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Abstract. The spatiotemporal pattern projected by a moving object is specific to that object,
as it depends on both the shape and the dynamics of the object. Previous research has shown
that observers learn to make use of this spatiotemporal signature to recognize dynamic faces
and objects. In two experiments, we assessed the extent to which the structural similarity of the
objects and the presence of spatiotemporal noise affect how these signatures are learned and
subsequently used in recognition. Observers first learned to identify novel, structurally distinctive
or structurally similar objects that rotated with a particular motion. At test, each learned object
moved with its studied motion or with a non-studied motion. In the non-studied motion condi-
tion we manipulated either dynamic information alone (experiment 1) or both static and dynamic
information (experiment 2). Across both experiments we found that changing the learned motion
of an object impaired recognition performance when 3-D shape was similar or when the visual
input was noisy during learning. These results are consistent with the hypothesis that observers
use learned spatiotemporal signatures and that such information becomes progressively more
important as shape information becomes less reliable.

1 Introduction
We live in a dynamic environment. The interplay between our movements relative to
other objects and illumination sources produces a continuously changing projection
on our retinas. How does our visual system make sense of this visual cacophony to
recognize objects? The conventional answer is that the visual system maps dynamic
information onto structures that do not vary over time (Marr 1982). For example,
popular theories hypothesize that objects are represented as parts and their relations
(Biederman 1987; Marr and Nishihara 1978), or as views comprised of visible features
(Bulthoff and Edelman 1992; Poggio and Edelman 1990; Tarr and Pinker 1989).
Recently, however, several studies have underscored the need to understand how
the visual system directly uses dynamic information for recognition (eg Hill and Pollick
2000; Knappmeyer et al 2003; Lander and Bruce 2000; Liu and Cooper 2003; Newell
et al 2004; Stone 1998, 1999; Thornton and Kourtzi 2002; Vuong and Tarr 2004). Many
of these studies are motivated by the observation that how visible features change
over time is specific to the objects being viewed, as this change depends on both their
physical structure (shape and surface appearance) and their movements. Thus, although
it is well established that the visual system recovers and refines spatial structures from
dynamic visual input (eg Ullman 1984), it is plausible that the visual system also uses
the dynamic pattern produced by the movement of that object. Stone (1998) argued
that this object-specific dynamic pattern constitutes a spatiotemporal signature of the
object being viewed, and can therefore provide information that can be used for recog-
nition, in addition to any available shape information. Indeed, studies have shown
that dynamic patterns can be used to recognize movements (eg Johansson 1973); to
discriminate between male and female actors (eg Mather and Murdoch 1994); to inter-
pret facial expressions (eg Bruce and Valentine 1988); and to recognize individuals
(eg Hill and Pollick 2000; Knappmeyer et al 2003; Thornton and Kourtzi 2002), novel
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objects (eg Liu and Cooper 2003; Stone 1998, 1999; Vuong and Tarr 2004), or categories
of novel objects (Newell et al 2004).

Given the strong evidence that observers use object-specific dynamic patterns for
recognition purposes, our goal in the present study was to investigate the conditions
under which observers learn to use these spatiotemporal signatures. This is an impor-
tant issue because the extent to which static and dynamic information is ultimately
used in object recognition may depend on how a stimulus class is learned (Wallis and
Biilthoff 1999). As highlighted above, investigators have used a wide variety of stimuli
(eg faces, human actions, novel 3-D shapes) and an equally wide variety of recognition
tasks (eg old/new discrimination, identification, categorization) to study the role of
motion in object recognition. Across these different studies, they have consistently
found that recognition performance is often affected by subtle changes to the dynamics
of the objects. For example, Stone (1998) introduced a rotation-reversal manipulation
that preserved static cues to object identity (ie 3-D shape and 2-D image features) but
disrupted dynamic cues (ie the temporal ordering of views). He reported that this
manipulation impaired observers’ ability to recognize ‘amoebas’ rotating rigidly in depth
in a complex manner (both in accuracy and response times). Stone replicated his
results with point-light displays of the same stimuli (Stone 1999). Liu and Cooper
(2003) subsequently reported similar costs for rotation reversal on accuracy in an old/
new discrimination task, and on response-time priming in a symmetry judgment task.
In their experiments, they used structurally distinctive novel objects rotating about the
vertical axis.

