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Abstract—Modern operating systems, such as Linux, are 

capable of executing multiple parallel applications concurrently 

on many-core platforms. Different applications may have 

different characteristics with regard to how they exercise the 

computation and memory resources in these platforms. This 

paper aims to investigate the impact of such differences on the 

overall energy consumption and performance tradeoffs. To 

analyze these tradeoffs, three PARSEC benchmark applications 

are chosen with different characteristics - memory-intensive, 

CPU-intensive and a mixture of both. These applications are 

then concurrently executed in various combinations in 

experiments, which also help establish optimized run-time 

controls in terms of dynamic voltage/frequency scaling (DVFS) 

and thread-to-core allocations at run-time. Such controls are 

based on state-space models derived through linear regression 

using the feedback from hardware performance counters. Using 

the benchmark applications, we demonstrate the effectiveness of 

our proposed method, which shows up to 23% improvement in 

power normalized performance expressed as the ratio between 

instructions per second (IPS) and power consumption (Watt).  

Keywords—Energy efficiency, State-space model, 

Concurrency, Linear regression, Power-Aware, Many-Core 

I.  INTRODUCTION 

Contemporary computing systems, including embedded 

and high performance, are exhibiting increased complexities 

in two dimensions. In one dimension, the number and type of 

computing resources (cores) are increasing in hardware 

platforms, and in the other, an increasing diversity of 

applications are being executed concurrently on these 

platforms [1] [2]. Managing hardware resources, to achieve 

energy efficiency, under different application scenarios 

(single or concurrent) is proving highly challenging due to 

run-time state-space expansion [5].  

To provide control over power and performance 

tradeoffs, DVFS has been integrated into contemporary 

processors, e.g. all current Intel and ARM processors [3][6]. 

In recent years, CPU clock frequencies have increased 

rapidly to satisfy the increasing performance needs [3][4]. In 

order to achieve these higher clock speeds the supply voltage 

has not decreased with the technology feature size. This 

results in power consumption not scaling with technology 

feature size reduction. Consequently, power and energy 

consumption has become a limiting factor to continued 

technology scaling and performance improvements [7]. 

DVFS dynamically scales voltage and frequency across a 

number of pre-set operating points. These have different 

performance and power consumption characteristics and their 

choice can be according to workload requirements. DVFS 

may be controlled at system software level. For instance, it is 

controlled in Linux with power governors [8], such as 

ondemand, performance, conservative, powersave and 

powersave. These governors use DVFS control to manage 

system power according to the knowledge and prediction of 

workload and user preference. Current Linux governors are, 

however, not able to optimize energy consumption, primarily 

because they select only either the maximum or minimum 

frequency depending on whether the workload is higher or 

lower than a given threshold [8]. This coarse-grain approach, 

although serviceable, is not capable of taking advantage of 

the different degrees of parallelizability of individual 

applications and producing the most efficient scheduling.  

For parallel applications, a useful technique to manage 

system performance and power consumption is the allocation 

of cores to execute specific threads. In addition to DVFS 

states, the number of cores being active and executing 

influences both performance and power consumption. Core 

allocations to threads are handled by system software, for 

example Linux’s scheduler [9]. The scheduler seeks to spread 

the workload of all applications running across multiple cores 

to achieve maximum utilization. This approach is functional 

but leaves a number of rooms for improvement. For instance, 

there is no discrimination about the type of task or thread 

being scheduled [9], such as CPU-intensive or memory-

intensive. Different types of threads require different 

considerations for performance and power optimizations. Not 

taking this into account results in indiscriminate sub-

optimization.  

Over the years substantial research has been carried out 

addressing run-time energy minimization and/or 

performance improvement approaches. These approaches 

have considered a single-metric based optimization: 

primarily performance-constrained power minimization, or 

performance improvement within a power budget [16]. For 

example, Shafik et al. proposed a run-time DVFS control 

approach for power minimization of multiprocessor 

embedded systems [10]. Their approach uses performance 



and user experience constraints to derive the lowest possible 

operating voltage/frequency points through reinforcement 

learning and transfer principles. Das et al. presented another 

power minimization approach that models run-time workload 

characterization to continually update the DVFS and core 

allocations through multinomial logic regression based 

predictive controls [11]. A run-time classification of 

workloads and corresponding DVFS controls based on 

similar principles is proposed by Wang and Pedram for 

performance-constrained power minimization [13]. As far as 

performance optimization within a power budget is 

concerned, Chen and Marculescu proposed a distributed 

reinforcement learning algorithm to model power and 

performance tradeoffs during run-time [12]. Using this model 

the DVFS and core allocations are adapted dynamically using 

feedback from the performance counters. Another power-

limited performance optimization approach is presented by 

Cochran et al. showing programming model based power 

budget annotations and corresponding controls [14]. 

