
Power-Normalized Performance Optimization of Concurrent Many-Core Applications

Matthew Travers, Rishad Shafik, Fei Xia

μSystems Research Group

School of EEE, Newcastle University

Newcastle Upon Tyne, England

{m.travers, rishad.shafik, fei.xia}@newcastle.ac.uk

Abstract—Modern operating systems, such as Linux, are

capable of executing multiple parallel applications concurrently

on many-core platforms. Different applications may have

different characteristics with regard to how they exercise the

computation and memory resources in these platforms. This

paper aims to investigate the impact of such differences on the

overall energy consumption and performance tradeoffs. To

analyze these tradeoffs, three PARSEC benchmark applications

are chosen with different characteristics - memory-intensive,

CPU-intensive and a mixture of both. These applications are

then concurrently executed in various combinations in

experiments, which also help establish optimized run-time

controls in terms of dynamic voltage/frequency scaling (DVFS)

and thread-to-core allocations at run-time. Such controls are

based on state-space models derived through linear regression

using the feedback from hardware performance counters. Using

the benchmark applications, we demonstrate the effectiveness of

our proposed method, which shows up to 23% improvement in

power normalized performance expressed as the ratio between

instructions per second (IPS) and power consumption (Watt).

Keywords—Energy efficiency, State-space model,

Concurrency, Linear regression, Power-Aware, Many-Core

I. INTRODUCTION

Contemporary computing systems, including embedded

and high performance, are exhibiting increased complexities

in two dimensions. In one dimension, the number and type of

computing resources (cores) are increasing in hardware

platforms, and in the other, an increasing diversity of

applications are being executed concurrently on these

platforms [1] [2]. Managing hardware resources, to achieve

energy efficiency, under different application scenarios

(single or concurrent) is proving highly challenging due to

run-time state-space expansion [5].

To provide control over power and performance

tradeoffs, DVFS has been integrated into contemporary

processors, e.g. all current Intel and ARM processors [3][6].

In recent years, CPU clock frequencies have increased

rapidly to satisfy the increasing performance needs [3][4]. In

order to achieve these higher clock speeds the supply voltage

has not decreased with the technology feature size. This

results in power consumption not scaling with technology

feature size reduction. Consequently, power and energy

consumption has become a limiting factor to continued

technology scaling and performance improvements [7].

DVFS dynamically scales voltage and frequency across a

number of pre-set operating points. These have different

performance and power consumption characteristics and their

choice can be according to workload requirements. DVFS

may be controlled at system software level. For instance, it is

controlled in Linux with power governors [8], such as

ondemand, performance, conservative, powersave and

powersave. These governors use DVFS control to manage

system power according to the knowledge and prediction of

workload and user preference. Current Linux governors are,

however, not able to optimize energy consumption, primarily

because they select only either the maximum or minimum

frequency depending on whether the workload is higher or

lower than a given threshold [8]. This coarse-grain approach,

although serviceable, is not capable of taking advantage of

the different degrees of parallelizability of individual

applications and producing the most efficient scheduling.

For parallel applications, a useful technique to manage

system performance and power consumption is the allocation

of cores to execute specific threads. In addition to DVFS

states, the number of cores being active and executing

influences both performance and power consumption. Core

allocations to threads are handled by system software, for

example Linux’s scheduler [9]. The scheduler seeks to spread

the workload of all applications running across multiple cores

to achieve maximum utilization. This approach is functional

but leaves a number of rooms for improvement. For instance,

there is no discrimination about the type of task or thread

being scheduled [9], such as CPU-intensive or memory-

intensive. Different types of threads require different

considerations for performance and power optimizations. Not

taking this into account results in indiscriminate sub-

optimization.

Over the years substantial research has been carried out

addressing run-time energy minimization and/or

performance improvement approaches. These approaches

have considered a single-metric based optimization:

primarily performance-constrained power minimization, or

performance improvement within a power budget [16]. For

example, Shafik et al. proposed a run-time DVFS control

approach for power minimization of multiprocessor

embedded systems [10]. Their approach uses performance

and user experience constraints to derive the lowest possible

operating voltage/frequency points through reinforcement

learning and transfer principles. Das et al. presented another

power minimization approach that models run-time workload

characterization to continually update the DVFS and core

allocations through multinomial logic regression based

predictive controls [11]. A run-time classification of

workloads and corresponding DVFS controls based on

similar principles is proposed by Wang and Pedram for

performance-constrained power minimization [13]. As far as

performance optimization within a power budget is

concerned, Chen and Marculescu proposed a distributed

reinforcement learning algorithm to model power and

performance tradeoffs during run-time [12]. Using this model

the DVFS and core allocations are adapted dynamically using

feedback from the performance counters. Another power-

limited performance optimization approach is presented by

Cochran et al. showing programming model based power

budget annotations and corresponding controls [14].