In many of these studies, learning the object dynamics is an important component
of the study (either during the course of the experiment or from observers’ pre-
experimental knowledge). Thus beyond demonstrating an important role of motion in
object recognition, these previous studies also suggest that learning may shape the
visual information that is ultimately used in recognition. However, investigators have
not teased apart the factors that may affect the extent to which spatiotemporal signa-
tures are picked-up and used. Here we examined two factors suggested by the literature
on object recognition (eg Tarr and Biilthoff 1995): the structural similarity between
objects, and the availability of shape and motion information. Both of these factors
may make learning the objects more difficult and therefore influence the extent to
which their dynamics are used in the recognition process. That is, motion information
may be more likely to be used when objects are difficult to learn, as may be the case
when the tested objects are highly similar to each other (eg Hayward and Williams
2000) or when objects are visually degraded (eg Lander and Bruce 2000).

Here we used a paradigm similar to that used by Stone (1998, 1999), and Liu and
Cooper (2003). Observers first learned to identify either structurally distinct or struc-
turally similar objects that each rotated with a particular motion. Furthermore, the
objects could be learned either in the presence or in the absence of spatiotemporal
noise. During this learning phase, we developed a training procedure to ensure that
observers were given full opportunity to learn shape and motion information. At test,
learned objects either moved with their studied motion or with a non-studied motion.
In experiment 1, we reversed the studied rotation direction to produce non-studied
motion that showed the same studied views of each object (but in reverse order).
By comparison, in experiment 2, we presented learned objects moving along a new
rotation trajectory that revealed novel views of those objects. Across these two experi-
ments we compared how well observers generalize to novel views of the learned objects
(Bulthoff and Edelman 1992). Thus, in contrast to earlier studies, we tested different
sets of objects that varied in their structural similarity (and consequently how easily
they are recognized) in the same recognition paradigm; we presented objects in the
presence or absence of a spatiotemporal noise that presumably degraded both shape
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and motion information; and we used a learning procedure to ensure that observers
had the opportunity to learn the particular features useful for this challenging task.

2 Experiment 1

Our goal in experiment 1 was to examine the extent to which the rotation-reversal
effect reported by Stone (1998) and Liu and Cooper (2003) may be influenced by the
difficulty of learning the objects. For example, in Stone’s (1998) study, observers had
the difficult challenge of learning structurally similar amoebas. By comparison, in Liu
and Cooper’s study, observers had the equally difficult challenge of learning many
objects (thirty-two as compared to four objects in Stone’s study) from a single exposure
and without knowing that their memory for these objects would be subsequently
tested. In this experiment, we varied the difficulty of learning in two ways. First, we
used either structurally distinctive objects that were ‘easy’ to recognize or structurally
similar objects that were ‘hard’ to recognize (see Vuong and Tarr 2004). Second, observ-
ers could learn either ‘easy’ or ‘hard’ objects in the presence or absence of a dynamic
fog that degraded both shape (including 3-D structure and 2-D views) and motion
information. Our working hypothesis is that there should be a larger rotation-reversal
effect when the objects are difficult to learn.

2.1 Method
2.1.1 Participants. A total of forty observers were recruited from the Brown University
community (twenty-nine females, eleven males). They participated either for course
credit or payment. All observers gave informed consent and were naive to the purposes
of the study.

2.1.2 Stimuli. Figure 1 shows the two sets of novel 3-D objects used in experiments 1
and 2. These objects were a subset of those used in our earlier study (Vuong and Tarr
2004), and details of their construction can be found in that paper. Each set consisted
of eight objects, half of which served as targets and half as distractors.

The first set of eight stimuli consisted of ‘easy’ objects with structurally distinc-
tive shapes, based on those originally created by Biederman and Gerhardstein (1993).
Objects in this set were composed of parts that could be easily discriminated on
the basis of non-accidental properties (eg straight versus curved axis of elongation; see
Biederman 1987). In contrast, the second set of eight stimuli consisted of ‘hard’
amoebas with structurally similar shapes (they lacked distinctive parts or features that
could be easily used as identity cues), similar to those used in several previous studies
of human object recognition (Biilthoff and Edelman 1992; Stone 1998, 1999). The 3-D
coordinates of the vertices of each object and their associated surface normals were
imported into custom software that rendered the objects with a matte-gray surface.
The objects were illuminated by several light sources. All objects were rendered against
a black background.