These existing approaches, however, have the following 

two major limitations. Firstly, these approaches leave further 

rooms for improvement in terms of energy-efficiency for 

applications that do not have hard deadlines or performance 

constraints. For these applications, a single metric (power) 

based optimization approaches [10][11][13] are likely to 

favor the solutions that produce the lowest power 

consumption, while meeting the specified performance 

requirements. However, such solutions do not automatically 

render an energy-efficient performance point. The power-

limited performance optimization approaches [13][17] 

ensure the optimal solutions for the given power constraints, 

but these also do not guarantee the globally optimal energy-

efficient performance points especially when there is no hard 

power limit. A second limitation of the existing approaches 

is that their run-time implementations are typically based on 

single application scenarios, and do not lend themselves to 

generalizations, including concurrent scenarios with different 

types of applications (with the combinations between CPU- 

and memory-intensive, for instance). 

To address the above limitations, in this paper we make 

the following contributions: 

 we propose a run-time method for power normalized 

performance optimization for heterogeneous 

application scenarios (single or concurrent) using 

DVFS and thread-to-core allocations at run-time, 

 fundamental to our method is learning the power-

normalized performance (expressed as the ratio 

between instructions per second and power 

consumption: IPS/Watt) using linear regression 

based state-space modeling at run-time, and 

 we continually adapt the model using the feedback 

from the performance counters to derive the most 

energy-efficient performance point for a given 

application scenario (single or concurrent, CPU- and 

memory-intensive); to identify the change of 

application scenarios appropriate run-time thread 

monitors are established.  

To the best of our knowledge, this is the first run-time 

state-space modeling technique for many-core systems 

executing concurrent applications, targeting energy-efficient 

performance optimization. 

The rest of the paper is organized as follows. Section II 

gives a brief overview of the background. Section III explores 

power-performance tradeoffs for a number of benchmark 

applications running on the experimental platform. Section 

IV describes the method of optimizing power-normalized 

performance. Section V presents experimental results 

comparing the proposed method with existing Linux 

governors. Section VI concludes the paper. 

II. BACKGROUND 

This section discusses CPU power consumption theory, 

standard Linux power governors, and the experimental 

platform.  

A. CPU power consumption 

The power consumed by a processor is related to its 

operating frequency and voltage. It also has to do with how 

much work the processor is doing. We call the workload the 

activity factor. This is how many times on average the 

transistors switch during every clock cycle. This is important 

as energy is consumed when transistors switch between 

states, if a transistor does not switch it only consumes static 

power (because of the inevitable leakage etc.). The power 

consumed by a processor can be split up into two parts, static 

and dynamic power as seen in ( 1 ). 

 𝑃𝑡𝑜𝑡𝑎𝑙  =  𝑃𝑠𝑡𝑎𝑡𝑖𝑐  +  𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  ( 1 ) 

Static power is the power consumed when there is no 

switching. It is the theoretical minimum amount of power the 

CPU can consume when turned on. Static power has 

increased due to transistor sizes getting smaller and transistor 

density increasing. This creates a higher leakage current and 

therefore more leakage power [18]. Static power follows 

complex formulas but for simplicity it has been generally 

found to be acceptable to conveniently assume that static 

power is related to voltage linearly [18] [19]: 

 𝑃𝑠𝑡𝑎𝑡𝑖𝑐  =   𝛾𝑉 +  𝜔， ( 2 ) 

where V is the supply voltage, and γ and ω are constants. 

B. Dynamic Power 

Dynamic power is dissipated as a result of switching 

activities. Switching typically happens when executing tasks, 

which can include from small OS background tasks to large 

applications needing to use a lot of processing power. 

Dynamic power dissipation follows ( 3 ) [19]: 

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  =  𝛼𝐶𝑉2𝑓， 
( 3 ) 

where α is the activity factor (the portion of the circuit that is 

switching), C is the capacitance of the entire circuit, V is the 

supply voltage, and f is the frequency. The capacitance is 

hardware dependent and is a constant for any CPU. The other 

variables change with the utilization of the CPU, with α being 



influenced by thread-to-core allocation and V and f  being 

directly controllable through DVFS. 

C. CPU Power Governors 

CPU power governors (generally used in Linux operating 

system) dictates DVFS control reacting to different 

workloads. The governors can be set using the utility 

cpufrequtil, which reads system files about CPU 

information and relays it in a user friendly way. For example 

it can read the files which state the maximum and minimum 

frequency the CPU can achieve and then choose the 

minimum frequency when not executing tasks and the 

maximum frequency when executing tasks, which is what the 

ondemand power governor does [8]. The governors set 

frequencies directly, and voltage is scaled with the frequency, 

usually through a number of DVFS points provided by the 

hardware. In this context, choosing a frequency implies a 

complete voltage and frequency decision.  