These existing approaches, however, have the following

two major limitations. Firstly, these approaches leave further

rooms for improvement in terms of energy-efficiency for

applications that do not have hard deadlines or performance

constraints. For these applications, a single metric (power)

based optimization approaches [10][11][13] are likely to

favor the solutions that produce the lowest power

consumption, while meeting the specified performance

requirements. However, such solutions do not automatically

render an energy-efficient performance point. The power-

limited performance optimization approaches [13][17]

ensure the optimal solutions for the given power constraints,

but these also do not guarantee the globally optimal energy-

efficient performance points especially when there is no hard

power limit. A second limitation of the existing approaches

is that their run-time implementations are typically based on

single application scenarios, and do not lend themselves to

generalizations, including concurrent scenarios with different

types of applications (with the combinations between CPU-

and memory-intensive, for instance).

To address the above limitations, in this paper we make

the following contributions:

 we propose a run-time method for power normalized

performance optimization for heterogeneous

application scenarios (single or concurrent) using

DVFS and thread-to-core allocations at run-time,

 fundamental to our method is learning the power-

normalized performance (expressed as the ratio

between instructions per second and power

consumption: IPS/Watt) using linear regression

based state-space modeling at run-time, and

 we continually adapt the model using the feedback

from the performance counters to derive the most

energy-efficient performance point for a given

application scenario (single or concurrent, CPU- and

memory-intensive); to identify the change of

application scenarios appropriate run-time thread

monitors are established.

To the best of our knowledge, this is the first run-time

state-space modeling technique for many-core systems

executing concurrent applications, targeting energy-efficient

performance optimization.

The rest of the paper is organized as follows. Section II

gives a brief overview of the background. Section III explores

power-performance tradeoffs for a number of benchmark

applications running on the experimental platform. Section

IV describes the method of optimizing power-normalized

performance. Section V presents experimental results

comparing the proposed method with existing Linux

governors. Section VI concludes the paper.

II. BACKGROUND

This section discusses CPU power consumption theory,

standard Linux power governors, and the experimental

platform.

A. CPU power consumption

The power consumed by a processor is related to its

operating frequency and voltage. It also has to do with how

much work the processor is doing. We call the workload the

activity factor. This is how many times on average the

transistors switch during every clock cycle. This is important

as energy is consumed when transistors switch between

states, if a transistor does not switch it only consumes static

power (because of the inevitable leakage etc.). The power

consumed by a processor can be split up into two parts, static

and dynamic power as seen in (1).

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (1)

Static power is the power consumed when there is no

switching. It is the theoretical minimum amount of power the

CPU can consume when turned on. Static power has

increased due to transistor sizes getting smaller and transistor

density increasing. This creates a higher leakage current and

therefore more leakage power [18]. Static power follows

complex formulas but for simplicity it has been generally

found to be acceptable to conveniently assume that static

power is related to voltage linearly [18] [19]:

 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝛾𝑉 + 𝜔， (2)

where V is the supply voltage, and γ and ω are constants.

B. Dynamic Power

Dynamic power is dissipated as a result of switching

activities. Switching typically happens when executing tasks,

which can include from small OS background tasks to large

applications needing to use a lot of processing power.

Dynamic power dissipation follows (3) [19]:

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛼𝐶𝑉2𝑓，
(3)

where α is the activity factor (the portion of the circuit that is

switching), C is the capacitance of the entire circuit, V is the

supply voltage, and f is the frequency. The capacitance is

hardware dependent and is a constant for any CPU. The other

variables change with the utilization of the CPU, with α being

influenced by thread-to-core allocation and V and f being

directly controllable through DVFS.