Two trajectories were used to generate 128-frame (2.8°/frame) animations for both
‘easy’ and ‘hard’ objects. For the first trajectory, a virtual camera was arbitrarily rotated
about the three axes controlled by a parameter ¢ that varied from 0° to 360°. The
virtual camera was rotated in the same fashion for the second trajectory but ¢ varied
from 360° to 0°. It is important to point out that this produced a completely differ-
ent trajectory of the same complexity as the first. When either image sequence is
presented in increasing frame order, objects appear to tumble in depth with a coherent
rotation direction. The same image sequence played in decreasing order depicts
each object rotating in the opposite direction. We arbitrarily animated all objects using
the first trajectory for all phases of experiment 1. The animations were played at
~50 ms/frame (roughly three screen refreshes), so that it took ~6500 ms to play one
entire 360° rotation.
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Figure 1. The sets of ‘easy’, structurally distinct, and ‘hard’, structurally similar, objects used in
experiments 1 and 2.

Finally, in some conditions, we presented objects rotating in a dynamic fog to
degrade both spatial and dynamic information. The fog consisted of a pre-computed
3-D fractal noise volume (Perlin 1985). By presenting 2-D slices of this volume on
each frame, we were able to smoothly mask random fragments of the rotating object in
space and time. On trials when the dynamic fog was presented (for both learning and
test phases), we randomly selected a subset of frames and cycled back and forth
through these frames on that trial. Thus, the dynamics of the fog was completely
independent of the dynamics of the objects. Figure 2 illustrates a time sequence of an
object rotating in this fog.

2.1.3 Design and procedure. Four main factors were tested in experiment 1 in a mixed
design with object type (‘easy’, ‘hard’) and learning context (fog, no-fog) as between-
participants factors, and test motion (studied, non-studied) and test context (fog, no-fog)
as within-participants factors. Ten observers were run in each of the four between-
participants conditions.



Spatiotemporal signatures 501

Figure 2. An example sequence of the dynamic fog. Note that the ‘easy’ object is difficult to see
in any particular image. However, when the sequence is animated, the object is easily seen in the
dynamic fog. Note also that the dynamics of the fog is independent of the dynamics of the object.

Experiment 1 consisted of two learning phases followed by a test phase. In the first
learning phase, observers were shown four objects individually for a full 360° rotation
(~6500 ms). To eliminate any effects of seeing a new rotation direction during the
test phase, two targets rotated clockwise and the other two rotated counterclockwise
(by playing the animation sequence either forwards or backwards). Each rotation
direction of the object was randomly determined for each observer at the beginning of
the experiment, which established its particular characteristic motion learned by that
observer. The starting frame was selected randomly on each trial. Observers were
instructed to press the appropriate key for each object after seeing the object make a
complete rotation. They were informed that they could not respond until the object
was removed from the screen. If observers responded incorrectly, they heard a low
500 Hz tone, and the correct response key was presented on the screen. If they
responded correctly, they heard a high 1000 Hz tone. For this phase, observers were
instructed to respond as accurately as possible. Each object was presented 30 times
for a total of 120 trials. There was a short self-timed break after every 40 trials.

The second learning phase was the same as the first, with the following two
exceptions. First, observers were instructed to respond as quickly and as accurately as
possible. Thus, in this phase, they did not have to wait for the object to disappear
from the screen before responding. Second, if observers responded incorrectly, they
heard only the low tone. As in the first learning phase, each object was presented
30 times for a total of 120 trials, with self-timed breaks after every 40 trials.

In the test phase, observers were presented with the four studied targets intermixed
with four unstudied distractors. They were instructed to press the space bar for all
distractors, and to continue to respond with the learned letter key associated with each
target. During this phase, all objects (both targets and distractors) appeared both in
the presence and in the absence of the dynamic fog and rotated in both rotation
directions. Thus, on 50% of the test trials, the targets rotated with their studied motion
(established during the learning phase), and on the remaining 50% of the trials, they
rotated in a non-studied motion (in which the studied motion was reversed). Observers
were not informed that the targets would rotate any differently than before. Targets
and distractors were shown 10 times in each condition during the test phase, for a total
of 320 trials [8 objects (4 targets/4 distractors) x 2 test contexts x 2 test motions]. There
was a short break after every 40 trials. As in the second learning phase, observers
were instructed to respond as quickly and as accurately as possible. No feedback was
provided during this phase. The entire experiment took approximately 45 min.

