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Visual Categorization: When
Categories Fall to Pieces

We cannot help but categorize the visual world into objects like cats and faces.
An intriguing new study shows that observers automatically discover
informative fragments of visual objects during category learning.

Quoc C. Vuong

We see the world in discrete categories
in order to recognize and interact
appropriately with objects in our
environment [1]. How do we learn
visual object categories? Our intuition
suggests that, through experience,
we acquire features found in members
of one category but not in those from
another category. For example, cats
have whiskers; human faces, on the
other hand, normally do not. There is
empirical support for this intuitive
view [2,3].

But a fundamental problem with this
intuition is image variability. Familiar
objects from the same category
can have an enormous range of
appearance; they are often occluded
by other objects; how they appear to
us can further be confounded by
viewing conditions such as variable
illumination; and so on [2]. These
factors converge to make it extremely
difficult to learn generic features that
are reliable for visual categorization.

In work published recently in
Current Biology, Hegdé et al. [4] offer
a compelling solution to this problem,
but one that highlights the need for
us to re-think the pieces that make
up objects and object categories.
Armed with a set of novel visual
categories [5] and a statistical means
to select features [6,7], these
authors have demonstrated that

observers automatically discover
fragments — literally, bits and pieces
of images — during category learning
that are very effective for visual
categorization. This provides a new
and important link between visual
category learning and visual
categorization.

In this new study [4], observers
classified a large number of unfamiliar
objects into two categories. The

objects were synthesized from a novel
virtual phylogenesis algorithm which
simulated the evolution of biological
forms [5], so that category members
captured natural variations of
categories we are more familiar with.
The examples in Figure 1 show that
this classification task is far from
trivial, even with whole objects (see
supplemental Figure S1 in the paper
for more examples).

Two main sets of image fragments
were extracted from trained objects
using the same statistical procedure.
Observers then classified all
fragments, just as they had done with
whole objects. This sounds like an
even more daunting task. Amazingly
though, observers were as accurate
with one set of fragments as they were

Figure 1. Example objects synthesized by virtual phylogenesis.

Observers were only trained on objects from two of the three categories A, B and C (from [4]).
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with whole objects — nearly 100%
correct! Surprisingly, the same
observers struggled to perform above
chance with the other set of
fragments.

Figure 2 shows the remarkable
lack of visual difference between
informative and uninformative
fragment sets. Clearly, observers do
not acquire just any fragment during
category learning. But what
distinguishes informative fragments
where performance is nearly at
ceiling, from uninformative ones
where performance is more or less at
chance?

The answer lies in how the fragments
are extracted from images. Following
recent computational advances,
Hegdé et al. [4] selected fragments
which maximized their ability to
distinguish categories, through
a powerful statistic called mutual
information [6,7]. This measure tells
us how certain we can be about the
presence of a category if a specific
fragment is present in the image. For
example, if a human eye is present in
the image, then there is a good
chance that a human face is also
present in that image.

The informative fragments used by
Hegdé et al. [4] distinguished between
two trained categories (say categories
A and B; see Figure 1). By comparison,
the uninformative fragments
distinguished between a trained and

untrained category (say categories A
and C). Observers never saw untrained
category members.

Thus, both informative and
uninformative fragments were of
comparable visual complexity and both
contained diagnostic information to
distinguish categories, but only the
informative ones were relevant for the
observers’ task. In fact, observers
could not classify informative
fragments prior to any training, which
underscores the importance of
category learning to discover the
right pieces for the task.

There are thousands of possible
fragments of an image, but only
a fraction of them will reliably indicate
that a particular category is present.
Feature selection based on mutual
information is a powerful framework to
extract those fragments [6,7]. These
are typically of intermediate complexity
[6], balancing how likely the fragments
will occur in an image and how
indicative they are of a particular
category.

For example, a fragment containing
the eyes and a bit of the nose probably
indicates that a face is present in the
image but it is very unlikely to find such
a large fragment in many different
images. Conversely, a much smaller
fragment containing just the hair line
(so it looks like an edge) is likely to
occur in many different images which
do contain faces but may accidentally

occur in images which do not contain
faces.

This framework is very successful
for familiar visual categories [7]. For
example, the mutual information of
familiar object fragments correlates
with neural measures like visual evoked
potentials [8] and haemodynamic brain
responses [9]. So there is exciting
new evidence that the brain may also
extract fragments of intermediate
complexity for everyday things.