C. CPU Power Governors

CPU power governors (generally used in Linux operating

system) dictates DVFS control reacting to different

workloads. The governors can be set using the utility

cpufrequtil, which reads system files about CPU

information and relays it in a user friendly way. For example

it can read the files which state the maximum and minimum

frequency the CPU can achieve and then choose the

minimum frequency when not executing tasks and the

maximum frequency when executing tasks, which is what the

ondemand power governor does [8]. The governors set

frequencies directly, and voltage is scaled with the frequency,

usually through a number of DVFS points provided by the

hardware. In this context, choosing a frequency implies a

complete voltage and frequency decision.

Currently there are three major static governors, as

follows:

performance: a static governor that sets the frequency to

the highest possible value,

powersave: a static governor that sets the frequency to the

lowest possible value,

userspace: a static governor that reads information

passed by the user to the “scaling_setspeed” file and sticks to

that frequency.

There are also two dynamic governors which determine

the frequency dynamically according to task states.

ondemand: The frequency is scaled up to the maximum

value when certain criteria are met and then decreased

gradually when other criteria are met [8]. It ramps to

maximum frequency whenever there is an increase of

activity, and with reductions of activity decrease the

frequency in steps. The activity increase and reduction

thresholds can be tuned. This governor is best used for user

satisfaction.

conservative: This works similarly to ondemand but

instead of jumping to maximum frequency when the up

threshold value is met it goes up in steps and then jumps

straight to minimum frequency when the down threshold is

met. This is best used to save energy whilst still providing

some user satisfaction.

Examples of other governors that have been proposed but

not widely adopted include [15], which also adapt DVFS

dynamically based on the CPU workloads.

D. Experimental platform

All of the experimental data in this paper is obtained from

running a Linux platform based on an Intel Core i7

Sandybridge CPU which contains no on-chip GPU facility.

This CPU is chosen because it has a reasonable number of

hard (4) and soft (8) cores, has no on-chip GPU to distort the

power consumption and communications, and as a

Sandybridge Core i7 rather than Xeon, has a relatively large

number of possible operating frequencies and voltages. The

operating system is Ubuntu Linux.

Extra power monitoring facilities are constructed for the

experimental platform. This is by inserting a shunt resister

into the earth side of the power connection to the CPU. As

high-precision current meters tend to have a 1A upper limit,

which many CPU operations will exceed, the shunt resister

allows the inference of current via measuring voltage.

The performance and power utility Likwid [21] is used to

obtain the majority of the experimental data. Likwid makes

use of on-chip performance counters (sensors) in Intel CPUs

to collect performance and power data. For instance, the

Running Average Power Limit (RAPL [22]) counters are

accessed to infer power dissipation. Before the main

experiments, Likwid was first confirmed to be accurate for

the experimental platform through cross-validation with

physical power measurements using the shunt resister. The

use of performance counters rather than external power

measurement in most of the experiments is motivated by the

desire of developing a run-time, which for practicality and

wide applicability can only rely on built-in sensors

(performance counters).

III. POWER-PERFORMANCE TRADEOFFS

A number of experiments are designed with standard

Linux governors controlling system DVFS during PARSEC

benchmark applications. PARSEC benchmarks are suitable

for investigating multi-thread operations in either sequential

or concurrent executions [20]. These experiments are used to

investigate whether different types of applications require

different allocations of resources and whether global

governors can achieve optimum results.

Fig. 1. Performance counter values for a complete run of each application

in the PARSEC benchmark suite with ondemand governor, recorded by

Likwid

To explore the application state-space, benchmarks of

different types are chosen to stress the system in different

ways. This profiles how the system reacts to various types of

stressing. Three benchmarks are chosen from the PARSEC

suite [17]. One is memory-intensive, one is CPU-intensive

and one is a mixture of both. Fig. 1 shows performance

counter measurements of applications in the PARSEC

L1 hit L1 miss INST retired CPU CLK

blackscholes bodytrack canneal
facesim freqmine fluidanimate
streamcluster x264

benchmark suite, canneal (Memory-intensive), freqmine

(CPU-intensive) and streamcluster (Mixture of both) are

selected for use in the experiments.

Fig. 2(a-c) shows plots of total energy used (J) to

complete a run of each benchmark application with a given

frequency (MHz) and number of cores allocated to it, with

only one thread allowed per core. Power measurements are in

the PKG domain (Cores & Cache), which corresponds with

the shunt resister measurement area. Fig. 3(a-c) shows the

average instructions per second per watt (IPS/Watt) a

benchmark application achieves in one run with a given

frequency (MHz) and number of cores allocated to it. A

number of observations can then be made.