The experiment was run on a Windows PC with a monitor with a 1280 x 1024 pixel
resolution and a 60 Hz refresh rate. The program to present the movies and collect
responses was written in C and relied on the OpenGL 1.2 interface to the PC’s graphics
hardware. Observers sat approximately 50 cm from the monitor. At this viewing distance,
each object subtended a maximum visual angle of ~9 deg. The dynamic fog, when
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present, filled the entire screen. Responses were collected from the keyboard. The four
keys used were ‘v, ‘b, ‘n’, and ‘m’, which were randomly assigned to the four targets
for each observer. All observers were instructed to respond with their dominant hand.

2.2 Results

Our main focus in the present study is the effect of rotation reversal following learning.
Thus, only results of target trials from the test phase were analyzed. For our main
analysis, accuracy and correct response times (RTs) for targets presented during the test
phase were submitted to a mixed-design analysis of variance (ANOVA) with object type
(‘easy’, ‘hard’) and learning context (fog, no-fog) as between-participants factors, and
test motion (studied, non-studied) and test context (fog, no-fog) as within-participants
factors. Response times outside the range of 400 and 6500 ms in this and the subse-
quent experiment were removed to eliminate anticipatory responses and outliers. This
procedure excluded less than 4% of correct trials in both experiments.

For both experiments, we also conducted additional non-parametric tests to
determine whether object type and/or learning context influenced the effect of rotation
reversal on object recognition. As hypothesized above, both of these factors may affect
the difficulty of learning the objects. For these analyses, we first computed a mean
percentage of correct responses or RT score for studied and non-studied motion
(averaged across test contexts) on a per-observer basis. We then used the Wilcoxon
signed rank test to compare the population distribution of these dependent measures
for the four different between-participants conditions (‘easy’ objects learned in fog and
no-fog contexts, and ‘hard’ objects learned in fog and no-fog contexts). A significance
level of 0.05 was adopted for all analyses reported.

2.2.1 Accuracy data. The mean percentage of correct responses for experiment 1 is plotted
in figure 3a as a function of object type and test motion. We plotted this interaction
throughout this study because it was the most robust finding. For both experiments,
observers performed well above chance levels (20%) in all conditions. Furthermore,
there was no indication of any speed —accuracy trade-offs in the data.
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Figure 3. (a) Mean percentage-correct scores in experiment 1 as a function of object type and
test motion. Error bars in this and subsequent figures reflect +1 SEM. (b) Mean correct RTs in
experiment 1.

In experiment 1, we found main effects of object type (£ ;; =21.04, p < 0.001)
and test motion (£, 3, = 20.31, p < 0.001) on observers’ accuracy. As evident in the
figure, there was also a significant interaction between object type and test motion
(F.3 = 15.08, p < 0.001), suggesting that the effect of rotation reversal on observers’
accuracy was modulated by the structural similarity of the objects. Lastly, there was
no significant interaction between learning context and test motion, and no significant
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three-way interaction between object type, learning context, and test motion (ps > 0.18).
The ANOVA indicates that only object type modulated the effect of rotation reversal
on how accurately observers identified targets. This was further confirmed by the
non-parametric tests. For ‘easy’ objects, there was no effect of rotation reversal in
the fog learning context (p =0.91) and in the no-fog learning context (p = 0.38).
For ‘hard’ objects, there was a rotation-reversal effect in the fog learning context
(p = 0.008) and marginally in the no-fog learning context (p = 0.06).

2.2.2 Response-time data. The mean RTs for experiment 1 are plotted in figure 3b.
For RTs, all main effects were significant: object type (F 3, = 132.52, p < 0.001),
test motion (£ 3, = 18.89, p < 0.001), learning context (F, ;; = 9.18, p < 0.01), and test
context (£} 3, = 111.98, p < 0.001). As for the accuracy data, there was evidence that
structural similarity modulated the effect of rotation reversal on RTs, as indicated by the
significant interaction between object type and test motion (F, ;; = 8.74, p < 0.01).

