations of domain-specificity in visual object recognition. Current Directions in
Psychological Science, 1(5), 164-169.

Foley, J. D., & Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics.
Reading, MA: Addison-Wesley.

Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C. (1997). Levels of
categorization in visual object studied with functional MRI. Current Biology, 7, 645-
651.

Gauthier, 1., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be
dissociated from object recognition? Journal of Cognitive Neuroscience, 11(4), 349-
370.

Gauthier, ., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000a). Expertise for cars
and birds recruits brain areas involved in face recognition. Nature Neuroscience,
3(2), 191-197.

Gauthier, 1., & Tarr, M. J. (1997a). Becoming a "Greeble" expert: Exploring the face
recognition mechanism. Vision Research, 37(12), 1673-1682.

Gauthier, 1., & Tarr, M. J. (1997b). Orientation priming of novel shapes in the context of
viewpoint-dependent recognition. Perception, 26, 51-73.

Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation
of the middle fusiform "face area" increases with expertise in recognizing novel
objects. Nature Neuroscience, 2(6), 568-573.

Gauthier, 1., Tarr, M. J., Moylan, J., Anderson, A. W., Skudlarski, P., & Gore, J. C.
(2000b). Does visual subordinate-level categorisation engage the functionally defined
Fusiform Face Area? Cognitive Neuropsychology, 17(1/2/3), 143-163.

Hayward, W. G., & Tarr, M. J. (1997). Testing conditions for viewpoint invariance in
object recognition. Journal of Experimental Psychology: Human Perception and
Performance, 23(5), 1511-1521.

Hayward, W. G., & Williams, P. (2000). Viewpoint dependence and object
discriminability. Psychological Science, 11(1), 7-12.

Hayward, W. G., & Tarr, M. J. (2000). Differing views on views: Comments on
Biederman & Bar (1999). Vision Research, 40, 3895-3899.



40

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's
striate cortex. J. Physiol., 148, 574-591.

Hummel, J. E. (1994). Reference frames and relations in computational models of object
recognition. Current Directions in Psychological Science, 3(4), 111-116.

Hummel, J. E., & Biederman, |. (1992). Dynamic binding in a neural network for shape
recognition. Psychological Review, 99(3), 480-517.

Hummel, J. E., & Stankiewicz, B. J. (1996). An architecture for rapid, hierarchical
structural description. In T. Inui & J. McClelland (Eds.), Attention and Performance
XVI (pp. 93-121). Cambridge, MA: MIT Press.

Humphrey, G. K., & Khan, S. C. (1992). Recognizing novel views of three-dimensional
objects. Canadian Journal of Psychology, 46, 170-190.

Humphreys, G. W., & Riddoch, M. J. (1984). Routes to object constancy: Implications
from neurological impairments of object constancy. Quarterly Journal of Experimental
Psychology, 36A, 385-415.

Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory & Cognition,
13, 289-308.

Jolicoeur, P. (1990). Identification of disoriented objects: A dual-systems theory. Mind &
Language, 5(4), 387-410.

Jolicoeur, P., Gluck, M., & Kosslyn, S. M. (1984). Pictures and names: Making the
connection. Cognitive Psychology, 16, 243-275.

Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3(8),
759-763.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module
in human extrastriate cortex specialized for face perception. J. Neurosc., 17, 4302-
4311.

Lawson, R., & Humphreys, G. W. (1996). View specificity in object processing: Evidence
from picture matching. Journal of Experimental Psychology: Human Perception and
Performance, 22(2), 395-416.

Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior
temporal cortex of monkeys. Current Biology, 5(5), 552-563.

Lowe, D. G. (1987). The viewpoint consistency constraint. International Journal of
Computer Vision, 1, 57-72.



41

Lowe, D. G. (2000). Towards a computational model for object recognition in IT Cortex.
In S.-W. Lee & H. H. Bilthoff & T. Poggio (Eds.), Biologically Motivated Computer
Vision (Vol. 1811, pp. 20-31). Berlin: Springer-Verlag.

Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial
organization of three-dimensional shapes. Proc. R. Soc. of Lond. B, 200, 269-294.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. San Francisco: Freeman.

McMullen, P. A., & Farah, M. J. (1991). Viewer-centered and object-centered
representations in the recognition of naturalistic line drawings. Psychological
Science, 2, 275-277.

Mel, B. (1997). SEEMORE: Combining color, shape, and texture histogramming in a
neurally inspired approach to visual object recognition. Neural Computation, 9, 977-
804.

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the
primate temporal cortex. Nature, 335, 817-820.

Murphy, G. L., & Brownell, H. H. (1985). Category differentiation in object recognition:
Typicality constraints on the basic level advantage. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 11, 70-84.

Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of
objects. In J. Long & A. Baddeley (Eds.), Attention and Performance IX (pp. 135-
151). Hillsdale, NJ: Lawrence Erlbaum.

Perrett, D. I., Mistlin, A. J., & Chitty, A. J. (1987). Visual neurones responsive to faces.
Trends in Neuroscience, 10(96), 358-364.