Currently there are three major static governors, as 

follows: 

performance: a static governor that sets the frequency to 

the highest possible value,  

powersave: a static governor that sets the frequency to the 

lowest possible value, 

userspace: a static governor that reads information 

passed by the user to the “scaling_setspeed” file and sticks to 

that frequency. 

There are also two dynamic governors which determine 

the frequency dynamically according to task states.  

ondemand: The frequency is scaled up to the maximum 

value when certain criteria are met and then decreased 

gradually when other criteria are met [8]. It ramps to 

maximum frequency whenever there is an increase of 

activity, and with reductions of activity decrease the 

frequency in steps. The activity increase and reduction 

thresholds can be tuned. This governor is best used for user 

satisfaction. 

conservative: This works similarly to ondemand but 

instead of jumping to maximum frequency when the up 

threshold value is met it goes up in steps and then jumps 

straight to minimum frequency when the down threshold is 

met. This is best used to save energy whilst still providing 

some user satisfaction.  

Examples of other governors that have been proposed but 

not widely adopted include [15], which also adapt DVFS 

dynamically based on the CPU workloads.  

D. Experimental platform 

All of the experimental data in this paper is obtained from 

running a Linux platform based on an Intel Core i7 

Sandybridge CPU which contains no on-chip GPU facility. 

This CPU is chosen because it has a reasonable number of 

hard (4) and soft (8) cores, has no on-chip GPU to distort the 

power consumption and communications, and as a 

Sandybridge Core i7 rather than Xeon, has a relatively large 

number of possible operating frequencies and voltages. The 

operating system is Ubuntu Linux. 

Extra power monitoring facilities are constructed for the 

experimental platform. This is by inserting a shunt resister 

into the earth side of the power connection to the CPU. As 

high-precision current meters tend to have a 1A upper limit, 

which many CPU operations will exceed, the shunt resister 

allows the inference of current via measuring voltage.  

The performance and power utility Likwid [21] is used to 

obtain the majority of the experimental data. Likwid makes 

use of on-chip performance counters (sensors) in Intel CPUs 

to collect performance and power data. For instance, the 

Running Average Power Limit (RAPL [22]) counters are 

accessed to infer power dissipation.  Before the main 

experiments, Likwid was first confirmed to be accurate for 

the experimental platform through cross-validation with 

physical power measurements using the shunt resister.  The 

use of performance counters rather than external power 

measurement in most of the experiments is motivated by the 

desire of developing a run-time, which for practicality and 

wide applicability can only rely on built-in sensors 

(performance counters).  

III. POWER-PERFORMANCE TRADEOFFS 

A number of experiments are designed with standard 

Linux governors controlling system DVFS during PARSEC 

benchmark applications. PARSEC benchmarks are suitable 

for investigating multi-thread operations in either sequential 

or concurrent executions [20]. These experiments are used to 

investigate whether different types of applications require 

different allocations of resources and whether global 

governors can achieve optimum results.  

 

Fig. 1. Performance counter values for a complete run of each application 

in the PARSEC benchmark suite with ondemand governor, recorded by 

Likwid 

To explore the application state-space, benchmarks of 

different types are chosen to stress the system in different 

ways. This profiles how the system reacts to various types of 

stressing. Three benchmarks are chosen from the PARSEC 

suite [17]. One is memory-intensive, one is CPU-intensive 

and one is a mixture of both. Fig. 1 shows performance 

counter measurements of applications in the PARSEC 
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benchmark suite, canneal (Memory-intensive), freqmine 

(CPU-intensive) and streamcluster (Mixture of both) are 

selected for use in the experiments.  

Fig. 2(a-c) shows plots of total energy used (J) to 

complete a run of each benchmark application with a given 

frequency (MHz) and number of cores allocated to it, with 

only one thread allowed per core. Power measurements are in 

the PKG domain (Cores & Cache), which corresponds with 

the shunt resister measurement area. Fig. 3(a-c) shows the 

average instructions per second per watt (IPS/Watt) a 

benchmark application achieves in one run with a given 

frequency (MHz) and number of cores allocated to it. A 

number of observations can then be made. 

 

(a) canneal   (b) freqmine 

 

(c) streamcluster  

Fig. 2. Energy used for a complete run of each application at different 

operating frequencies and number of cores allocated, data recorded with 

Likwid 

Observation 1: The lowest energy point is always 

achieved when the application is spread across the maximum 

number of cores, which in this case is 4. Maximum 

parallelization reduces the total execution time, and at the 

same time reduces the number of cores on idle to zero during 

the run. If energy is only measured during the run, the overall 

effect is minimizing energy if all cores are busy during the 

execution. Fig. 2(a-c) shows that the operating frequency 

needed to achieve minimum energy is application dependent. 