There was also some evidence that the availability of shape and motion information
modulated the effect of rotation reversal on RTs, but this did not reach significance
in the omnibus ANOVA [the interaction between learning context and test motion was
marginally significant (£} 5 =2.55, p=0.12) and the three-way interaction between
object type, learning context, and test motion was not significant (F < 1)]. However,
the trend in the RT data is in this direction, as shown in table 1. The non-parametric
tests provide further statistical evidence for this trend: for ‘easy’ objects, rotation
reversal slowed observers’ responses during the test phase if they initially learned the
objects in the fog context (p = 0.02) but not when they learned the objects in the no-fog
context (p = 0.92). By comparison, for ‘hard’ objects, rotation reversal impaired RTs
irrespective of the learning context (p = 0.04 in both contexts).

Table 1. Mean percentage of correct responses and RTs (SEM in parentheses) as a function of
object type, learning context, and test motion for experiments 1 and 2.

Object Learning Test Correct RT/ms
type context motion responses/%

Experiment 1

Easy no-fog studied 97.0 (0.8) 1047 (43)
non-studied 96.1 (1.1) 1047 (42)
fog studied 93.9 (1.4) 1150 (42)
non-studied 93.8 (1.5) 1213 (55)
Hard no-fog studied 81.5 (4.1) 2020 (97)
non-studied 76.8 (4.8) 2147 (115)
fog studied 77.7 (3.5) 2488 (110)
non-studied 69.6 (4.0) 2699 (132)

Experiment 2
Easy no-fog studied 95.5 (0.9) 1069 (49)
non-studied 96.5 (0.7) 1105 (54)
fog studied 97.4 (0.6) 1040 (28)
non-studied 95.8 (0.8) 1112 (34)
Hard no-fog studied 81.4 (3.9) 2012 (128)
non-studied 58.0 (5.6) 2211 (131)
fog studied 87.0 (1.5) 2202 (115)
non-studied 64.5 (3.0) 2620 (139)

2.3 Discussion

Our present results replicate Stone’s (1998, 1999) original findings with a different learning
procedure. For ‘hard’ objects similar to Stone’s stimuli, rotation reversal was clearly
detrimental to observers’ recognition performance, as measured by both accuracy and
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response times. We also found an effect of rotation reversal only on response times
for ‘easy’ objects when these were initially learned in the presence of dynamic noise.
Liu and Cooper (2003), on the other hand, found an effect of rotation reversal only
on accuracy using stimuli similar to our ‘easy’ objects. The different response measure
(RT versus accuracy) affected by rotation reversal in our study and theirs may reflect
the different methods used to create a difficult learning context. We used spatio-
temporal noise to degrade the availability of shape and motion cues during learning.
This degradation may have impaired how quickly observers used shape and motion
cues in general. However, accuracy was not affected because these objects can be
accurately discriminated on the basis of their shape. Liu and Cooper, on the other
hand, had observers study many objects from a single exposure. This procedure may
have impaired how accurately observers could encode the different objects.

Overall, we believe that the present data support the hypothesis that observers
learn to use spatiotemporal signatures to recognize objects when recognition is difficult
during the learning phase, as when objects have similar shape or when both shape
and motion information are degraded. This hypothesis is consistent with the results
reported for the recognition of dynamic faces (for a review see O’Toole et al 2002).

3 Experiment 2

Experiment 1 indicates that when the recognition task was made difficult owing to the
similarity of the targets or the presence of spatiotemporal noise, rotation reversal was
more likely to disrupt the learned motion associated with each target object. Critically,
we held constant the shape and surface information available for the recognition
task—both the studied motion and its reversal contained the same views of each object.
The purpose of experiment 2 was twofold. First, we wanted to contrast this ‘pure’ effect
of rotation reversal with the more ecological situation of showing a completely differ-
ent motion trajectory (and that consequently showed novel views). Second, we wanted
to test whether observers could generalize studied views acquired during learning to
novel views at test in order to compensate for changes to the studied motion
(eg Biilthoff and Edelman 1992). Here observers learned the same objects as those in
experiment 1 in one of two possible motion sequences and were then tested with both
sequences. In contrast to the first experiment, these two sequences changed the studied
motion and revealed different sets of 128 views of each object.

3.1 Method
3.1.1 Participants. A new group of forty members of the Brown University community
(twenty-seven females, thirteen males) were recruited as observers for either course
credit or payment. All observers gave informed consent and were naive to the purpose
of the study.