(a) canneal (b) freqmine

(c) streamcluster

Fig. 2. Energy used for a complete run of each application at different

operating frequencies and number of cores allocated, data recorded with

Likwid

Observation 1: The lowest energy point is always

achieved when the application is spread across the maximum

number of cores, which in this case is 4. Maximum

parallelization reduces the total execution time, and at the

same time reduces the number of cores on idle to zero during

the run. If energy is only measured during the run, the overall

effect is minimizing energy if all cores are busy during the

execution. Fig. 2(a-c) shows that the operating frequency

needed to achieve minimum energy is application dependent.

With reference to Fig. 2(a) and (c) it can be seen that the

optimum frequency is at lower frequencies, whereas Fig. 2(b)

shows that the optimum frequency is at the maximum

frequency of 2.4GHz. This is reasonable as the frequency

under study here is the CPU frequency, and the performance

of CPU-heavy tasks is more directly related to CPU

frequency than that of memory-heavy tasks. The latter

typically encounter memory and communication related

bottlenecks making them less directly related to CPU

frequency – when CPU frequency increases, more clock

cycles are needed in waiting for external communications to

off-chip memory etc. This heterogeneity of behaviors

reinforces the need for a run-time dependent on the type of

application running and not for the “one condition suits all”

approach currently used by Linux.

(a) canneal (b) freqmine

(c) streamcluster

Fig. 3. Average IPS/Watt for a complete run of each application at different

operating frequencies and number of cores allocated, data recorded with

Likwid

Observation 2: IPS/Watt closely follows the energy

consumption. Fig. 3(a-c) shows that the operating point for

maximum IPS/Watt is close to the operating point of

minimum energy in Fig. 2(a-c). This is because IPS/Watt is

the inverse of energy per instruction. Because each of these

benchmarks has a fixed number of total instructions, no

matter at what frequency and core state it is run, the measured

total energy per benchmark run is proportional to energy per

instruction. Experiments are run with Linux governors to

assess how well they handle different application types. Table

I shows how each of the three benchmarks reacts to different

governors. It can be seen that the most energy efficient

governor is different for different benchmarks. And it is not

always the low power governor (powersave). freqmine is

most energy efficient when under the ondemand governor

whilst for canneal and streamcluster, the powersave

governor is the most efficient.

This indicates that governor performance has poor

application independence, and a governor designed to

maximize energy savings might not realize lower energy

consumption than one that is primarily designed to enhance

user experience.

TABLE I. COMPARING GOVERNORS FOR SINGLE APPLICATION

EXECUTION

Benchmark
Governors and metrics

Governor IPS/Watt Energy (J)
Total Run-

time (S)

canneal

Oa 4.61E+07 2746.40 65

PFb 4.60E+07 2754.63 64.6

PSc 6.38E+07 1987.36 125.6

freqmine

Oa 5.02E+08 5115.81 96.2

PFb 5.00E+08 5138.75 95.4

PSc 4.94E+08 5208.03 291.2

streamcluster

Oa 1.57E+08 6666.69 131.6

PFb 1.56E+08 6710.81 132.2

PSc 2.65E+08 3948.43 216.2
a. ondemand

b. performance
c. powersave

The impact of these governors is further investigated for

concurrent applications of different types. Table II shows the

impact of different concurrent application scenarios. The

following observations can be made:

Observation 3: IPS/Watt for the system as a whole is the

greatest when mixing two CPU-intensive benchmarks

(freqmine & freqmine). But the IPS/Watt is also

considerably higher when mixing a memory-intensive

application with a CPU-intensive one. This would lead to the

conclusion that when a memory-intensive application is

already running, and both a CPU-intensive and a memory-

intensive applications are ready to run, it is better to start the

CPU-intensive application for optimum CPU utilization.

Observation 4: Running two copies of the same

benchmark produces more or less the same IPS/Watt as

running a single copy of that benchmark. Consequently, there

is no need to study mixing copies of the same application and

in the rest of the paper we will only investigate mixes of

different applications.

It has been established that to maximize IPS/Watt, it is

necessary to consider the problem on a per-application or at

least per-application type basis. In other words, a state in the

optimization space needs to include information of

application characteristics. This optimization state-space will

be defined in the next section, which is dedicated to the

development of a run-time control scheme to replace the

Linux governors for improving IPS/Watt and related metrics.