With reference to Fig. 2(a) and (c) it can be seen that the 

optimum frequency is at lower frequencies, whereas Fig. 2(b) 

shows that the optimum frequency is at the maximum 

frequency of 2.4GHz. This is reasonable as the frequency 

under study here is the CPU frequency, and the performance 

of CPU-heavy tasks is more directly related to CPU 

frequency than that of memory-heavy tasks. The latter 

typically encounter memory and communication related 

bottlenecks making them less directly related to CPU 

frequency – when CPU frequency increases, more clock 

cycles are needed in waiting for external communications to 

off-chip memory etc. This heterogeneity of behaviors 

reinforces the need for a run-time dependent on the type of 

application running and not for the “one condition suits all” 

approach currently used by Linux.  

 

(a)  canneal   (b) freqmine 

 

(c) streamcluster  

Fig. 3. Average IPS/Watt for a complete run of each application at different 

operating frequencies and number of cores allocated, data recorded with 

Likwid 

Observation 2: IPS/Watt closely follows the energy 

consumption. Fig. 3(a-c) shows that the operating point for 

maximum IPS/Watt is close to the operating point of 

minimum energy in Fig. 2(a-c). This is because IPS/Watt is 

the inverse of energy per instruction. Because each of these 

benchmarks has a fixed number of total instructions, no 

matter at what frequency and core state it is run, the measured 

total energy per benchmark run is proportional to energy per 

instruction. Experiments are run with Linux governors to 

assess how well they handle different application types. Table 

I shows how each of the three benchmarks reacts to different 

governors. It can be seen that the most energy efficient 

governor is different for different benchmarks. And it is not 

always the low power governor (powersave). freqmine is 

most energy efficient when under the ondemand governor 

whilst for canneal and streamcluster, the powersave 

governor is the most efficient.  

This indicates that governor performance has poor 

application independence, and a governor designed to 

maximize energy savings might not realize lower energy 

consumption than one that is primarily designed to enhance 

user experience.  



TABLE I.  COMPARING GOVERNORS FOR SINGLE APPLICATION 

EXECUTION 

Benchmark 
Governors and metrics 

Governor IPS/Watt Energy (J) 
Total Run-

time (S) 

canneal 

Oa 4.61E+07 2746.40 65 

PFb 4.60E+07 2754.63 64.6 

PSc 6.38E+07 1987.36 125.6 

freqmine 

Oa 5.02E+08 5115.81 96.2 

PFb 5.00E+08 5138.75 95.4 

PSc 4.94E+08 5208.03 291.2 

streamcluster 

Oa 1.57E+08 6666.69 131.6 

PFb 1.56E+08 6710.81 132.2 

PSc 2.65E+08 3948.43 216.2 
a. ondemand  

b. performance 
c. powersave 

The impact of these governors is further investigated for 

concurrent applications of different types. Table II shows the 

impact of different concurrent application scenarios. The 

following observations can be made:  

Observation 3: IPS/Watt for the system as a whole is the 

greatest when mixing two CPU-intensive benchmarks 

(freqmine & freqmine). But the IPS/Watt is also 

considerably higher when mixing a memory-intensive 

application with a CPU-intensive one. This would lead to the 

conclusion that when a memory-intensive application is 

already running, and both a CPU-intensive and a memory-

intensive applications are ready to run, it is better to start the 

CPU-intensive application for optimum CPU utilization.  

Observation 4: Running two copies of the same 

benchmark produces more or less the same IPS/Watt as 

running a single copy of that benchmark. Consequently, there 

is no need to study mixing copies of the same application and 

in the rest of the paper we will only investigate mixes of 

different applications.   

It has been established that to maximize IPS/Watt, it is 

necessary to consider the problem on a per-application or at 

least per-application type basis. In other words, a state in the 

optimization space needs to include information of 

application characteristics. This optimization state-space will 

be defined in the next section, which is dedicated to the 

development of a run-time control scheme to replace the 

Linux governors for improving IPS/Watt and related metrics.  

IV. POWER-NORMALIZED PERFORMANCE OPTIMIZATION 

In this section a run-time control is developed aiming to 

optimize IPS/Watt, using feedback information obtained 

from performance counters and current DVFS and core 

allocation data to calculate outputs to set the system 

parameters frequency and core allocation. Core to this 

method is a model describing the relationship between 

IPS/Watt and a number of independent variables it depends 

on. These independent variables describe the states in the 

optimization state-space. 