3.1.2 Design and procedure. The design of experiment 2 was identical to that of experi-
ment 1. Procedurally, two critical changes were made to the learning and test phases.
First, for both learning phases, two targets were animated with one animation
sequence in which the parameter that controlled the virtual camera, ¢, varied from
0° to 360° (the same trajectory as that used in experiment 1), and the remaining two
targets were animated with the second animation sequence, in which ¢ varied from
360° to 0°. We reiterate that both trajectories were therefore of equal complexity. As in
the previous experiment, the assignment of a given animation sequence to a given
target object was randomly determined for each observer. Second, during the test phase,
observers were shown each target (and distractor) in both animation sequences. Thus,
on 50% of the trials, targets rotated with their studied motion, and on the remaining
50% of the trials, targets rotated with a non-studied motion.
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3.2 Results

As in experiment 1, the main focus in experiment 2 was whether changing the studied
motion affected recognition performance for ‘easy’ and ‘hard’ objects. As before, accuracy
and RT data obtained from target trials were submitted to the same mixed-design
ANOVA as that used in the first experiment. We also conducted non-parametric tests
comparing differences between studied and non-studied motion across the different
between-participants conditions.

3.2.1 Accuracy data. The accuracy data for experiment 2 are shown in figure 4a.
As in experiment 1, there were significant effects of object type (F 3 = 51.25,
p < 0.001), motion type (F ;; =53.65, p < 0.001), and their interaction (F ; =
50.47, p < 0.001). Although the omnibus ANOVA revealed a similar pattern of results
in the accuracy data across the two experiments (see the figures 3a and 4a), the non-
parametric tests revealed a slightly different pattern. Here for ‘easy’ objects, there was
an effect of changing the studied motion in the fog learning context (p = 0.03), which
was not found in the first experiment in which the studied motion was simply
reversed. However, there was no effect of changing the studied motion in the no-fog
learning context (p = 0.92) for ‘easy’ objects; and there was an effect of changing
the studied motion in both the fog and no-fog learning contexts (p = 0.002 for both
conditions) for ‘hard’ objects.
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Figure 4. (a) Mean percentage-correct scores in experiment 2. (b) Mean correct RTs in experiment 2.

3.2.2 Response-time data. The mean RTs for experiment 2 are shown in figure 4b.
Again, for RTs, object type (F) 3 =93.99, p < 0.001), test motion (F 3, = 42.40,
p < 0.001), and test context (£, ;5 = 101.65, p < 0.001), were significant, as was the
interaction between object type and test motion (/] 3, = 21.05, p < 0.001). There were
also significant interactions between learning context and motion type (F ;, = 5.26,
p < 0.05), and between text context and motion type (F 3, = 4.68, p < 0.05). Lastly,
the three-way interaction between object-type, learning context, and test motion was
marginally significant (F ;; = 2.69, p = 0.11) as was the interaction of all four factors
(F.3 =3.07, p=0.09). In contrast to experiment 1, the omnibus ANOVA indicated
that test context had more effect on how quickly observers could identify studied
objects. However, for both ‘easy’ and ‘hard’ objects, changing the studied motion so
that observers saw novel views of the studied objects slowed their responses in both
learning contexts. The results of the non-parametric tests were consistent with this inter-
pretation. For ‘easy’ objects, changing the studied motion slowed observers’ responses
in both learning contexts (fog: p = 0.01; no-fog: p = 0.02). For ‘hard’ objects, changing
the studied motion impaired RTs in the fog learning context (p = 0.002). However,
in the no-fog learning context, changing the studied motion did not significantly impair
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response times (p = 0.11). We cannot account for this non-significance, but the trend
in the RTs is again in the right direction, as shown in table 1.

3.3 Discussion

In experiment 2, we changed both the studied motion and the views that were seen.
Despite this critical difference, the results of experiment 2 replicate those of experi-
ment 1. For ‘hard’ objects, there was an effect for changing the studied motion at test
and no interactions with learning context for both accuracy and response times. For
‘easy’ objects, we found an overall effect of changing the studied motion, and no inter-
action with whether observers learned these objects in spatiotemporal noise or not.
As in experiment 1, changing the studied motion affected response times but not accu-
racy (see table 1). Again we believe that learning ‘easy’ structurally distinct objects in
spatiotemporal noise influenced how observers processed dynamic information, rather
than whether they encoded dynamic information or not. We have shown elsewhere
that observers are sensitive to the direction of rotation even for these stimuli, suggest-
ing that the dynamics of the objects are, in fact, encoded in the object representation
(Vuong and Tarr 2004).