IV. POWER-NORMALIZED PERFORMANCE OPTIMIZATION

In this section a run-time control is developed aiming to

optimize IPS/Watt, using feedback information obtained

from performance counters and current DVFS and core

allocation data to calculate outputs to set the system

parameters frequency and core allocation. Core to this

method is a model describing the relationship between

IPS/Watt and a number of independent variables it depends

on. These independent variables describe the states in the

optimization state-space.

TABLE II. COMPARING GOVERNORS FOR THE CONCURRENT

EXECUTION OF APPLICATIONS

Program
Governors and metrics

Governor IPS/Watt Energy (J)
Total Run-

time (S)

canneal

& canneal

Oa 5.12E+07 4939.33 110

PFb 5.08E+07 4981.45 110

PSc 7.69E+07 3296.11 196.2

freqmine

& canneal

Oa 3.69E+08 7313.76 139

PFb 3.66E+08 7363.25 139.4

PSc 4.09E+08 6592.77 369.2

streamcluster

& canneal

Oa 1.29E+08 9407.77 191.2

PFb 1.29E+08 9410.32 190.8

PSc 2.13E+08 5673.91 318

freqmine &

freqmine

Oa 5.00E+08 10272.94 188.8

PFb 4.99E+08 10310.53 189.4

PSc 4.97E+08 10326.29 575.4

freqmine &

streamcluster

Oa 3.55E+08 8990.58 169.2

PFb 3.44E+08 9440.69 177.8

PSc 3.99E+08 9136.47 503.2

streamcluster

&

streamcluster

Oa 1.59E+08 17231.34 342

PFb 1.59E+08 16712.37 332

PSc 2.65E+08 8427.56 464.6

A. IPS/Watt State-Space Model

To establish the model, linear regression is used to derive

the relationship between the dependent variable (i.e.

IPS/Watt) and the independent predictor variables related to

the operating state (e.g. task mapping, VFS, etc.) [23].

Such a relationship is defined by a hypothesis function

ℎ𝜃(𝑥) = ∑ 𝜃𝑖𝑥𝑖

𝑛

𝑖=0

= 𝛩𝑇𝑋, (4)

where xi is a predictor, n is the number of predictors, and θi is

a fitting coefficient. Linear regression means that the

hypothesis function is linear in the fitting coefficients and can

be expressed in matrix form as on the right hand side of (4).

The coefficient values in Θ need to be chosen so that some

measure of error is minimized. The usual practice, followed

in this work, is to minimize the mean-squared prediction error,

known as the least squares method. The least squares method

is widely implemented in mathematical and engineering tools

such as Matlab [24], which is used in this work.

As the physics behind both performance and power is

well established, it is possible to decide the identities of the

predictor variables without going through such more

complex procedures as principle component analysis [25].

When considering which predictor variables to choose, in

addition to the knowledge of how certain independent

variables may be related to the dependent variable in the

sense of physics, an equally important factor is being able to

know the value of each independent variable at run-time

without incurring high costs. This is because for a model to

be useful, its independent variable values need to be available.

The dependent variable, IPS/Watt consists of two parts,

instructions per second and power dissipation. IPS is related

to clock frequency f through Clock Cycles per Instruction

(CPI):

𝐼𝑃𝑆 =

𝑓𝑁

𝐶𝑃𝐼
, (5)

where N is the number of cores used for execution. Note that

both f and N are operating state variables. Frequency is part

of the DVFS state and the number of cores is part of the

thread-to-core allocation state. CPI’s relationship to the

operating state is discussed later.

Power consumption is related to the DVFS state and how

many-cores are being used for execution. Even though (3)

shows that power is related to both frequency and voltage, the

DVFS state is described by a single independent variable as

voltage and frequency always come in DVFS pairs in CPUs

that support DVFS. Voltage is hence dependent on frequency

and is not itself an independent variable. For a modern

processor such as the i7 in our experimental platform, voltage

relates to frequency largely linearly outside special operating

modes such as turbo boost:

 𝑉 = 𝜑𝑓 + 𝛽, (6)

where φ and β are constants. In turbo boost or overclocking

modes, the frequency saturates hence voltage is greater than

predicted by (5). However since our experiments only go up

to 2.4GHz which is within the normal operation mode, the

relationship between voltage and frequency follows (5).