Perrett, D. I., Oram, M. W., & Ashbridge, E. (1998). Evidence accumulation in cell
populations responsive to faces: An account of generalisation of recognition without
mental transformations. Cognition, 67(1,2), 111-145.

Perrett, D. 1., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the
monkey temporal cortex. Experimental Brain Research, 47, 329-342.

Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional
objects. Nature, 343, 263-266.

Price, C. J., & Humphreys, G. W. The effects of surface detail on object categorization
and naming. The Quarterly Journal of Experimental Psychology, 41A, 797-828.



42

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11), 1019-1025.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic
objects in natural categories. Cognitive Psychology, 8, 382-439.

Sanocki, T., Bowyer, K. W., Heath, M. D., & Sarkar, S. (1998). Are edges sufficient for
object recognition? Journal of Experimental Psychology: Human Perception and
Performance, 24(1), 340-349.

Selfridge, O. G. (1959). Pandemonium: A paradigm for learning. Paper presented at the
Symposium on the Mechanisation of Thought Processes, London.

Shepard, R. N., & Metzler, J. (1971). Mental Rotation of three-dimensional objects.
Science, 171, 701-708.

Shepard, R. N., & Cooper, L. A. (1982). Mental Images and Their Transformations.
Cambridge, MA: The MIT Press.

Srinivas, K. (1995). Representation of rotated objects in explicit and implicit memory.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 1019-
1036.

Tanaka, K. (1996). Inferotemporal cortex and object vision, Ann Rev Neuroscience (Vol.
19, pp. 109-139). Palo Alto, CA: Annual Reviews.

Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly
Journal of Experimental Psychology, 46A, 225-245.

Tanaka, J. W., & Taylor, M. (1991). Object categories and expertise: Is the basic level in
the eye of the beholder? Cognitive Psychology, 23, 457-482.

Tanaka, J., Weiskopf, D., & Williams, P. (In press). The role of color in object
recognition. Trends in Cognitive Science.

Tarr, M. J. (1995). Rotating objects to recognize them: A case study of the role of
viewpoint dependency in the recognition of three-dimensional objects. Psychonomic
Bulletin and Review, 2(1), 55-82.

Tarr, M. J. (1999). News on views: Pandemonium revisited. Nature Neuroscience, 2(11),
932-935.



43

Tarr, M. J. (in press). Visual Object Recognition: Can a Single Mechanism Suffice? In M.
A. Peterson & G. Rhodes (Eds.), Analytic and Holistic Processes in the Perception of
Faces, Objects, and Scenes. New York: JAI/Ablex.

Tarr, M. J., & Black, M. J. (1994). A computational and evolutionary perspective on the
role of representation in vision. Computer Vision, Graphics, and Image Processing:
Image Understanding, 60(1), 65-73.

Tarr, M. J., & Bulthoff, H. H. (1995). Is human object recognition better described by
geon-structural-descriptions or by multiple-views? Journal of Experimental
Psychology: Human Perception and Performance, 21(6), 1494-1505.

Tarr, M. J., & Bulthoff, H. H. (1998). Object Recognition in Man, Monkey, and Machine.
Cambridge, MA: The MIT Press.

Tarr, M. J., Bulthoff, H. H., Zabinski, M., & Blanz, V. (1997). To what extent do unique
parts influence recognition across changes in viewpoint? Psychological Science,
8(4), 282-289.

Tarr, M. J., & Gauthier, I. (1998). Do viewpoint-dependent mechanisms generalize
across members of a class? Cognition, 67(1-2), 71-108.

Tarr, M. J., & Gauthier, I. (2000). FFA: A Flexible Fusiform Area for subordinate-level
visual processing automatized by expertise. Nature Neuroscience, 3(8), 764-769.

Tarr, M. J., Kersten, D., & Bulthoff, H. H. (1998). Why the visual system might encode
the effects of illumination. Vision Research, 38(15/16), 2259-2275.

Tarr, M. J., & Kriegman, D. J. (2001). What defines a view? Vision Research, in press.

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape
recognition. Cognitive Psychology, 21(28), 233-282.

Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, I. (1998). Three-dimensional
object recognition is viewpoint-dependent. Nature Neuroscience, 1(4), 275-277.

Ulliman, S. (1989). Aligning pictorial descriptions: An approach to object recognition.
Cognition, 32, 193-254.

Ullman, S. (1996). High-Level Vision. Cambridge, MA: The MIT Press.

Ullman, S., & Basri, R. (1991). Recognition by linear combinations of models. IEEE
PAMI, 13(10), 992-1006.



44

Ullman, S., & Sali, E. (2000). Object classification using a fragment-based
representation. In S.-W. Lee & H. H. Bulthoff & T. Poggio (Eds.), Biologically
Motivated Computer Vision (Vol. 1811, pp. 73-87). Berlin: Springer-Verlag.

Wallis, G. (1996). Using spatio-temporal correlations to learn invariant object recognition.
Neural Networks, 9(9), 1513-1519.

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology,
81(1), 141-145.