Many researchers have suggested that seeing many different views of an object
facilitates the development of object representations that are invariant to image varia-
tions arising from changes in viewpoint or object pose, particularly if differing views
are linked in a temporally ordered sequence that gives rise to apparent motion
(eg Kourtzi and Shiffrar 1999; Lawson et al 1994; Wallis and Biilthoff 2001; but see
Harman and Humphrey 1999). However, it is not known precisely what form this
invariant representation may take. Here we found that observers were unable to use
the novel views to compensate for changes to the motion direction: their perfor-
mance was impaired by the novel motion, and they generally made more errors and
responded more slowly in this experiment compared to experiment 1 (see table 1).
Thus, across both experiments, our results suggest that observers concurrently encode
spatial and dynamic information in the form of spatiotemporal signatures, much in
the same manner that observers encode multiple views of static objects experienced
from different viewpoints (Tarr and Pinker 1989).

4 General discussion

The two experiments reported here were motivated by the question: How does object
motion affect observers’ ability to recognize objects? The results presented here con-
verge with previous studies demonstrating that observers use spatiotemporal signatures
to recognize dynamic stimuli (eg Hill and Pollick 2000; Knappmeyer et al 2003; Newell
et al 2004). As we, and others, have shown, changing the studied motion can severely
impair observers’ recognition performance, even if 3-D shape and 2-D views are fully
preserved (Liu and Cooper 2003; Stone 1998, 1999).

Our contribution to this growing literature is that we tested factors that affect how
learned spatiotemporal signatures are ultimately used for recognition purposes; namely,
we examined the structural similarity of the target objects and the availability of shape
information during learning. Both of these factors have been found to affect the
recognition of objects presented as static images (eg Biederman and Gerhardstein 1993;
Hayward and Williams 2000), and thus we predicted that they would also mediate the
recognition of moving objects. The present results are consistent with this prediction.
In experiment 1, we found interactions between structural similarity and availability
of shape information in modulating the rotation-reversal effect (Liu and Cooper 2003;
Stone 1998, 1999). For ‘easy’, structurally distinctive, objects, observers’ response times
were affected by rotation reversal only if they had studied the objects in a noisy con-
text. By comparison, with ‘hard’, structurally similar, objects, accuracy and response times
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were affected by a rotation reversal in both learning contexts, probably because these
stimuli were already difficult to recognize (see also Vuong and Tarr 2004).

In experiment 2, the studied motion of each object was changed so that observers
saw novel views of the targets (but the same 3-D structure). In this case, recognition
performance decreased when novel views of studied objects were introduced, for both
‘easy’ and ‘hard’ objects and in both learning contexts (as measured by an increase in
response times). However, a direct comparison across the two experiments may be
difficult because the new trajectory used in experiment 2 (but not in experiment 1) may
have made it more difficult to recognize objects even though both trajectories were
constructed to have the same complexity.

We focused on the learning component in the present study because in previous
studies it had not been systematically investigated how the difficulty of learning objects
may influence the visual information observers use to recognize those objects. Indeed,
as far as we can tell, the test stimuli or learning context used in previous studies
generally made it difficult to learn the stimuli. The stimuli formed a homogeneous
class (eg faces, amoebas, arm movements); they were degraded in some manner
(eg shown as point-light displays); or observers had to learn many items from limited
exposures. Our strategy to address this issue was to test qualitatively different types
of stimuli and learning contexts using a difficult individual-level identification task.

It is important to point out that we used a procedure to provide observers with
every opportunity to learn both static (3-D shape and 2-D views) and dynamic (spatio-
temporal signatures) cues to recognize the target objects. In our learning procedure,
observers were initially required to see the entire rotation sequence (first learning
phase). Following that, they were encouraged to respond as quickly and as accurately
as possible (second learning phase). They were provided with explicit feedback through-
out both learning phases. Other researchers have used different learning procedures.
For example, Knappmeyer et al (2003) found that observers learned very subtle charac-
teristic facial movements of specific individuals incidentally. In their study, observers
were merely exposed to animated faces and asked to answer questions about each
individual (eg “which person is more friendly?”). Similarly, Liu and Cooper (2003) had
observers incidentally learn their set of objects by having them decide whether the object
could be used for support or as a tool. Other researchers have used famous or well-
known individuals so that observers would be familiar with the idiosyncratic movements
of those individuals from normal experience (eg Cutting and Kozlowski 1977; Lander
and Bruce 2000). Indeed, a possible avenue for future research is to test different learn-
ing procedures; for example, whether observers learn objects incidentally or explicitly.