TABLE II.  COMPARING GOVERNORS FOR THE CONCURRENT 

EXECUTION OF APPLICATIONS 

Program 
Governors and metrics 

Governor IPS/Watt Energy (J) 
Total Run-

time (S) 

canneal 

& canneal 

Oa 5.12E+07 4939.33 110 

PFb 5.08E+07 4981.45 110 

PSc 7.69E+07 3296.11 196.2 

freqmine 

& canneal 

Oa 3.69E+08 7313.76 139 

PFb 3.66E+08 7363.25 139.4 

PSc 4.09E+08 6592.77 369.2 

streamcluster 

& canneal 

Oa 1.29E+08 9407.77 191.2 

PFb 1.29E+08 9410.32 190.8 

PSc 2.13E+08 5673.91 318 

freqmine & 

freqmine 

Oa 5.00E+08 10272.94 188.8 

PFb 4.99E+08 10310.53 189.4 

PSc 4.97E+08 10326.29 575.4 

freqmine & 

streamcluster 

Oa 3.55E+08 8990.58 169.2 

PFb 3.44E+08 9440.69 177.8 

PSc 3.99E+08 9136.47 503.2 

streamcluster 

& 

streamcluster 

Oa 1.59E+08 17231.34 342 

PFb 1.59E+08 16712.37 332 

PSc 2.65E+08 8427.56 464.6 

 

A. IPS/Watt State-Space Model  

To establish the model, linear regression is used to derive 

the relationship between the dependent variable (i.e. 

IPS/Watt) and the independent predictor variables related to 

the operating state (e.g. task mapping, VFS, etc.) [23].  

Such a relationship is defined by a hypothesis function 

 

ℎ𝜃(𝑥) = ∑ 𝜃𝑖𝑥𝑖

𝑛

𝑖=0

= 𝛩𝑇𝑋, ( 4 )  

where xi is a predictor, n is the number of predictors, and θi is 

a fitting coefficient. Linear regression means that the 

hypothesis function is linear in the fitting coefficients and can 

be expressed in matrix form as on the right hand side of ( 4 ). 

The coefficient values in Θ need to be chosen so that some 

measure of error is minimized. The usual practice, followed 

in this work, is to minimize the mean-squared prediction error, 

known as the least squares method. The least squares method 

is widely implemented in mathematical and engineering tools 

such as Matlab [24], which is used in this work. 

As the physics behind both performance and power is 

well established, it is possible to decide the identities of the 



predictor variables without going through such more 

complex procedures as principle component analysis [25].  

When considering which predictor variables to choose, in 

addition to the knowledge of how certain independent 

variables may be related to the dependent variable in the 

sense of physics, an equally important factor is being able to 

know the value of each independent variable at run-time 

without incurring high costs. This is because for a model to 

be useful, its independent variable values need to be available. 

The dependent variable, IPS/Watt consists of two parts, 

instructions per second and power dissipation. IPS is related 

to clock frequency f through Clock Cycles per Instruction 

(CPI): 

 
𝐼𝑃𝑆 =

𝑓𝑁

𝐶𝑃𝐼
, ( 5 ) 

where N is the number of cores used for execution. Note that 

both f and N are operating state variables. Frequency is part 

of the DVFS state and the number of cores is part of the 

thread-to-core allocation state. CPI’s relationship to the 

operating state is discussed later.  

Power consumption is related to the DVFS state and how 

many-cores are being used for execution. Even though ( 3 ) 

shows that power is related to both frequency and voltage, the 

DVFS state is described by a single independent variable as 

voltage and frequency always come in DVFS pairs in CPUs 

that support DVFS. Voltage is hence dependent on frequency 

and is not itself an independent variable. For a modern 

processor such as the i7 in our experimental platform, voltage 

relates to frequency largely linearly outside special operating 

modes such as turbo boost: 

 𝑉 =  𝜑𝑓 + 𝛽, ( 6 ) 

where φ and β are constants. In turbo boost or overclocking 

modes, the frequency saturates hence voltage is greater than 

predicted by ( 5 ). However since our experiments only go up 

to 2.4GHz which is within the normal operation mode, the 

relationship between voltage and frequency follows ( 5 ).  

Consequently, from the context of known relations, we 

only need three predictor variables, CPI, f, and N. The latter 

two (f and N) are readily available during run-time as they are 

set by the run-time control itself. CPI however is not as 

straightforward. It is certainly application dependent as each 

application includes a unique organization of instructions 

from the instruction set. In this regard it can be said that CPI 

is a thread-to-core allocation state. However, each 

application may include different instructions in different 

branches and therefore its transient CPI cannot be determined 

as it changes throughout the code and may be data dependent. 

Moreover, for modern systems with speculation and other 

sophisticated optimization techniques, each individual 

instruction may require a variable amount of clock cycles 

depending on the execution context. It may be possible for 

code to be pre-analysed and instruction data annotated for 

CPI modelling but this is yet far from reality. 

On the other hand, CPI values can typically be inferred 

from performance counter data. For Intel CPUs, transient 

average CPI can be directly obtained at run-time through 

reading two on-chip performance counters, 

INST_RETIRED.ANY, which monitors the number of 

instructions retired (completely executed), and 

CPU_CLOCK_UNHAULTED.CORE, which counts the number of 

clock cycles for a core not in a halt (idle) state. In this sense, 

CPI can be regarded as a performance counter feedback state. 