Consequently, from the context of known relations, we

only need three predictor variables, CPI, f, and N. The latter

two (f and N) are readily available during run-time as they are

set by the run-time control itself. CPI however is not as

straightforward. It is certainly application dependent as each

application includes a unique organization of instructions

from the instruction set. In this regard it can be said that CPI

is a thread-to-core allocation state. However, each

application may include different instructions in different

branches and therefore its transient CPI cannot be determined

as it changes throughout the code and may be data dependent.

Moreover, for modern systems with speculation and other

sophisticated optimization techniques, each individual

instruction may require a variable amount of clock cycles

depending on the execution context. It may be possible for

code to be pre-analysed and instruction data annotated for

CPI modelling but this is yet far from reality.

On the other hand, CPI values can typically be inferred

from performance counter data. For Intel CPUs, transient

average CPI can be directly obtained at run-time through

reading two on-chip performance counters,

INST_RETIRED.ANY, which monitors the number of

instructions retired (completely executed), and

CPU_CLOCK_UNHAULTED.CORE, which counts the number of

clock cycles for a core not in a halt (idle) state. In this sense,

CPI can be regarded as a performance counter feedback state.

This is an example of feedback making a run-time possible

where offline modelling is impractical.

By combining (2), (3), (5) and (6), a hypothetical

model for IPS/Watt can be established over the operating

state-space described by the three predictor variables CPI, f,

and N:

 𝐼𝑃𝑆

𝑊𝑎𝑡𝑡
=

𝑓𝑁

𝐶𝑃𝐼(𝜃0 + 𝜃1𝑁𝑓 + 𝜃2𝑁𝑓2 + 𝜃3𝑁𝑓3)
, (7)

where θi, i = 0 ~ 3, are constants combining the effects of all

constants in the power model.

The values of these constants can be found through linear

regression (4), where they are regarded as members of Θ.

The linearity requirement means that the method is used to

determine to determine the formula for power before that is

combined with the formula for IPS in (7). During the

exercise we found that it is possible to discard the f 3 term and

simplify the f 2 term by taking the variable N out of it, without

affecting the R-squared values (all R-square values are

greater than 0.95 after the simplification). This results in a

simpler model for use at run-time.

Further model simplification is investigated since we

observed that the application dependency of these models,

whilst certainly existing, is not very high. It is decided that a

single model be constructed through averaging the

coefficients from the three application-specific models. This

is shown below.

 𝐼𝑃𝑆

𝑊𝑎𝑡𝑡
 ≈

𝑓𝑁(1 × 109)

𝐶𝑃𝐼(11.061 + 0.645𝑓𝑁 + 1.4351𝑓2)

(8)

In (8), the frequency is given in GHz and not in Hz.

The applicability of this level of model simplification is

based on the assumption that the model will be used in a run-

time optimization scheme which has limited scope of tuning

its output variables. Instead of continuous changes of f and N,

the run-time can only choose 4 integer N values and 7 discrete

f values. So long as the optimal output states calculated by

formula (8) correspond to those observed from experimental

data, in the decision space the model’s accuracy may be

deemed sufficient.

To validate the model, CPI information from the data

used in making Fig. 3(a-c) is put into (8) and the output

plotted. Results of this can be seen in Fig. 4(a-c).

The surfaces in Fig. 4(a-c) strongly resemble those in Fig.

3(a-c). Actual values of IPS/Watt differ slightly from

recorded results in Fig. 3(a-c) but the shapes of the surfaces

are very similar. More importantly, the operating states for

maximum IPS/Watt are the same in both. This simplified

application independent model is therefore chosen for use in

subsequent sections. Note that the modelling process starts

from predictions according to physics, and ends with a purely

pragmatic model for practical use.

(a) canneal (b) freqmine

(c) streamcluster

Fig. 4. Average IPS/Watt outputs from model when input with CPI

information from canneal, freqmine and streamcluster

B. Run-Time Algorithm Design

The main goal of the run-time optimization is to achieve

maximum IPS/Watt of the system as a whole. To achieve this

it makes decisions on DVFS and thread-to-core allocation. In

this study a relatively coarse grain is chosen and thread is

explored at application level. Hence the scheduling is done at

the level of application to core allocation. Core allocation in

this scheme favors applications with lower CPI values. This

in principle should lead to higher IPS. Once cores have been

allocated the model is used to estimate the IPS/Watt achieved

by that core allocation. The frequency will then be stepped up

or down depending on previous results and another

estimation of IPS/Watt will be performed. These results are

compared and a decision about operating frequency for the

particular allocation is made.