We also acknowledge that there is one potential confound in the present study
that provides an alternative account of our data. During the test phase, it is possi-
ble that observers were surprised when learned objects moved in a different manner,
and this could have caused them to make more errors or respond more slowly.
To address this issue, we divided the accuracy and RT data in experiments 1 and 2
into two blocks and looked at the results only on the second block. That is, we only
looked at the last five (out of 10) presentations of each target object and in each test
condition. We assumed that any surprise effects should have disappeared by the second
half of the test phase. The results are presented in table 2. A comparison of tables 1
and 2 shows a similar pattern of results for both experiments. Thus, even after seeing
learned objects moving with both studied and non-studied motions, and in the absence
and presence of the dynamic fog, observers were still sensitive to the dynamics of the
objects acquired during the learning phase.

Lastly, our data suggest that structural similarity and availability of stimulus infor-
mation (shape and motion cues) had different effects on how observers ultimately used
spatiotemporal information, although both factors generally made the recognition task
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Table 2. Mean percentage of correct responses and RTs (SEM in parentheses) of experiments 1
and 2 as a function of object type, learning context, and test motion. The means were computed
from the last five trials of each studied object presented in each condition during the test phase.

Object Learning Test Correct RT/ms
type context motion responses/ %

Experiment 1

Easy no-fog studied 98.3 (0.7) 995 (41)
non-studied 97.8 (0.7) 1007 (41)
fog studied 95.2 (1.6) 1100 (40)
non-studied 95.0 (1.7) 1114 (41)
Hard no-fog studied 81.9 (4.8) 2027 (122)
non-studied 77.2 (5.3) 2163 (143)
fog studied 80.6 (3.9) 2438 (101)
non-studied 70.4 (4.2) 2485 (134)

Experiment 2
Easy no-fog studied 96.7 (0.8) 1027 (49)
non-studied 97.5 (0.7) 1025 (51)
fog studied 97.7 (0.7) 972 (32)
non-studied 96.2 (1.0) 1013 (33)
Hard no-fog studied 77.6 (4.3) 2038 (137)
non-studied 58.5 (5.8) 2161 (147)
fog studied 86.8 (1.6) 2112 (118)
non-studied 65.8 (3.2) 2461 (144)

more difficult during learning. However, as is often the case for static objects, structural
similarity seemed to be the critical factor in our study (Tarr and Bilthoff 1995). The
availability of shape and motion information, on the other hand, had a weak effect that
was evident only in comparing differences between studied and non-studied motion
(mostly) RT distributions.

For the two types of objects we used, the results suggest that spatial and dynamic
information may be weighted differently (see Foster and Gilson 2002, for how object parts
and views are summed in object recognition). In our experiments, spatial and dynamic
information about structurally similar objects may have been equally weighted in the
object representation because motion information would help observers discriminate
between visually similar objects. By comparison, shape information may have been
weighted more than motion information for structurally distinct objects, as these can
be accurately and quickly identified on the basis of shape. Consequently, for ‘hard’ objects,
changing the studied motion would impair both accuracy and response times in both the
absence and presence of spatiotemporal noise. In contrast, for ‘easy’ objects, the presence
of spatiotemporal noise during learning may affect how quickly shape and motion cues
are used. In any case, future studies will be required to further explore this important
issue. Our data provide a starting point to further investigate precisely how learning
affects the combination of shape and motion cues for object recognition, so that appro-
priate cue-combination models may be formulated. For example, it would be interesting
in the future to systematically vary the structural similarity of targets from ‘easy’ to ‘hard’.

In summary, we used rotation reversal (Liu and Cooper 2003; Stone 1998, 1999)
as a means to investigate the information observers use to recognize dynamic objects.
Combined with earlier results, our present findings suggest that how an object’s move-
ments unfold over time also contributes to the recognition of that object. That is,
observers can learn to directly associate specific dynamic information with specific
objects (or classes of objects), particularly if this is informative with regard to object
identity. Hence, the term ‘signature’ is appropriate: spatiotemporal signatures capture
space-time structures projected onto our retinas by a dynamic world.
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