This is an example of feedback making a run-time possible 

where offline modelling is impractical.  

By combining ( 2 ), ( 3 ), ( 5 ) and ( 6 ), a hypothetical 

model for IPS/Watt can be established over the operating 

state-space described by the three predictor variables CPI, f, 

and N: 

 𝐼𝑃𝑆

𝑊𝑎𝑡𝑡
=

𝑓𝑁

𝐶𝑃𝐼(𝜃0 + 𝜃1𝑁𝑓 + 𝜃2𝑁𝑓2 + 𝜃3𝑁𝑓3)
, ( 7 ) 

where θi, i = 0 ~ 3, are constants combining the effects of all 

constants in the power model.   

The values of these constants can be found through linear 

regression ( 4 ), where they are regarded as members of Θ. 

The linearity requirement means that the method is used to 

determine to determine the formula for power before that is 

combined with the formula for IPS in ( 7 ). During the 

exercise we found that it is possible to discard the f  3 term and 

simplify the f  2 term by taking the variable N out of it, without 

affecting the R-squared values (all R-square values are 

greater than 0.95 after the simplification). This results in a 

simpler model for use at run-time.  

Further model simplification is investigated since we 

observed that the application dependency of these models, 

whilst certainly existing, is not very high. It is decided that a 

single model be constructed through averaging the 

coefficients from the three application-specific models. This 

is shown below.   

 𝐼𝑃𝑆

𝑊𝑎𝑡𝑡
 ≈

𝑓𝑁(1 × 109)

𝐶𝑃𝐼(11.061 + 0.645𝑓𝑁 + 1.4351𝑓2)
 

( 8 ) 

In ( 8 ), the frequency is given in GHz and not in Hz.  

The applicability of this level of model simplification is 

based on the assumption that the model will be used in a run-

time optimization scheme which has limited scope of tuning 

its output variables. Instead of continuous changes of f and N, 

the run-time can only choose 4 integer N values and 7 discrete 

f values. So long as the optimal output states calculated by 

formula ( 8 ) correspond to those observed from experimental 

data, in the decision space the model’s accuracy may be 

deemed sufficient. 

To validate the model, CPI information from the data 

used in making Fig. 3(a-c) is put into ( 8 ) and the output 

plotted. Results of this can be seen in Fig. 4(a-c).  

The surfaces in Fig. 4(a-c) strongly resemble those in Fig. 

3(a-c). Actual values of IPS/Watt differ slightly from 

recorded results in Fig. 3(a-c) but the shapes of the surfaces 

are very similar. More importantly, the operating states for 

maximum IPS/Watt are the same in both. This simplified 

application independent model is therefore chosen for use in 

subsequent sections. Note that the modelling process starts 



from predictions according to physics, and ends with a purely 

pragmatic model for practical use. 

 
(a) canneal  (b) freqmine 

 
(c) streamcluster 

Fig. 4. Average IPS/Watt outputs from model when input with CPI 

information from canneal, freqmine and streamcluster 

B. Run-Time Algorithm Design  

The main goal of the run-time optimization is to achieve 

maximum IPS/Watt of the system as a whole. To achieve this 

it makes decisions on DVFS and thread-to-core allocation. In 

this study a relatively coarse grain is chosen and thread is 

explored at application level. Hence the scheduling is done at 

the level of application to core allocation. Core allocation in 

this scheme favors applications with lower CPI values. This 

in principle should lead to higher IPS. Once cores have been 

allocated the model is used to estimate the IPS/Watt achieved 

by that core allocation. The frequency will then be stepped up 

or down depending on previous results and another 

estimation of IPS/Watt will be performed. These results are 

compared and a decision about operating frequency for the 

particular allocation is made.  

This run-time optimization requires a computation 

overhead, and it is important to decide how frequently it 

should be run. To reduce overhead it should be run as 

infrequently as possible. To ensure better control response 

and quality it should be run as frequently as possible. Control 

quality and response time are related to how frequent the 

applications change in the execution. For instance, if the 

control is activated at a frequency lower than the Nyquist 

frequency of applications themselves it would be completely 

ineffective, and probably counter-productive [26]. In this 

study the run-time optimization sampling period is chosen to 

be 0.5Hz, a value high enough to ensure a reasonably high 

rate of response – it is much higher than the Nyquist 

frequency of any of the applications as these run for hundreds 

of seconds. It is also very low compared with the clock 

frequencies in the operation space for a very low overhead. 

The run-time optimization follows Algorithm 1. In each 

iteration, it starts by checking if any new application has 

started. Then it obtains the CPI of the new application. This 

is put into the model to calculate optimal IPS/Watt for 

potential core allocations to determine core allocation, which 

is then implemented. Then frequency decisions are made and 

implemented. Part of the run-time Python script that is used 

in the experimental studies is shown in Fig. 5.  
 