One concern with using familiar
objects is whether observers learn
fragments out of necessity, as objects
are often occluded, or whether
fragment-based learning occurs
automatically as a matter of course.
Hegdé et al.’s [4] results clearly favour
the latter, as observers learn novel
whole objects. There was no need for
them to discover fragments during
training, but they did.

There is something to be said about
Hegdé et al.’s [4] virtual phylogenesis
algorithm for synthesizing objects.
Like biological organisms, their objects
evolve from a common ancestor.
Objects from the same category
inherit their common ancestor’s
shape characteristics but express
individual shape variations. Indeed,
this algorithm has a nice parallel to
earlier work with an artificial
taxonomy of ‘caminalcules’ used to
study how taxonomists classify the
evolutionary relationships between
species [10].

Virtual phylogenesis gives rise to
novel object categories with desirable
properties: for example, objects have
measurable natural within-class
variations similar to biological
organisms. It is also versatile: for
example, objects can be structured
into a hierarchy of categories, or other
evolutionary mechanisms (such as
sexual selection) can be incorporated
into the algorithm. Importantly, it is
a principled means to synthesize
a large number of naturalistic objects
without unknowingly pre-specifying
the informative fragments studied.

The algorithm diverges from
alternative methods of synthesizing
novel objects, such as combining
shape primitives [11,12] or clustering
shapes on the basis of similarity [13].
Given its versatility, virtual
phylogenesis is a significant addition
to the repertoire of techniques for
synthesizing objects that can be used
for natural vision, machine learning,
and even evolutionary taxonomy.

Figure 2. Examples of informative and uninformative fragments.

The informative ones distinguished between two trained categories — say categories A and B
from Figure 1 — whereas the uninformative ones distinguished between a trained (A) and
untrained category (C).
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Hegdé et al.’s [4] findings provide
strong support for a prominent
computational model of object
perception and categorization based
on informative image fragments [6,7].
They also support observers’ natural
tendency to pick up statistical
regularities in the visual input [14],
which can develop as early as nine
months [15]. Lastly, the results link
visual category learning with visual
categorization, in that informative
fragments play a key role for both
processes [4,6–9].

Category learning remains an
important issue in visual cognition.
There are ecological reasons for
acquiring pieces of visual categories
[1]; for example, to overcome very real
problems like occlusions and image
variability. The human visual system
has evolved to automatically acquire
informative fragments for visual
categorization. Let’s hope that we
will likewise pick up the pieces.
Cellular Evolution:
a Mitochondrion?

Mitochondria and their relatives constit
some of which function in aerobic resp
different anaerobic lineages show a stri

Christopher J. Howe

For many years, the view was widely
held that mitochondria originated
when a primitive eukaryotic cell
acquired through endosymbiosis
a prokaryote capable of oxidative
phosphorylation. Some of the
endosymbiont’s genes were lost, some
were transferred to the nucleus, and
a stable relationship was established
that has lasted very successfully for
well over a billion years. The fact that
anaerobic eukaryotic lineages exist
today — such as the gut-dwelling
pathogen Giardia — was attractively
consistent with this view of
mitochondrial origin. These anaerobic
eukaryotes appeared to lack
mitochondria and according to
molecular phylogenetic trees seemed
to have diverged from other eukaryotes
very early — presumably before the
acquisition of mitochondria. This group
became known as the Archezoa [1].
However, a discovery that would
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and might even have retained
a remnant of the organelle. Although
the placement of Entamoeba among
the Archezoa was controversial, other
members of the Archezoa were soon
shown also to harbour genes for
proteins of mitochondrial origin and
remnant mitochondrial compartments
[5]. We now recognize that all
eukaryotes probably have
mitochondria, or their remnants, and
indeed it arguably was the acquisition
of the mitochondrion that marked
the birth of the eukaryotes [6].
Furthermore, the phylogenetic position
of Archezoa as early-diverging
eukaryotes is also questionable [7,8].

A Diversity of Mitochondrial Forms
Mitochondrial remnants are known
as hydrogenosomes or mitosomes,
depending on their function. In general,
organelles derived from mitochondria
can be ordered on a spectrum based
on their structure and function
(Figure 1). Classical mitochondria, with
their cristae as well as their electron
transfer chain and F1F0 ATPase for
oxidative phosphorylation in aerobic
conditions, represent one end of the
spectrum. Close to these are the
mitochondria of some anaerobic
metazoa, such as those of parasitic
worms, which lack some components
of the electron transfer chain [9].
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