Algorithm 1: Run-time optimization  

1. Check PID changes  

2. If  application scenario changed? 

3.  Obtain PID of new application 

4.  Calculate CPI of application 

5.  Calculate IPS/Watt using model ( 8 ) 
6.  Allocate cores to application 

7.  Change frequency for max(IPS/Watt) 

8. End if 
9. Wait for next activation 

 

 

 

 

Fig. 5. Partial code of the main run-time script to demonstrate Algorithm 1 

V. EXPERIMENTAL RESULTS 

To validate whether the proposed technique works, a 

series of experiments are carried out. These experiments are 

the same as the ones which produced Table I and Table II 

except the run-time optimization algorithm is used instead of 

the standard Linux governors.  

A. Single Application 

The first set of experiments aims to show that the run-time 

can outperform the default governors in energy consumption 



and IPS/Watt for applications running alone. Each 

benchmark is run till completion and the performance 

counters are measured with Likwid. Table III shows how the 

run-time script’s results compare to the default Linux 

governors in Table І in terms of percentage increase or 

decrease, the following observations can be made from these 

results. 

TABLE III.  COMPARING PROPOSED METHOD WITH GOVERNORS FOR 

SINGLE APPLICATION EXECUTION 

Program 
Governors and metrics 

Governor IPS/Watt Energy (J) 
Total Run-

time (S) 

canneal 

Rd 7.85E+07 1949.35 104.80 

Oa 4.61E+07 2746.40 65 

PFb 4.60E+07 2754.63 64.6 

PSc 6.38E+07 1987.36 125.6 

freqmine 

Rd 5.58E+08 4615.36 170.00 

Oa 5.02E+08 5115.81 96.2 

PFb 5.00E+08 5138.75 95.4 

PSc 4.94E+08 5208.03 291.2 

streamcluster 

Rd 2.63E+08 3994.46 188.40 

Oa 1.57E+08 6666.69 131.6 

PFb 1.56E+08 6710.81 132.2 

PSc 2.65E+08 3948.43 216.2 

d. Run-time 

Observation 5: When running canneal with the run-time 

script a saving in energy of 1.91% can be achieved compared 

to the lowest energy achievable with Linux governors. At the 

same time the time taken to complete the application 

improves. The total run-time decreases by 16.5% which is a 

large performance increase for a decrease in energy. The 

IPS/Watt sees an increase in 23.1% which confirms that the 

run-time works as planned for canneal. 

Observation 6: The energy saved with freqmine using 

the run-time script is 9.78% when compared to the lowest 

energy governor ondemand. There is no performance increase 

with the run-time script when compared to ondemand with it 

taking 76.72% longer. This is not surprising as the 

computation time is not the optimization target. If we 

compare it to the governor that is supposed to give the lowest 

energy which is powersave, there is a decrease of 11.38% in 

energy but also a decrease of 41.26% in the time taken. 

IPS/Watt sees an increase of 11% when compared to 

ondemand and 12.89% compared to powersave.  

Observation 7: streamcluster is the only application not 

to see an increase in IPS/Watt and a decrease in the energy 

used. When the run-time script is compared to the lowest 

energy Linux governor we see an increase of 1.17% in the 

energy used. There is also a decrease in IPS/Watt of 0.76%. 

There is however a performance increase with a decrease of 

12.86% in the total time taken to run the application. Reasons 

for this run-time using slightly more energy than the Linux 

governors is that the optimum point reached is at the lowest 

frequency 1.2GHz which is chosen by the powersave 

governor already.  

The data collected from the particular example with 

Stremcluster compared with the proposed run-time, both 

tending to choose the same execution state, provides an 

indication of the overhead of the run-time optimization itself. 

The results show that this overhead is very low (less than 1% 

in IPS/Watt).  

B. Concurrent Applications 

More experiments are designed to show how the proposed 

run-time optimization behaves when controlling different 

applications running concurrently. Again the results are 

compared to earlier results obtained by the Linux governors 

in Table II. Table IV shows these results. Several 

observations can be made. 

TABLE IV.  COMPARING PROPOSED METHOD WITH GOVERNORS FOR 

CONCURRENT EXECUTION OF DIFFERENT APPLICATIONS  

Program 
Table Column Head 

Governor IPS/Watt Energy (J) 
Total Run-

time (S) 

canneal 

& freqmine 

Rj 4.43E+08 6107.12 235.40 

Oa 3.69E+08 7313.76 139 

PFb 3.66E+08 7363.25 139.4 

PSc 4.09E+08 6592.77 369.2 

freqmine & 

streamcluster 

Rj 4.18E+08 8773.43 328.00 

Oa 3.55E+08 8990.58 169.2 

PFb 3.44E+08 9440.69 177.8 

PSc 3.99E+08 9136.47 503.2 

streamcluster 

& canneal 

Rj 1.96E+08 6434.56 297.40 

Oa 1.29E+08 9407.77 191.2 

PFb 1.29E+08 9410.32 190.8 

PSc 2.13E+08 5673.91 318 

 

Observation 8: The experiment of canneal and freqmine 

running concurrently shows promising results with a 

reduction in energy consumed by 7.37% and an IPS/Watt 

increase of 8.10% over the lowest energy governor 

(powersave). Not only is there a reduction in energy there is 

also a reduction in total run-time of 36.24%. The run-time 

script works as planned for the mix of these two applications.  

Observation 9: The mix of freqmine and streamcluster 

also shows a reduction in energy over the lowest energy 

governor (ondemand). A reduction in energy of 2.42% and an 

increase in IPS/Watt of 17.79% is shown when compared to 

the ondemand governor. We do however see an increase in 

the time taken of 93.85%. Time taken is not the focus of this 



script though and is only a bonus if it completes in less time. 

If we compare the results of the governor that should be using 

the least power (powersave) we not only see a reduction in 

energy of 3.97% but also a reduction in total time taken by 

34.82%.  

Observation 10: Lastly the mix of canneal and 

streamcluster. We do not see a reduction in energy here but 

rather an increase of 13.41%, this is not as intended. Possible 

reasons for this are down to the fact that streamcluster 

earlier when running on its own had problems decreasing 

energy. streamcluster has a lower CPI value than canneal 

and therefore is assigned more cores than canneal. This 

could lead to the big energy increase as the problematic 

application is taking up a majority of the processing power. 

Further experiments and investigations need to be done to 

assess what is causing the problems with streamcluster. 

 

Fig. 6. Frequencies over time for all 4 cores when running 

streamcluster and freqmine together  

The results from Table IV are promising and shows that a 

script such as the one outlined in this paper may have real 

world energy saving benefits. Fig. 6 shows how the frequency 

is dynamically changed over time and different for each core 

and hence application. We can see freqmine on cores 0/1/2 

which rise up to maximum frequency and hold that frequency 

for the duration of executing freqmine with only small 

deviations from it. Whereas we see streamcluster 

constantly changing its frequency as the application changes 

the type of processing it is doing (and hence its CPI). This is 

in stark contrast to the other governors where the frequency 

simply holds at one frequency across all 4 cores for the entire 

run of the applications. 

 

Fig. 7. IPS over time for freqmine and streamcluster running together 

In Fig. 7 we can see from the IPS figures how these two 

applications are split up between the cores. The application 

with the higher CPI (streamcluster) is running on only one 

core (core 3). freqmine with a lower CPI is assigned to run 

on the other 3 cores 0/1/2. This differential allocation allows 

further IPS/Watt optimizations. 

VI. CONCLUSIONS 

An optimization scheme targeting power-normalized 

performance has been developed for controlling concurrent 

application executions on platforms with multiple cores. The 

method is centered around an operational state-space model, 

which has independent variables that describe the operational 

space, i.e. the input and output of the control mechanism. The 

dependent variable is the metric being optimized. In choosing 

the power-normalized performance as the metric and 

investigating the concurrent execution of different 

applications, this work fills significant gaps in the research 

literature.  

In the first instance, models are obtained off-line from 

experimental data. Explorations with model simplification 

are shown to be successful as by and large optimal results are 

obtained from using these models in a run-time control 

algorithm compared with existing Linux governors. In many 

cases the improvements obtained are quite significant.  

The method with which the state-space model which 

underpins this method is obtained, linear regression with least 

squares approximation, can be used in online learning based 

solutions. This opens up future research possibilities where 

the model is tunable during run-time for better optimization 

results and remove the need for using the same average model 

for different applications. Another future research potential 

opened up by this work is in the investigation of other, more 

sophisticated optimization algorithms. The experimental 

platform constructed during this work will facilitate these 

kinds of research in the future. 

For experimental purposes, our method was implemented 

on an Intel Core i7 platform with 4 cores, running Linux 

system software as a case study. However, the underlying 

modelling and run-time methodology can be applied to any 

platform, whilst the implementation of which will be 

platform-specific. A hard prerequisite for the platform is that 

some form of feedback mechanism is available to avoid the 

need for obtaining high-precision off line models. 

Performance counters have become standard on 

contemporary platforms to make this a non-issue. The authors 

do have access to experimental platforms with modern 

heterogeneous mobile processors and high performance 

computing platforms with a large number of cores. It is 

planned that work will immediately start on extending this 

research over those kinds of platforms. It is expected that 

modern embedded and high performance systems will benefit 

from using the proposed method to achieve energy efficiency. 
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