This run-time optimization requires a computation

overhead, and it is important to decide how frequently it

should be run. To reduce overhead it should be run as

infrequently as possible. To ensure better control response

and quality it should be run as frequently as possible. Control

quality and response time are related to how frequent the

applications change in the execution. For instance, if the

control is activated at a frequency lower than the Nyquist

frequency of applications themselves it would be completely

ineffective, and probably counter-productive [26]. In this

study the run-time optimization sampling period is chosen to

be 0.5Hz, a value high enough to ensure a reasonably high

rate of response – it is much higher than the Nyquist

frequency of any of the applications as these run for hundreds

of seconds. It is also very low compared with the clock

frequencies in the operation space for a very low overhead.

The run-time optimization follows Algorithm 1. In each

iteration, it starts by checking if any new application has

started. Then it obtains the CPI of the new application. This

is put into the model to calculate optimal IPS/Watt for

potential core allocations to determine core allocation, which

is then implemented. Then frequency decisions are made and

implemented. Part of the run-time Python script that is used

in the experimental studies is shown in Fig. 5.

Algorithm 1: Run-time optimization

1. Check PID changes

2. If application scenario changed?

3. Obtain PID of new application

4. Calculate CPI of application

5. Calculate IPS/Watt using model (8)
6. Allocate cores to application

7. Change frequency for max(IPS/Watt)

8. End if
9. Wait for next activation

Fig. 5. Partial code of the main run-time script to demonstrate Algorithm 1

V. EXPERIMENTAL RESULTS

To validate whether the proposed technique works, a

series of experiments are carried out. These experiments are

the same as the ones which produced Table I and Table II

except the run-time optimization algorithm is used instead of

the standard Linux governors.

A. Single Application

The first set of experiments aims to show that the run-time

can outperform the default governors in energy consumption

and IPS/Watt for applications running alone. Each

benchmark is run till completion and the performance

counters are measured with Likwid. Table III shows how the

run-time script’s results compare to the default Linux

governors in Table І in terms of percentage increase or

decrease, the following observations can be made from these

results.

TABLE III. COMPARING PROPOSED METHOD WITH GOVERNORS FOR

SINGLE APPLICATION EXECUTION

Program
Governors and metrics

Governor IPS/Watt Energy (J)
Total Run-

time (S)

canneal

Rd 7.85E+07 1949.35 104.80

Oa 4.61E+07 2746.40 65

PFb 4.60E+07 2754.63 64.6

PSc 6.38E+07 1987.36 125.6

freqmine

Rd 5.58E+08 4615.36 170.00

Oa 5.02E+08 5115.81 96.2

PFb 5.00E+08 5138.75 95.4

PSc 4.94E+08 5208.03 291.2

streamcluster

Rd 2.63E+08 3994.46 188.40

Oa 1.57E+08 6666.69 131.6

PFb 1.56E+08 6710.81 132.2

PSc 2.65E+08 3948.43 216.2

d. Run-time

Observation 5: When running canneal with the run-time

script a saving in energy of 1.91% can be achieved compared

to the lowest energy achievable with Linux governors. At the

same time the time taken to complete the application

improves. The total run-time decreases by 16.5% which is a

large performance increase for a decrease in energy. The

IPS/Watt sees an increase in 23.1% which confirms that the

run-time works as planned for canneal.

Observation 6: The energy saved with freqmine using

the run-time script is 9.78% when compared to the lowest

energy governor ondemand. There is no performance increase

with the run-time script when compared to ondemand with it

taking 76.72% longer. This is not surprising as the

computation time is not the optimization target. If we

compare it to the governor that is supposed to give the lowest

energy which is powersave, there is a decrease of 11.38% in

energy but also a decrease of 41.26% in the time taken.

IPS/Watt sees an increase of 11% when compared to

ondemand and 12.89% compared to powersave.

Observation 7: streamcluster is the only application not

to see an increase in IPS/Watt and a decrease in the energy

used. When the run-time script is compared to the lowest

energy Linux governor we see an increase of 1.17% in the

energy used. There is also a decrease in IPS/Watt of 0.76%.

There is however a performance increase with a decrease of

12.86% in the total time taken to run the application. Reasons

for this run-time using slightly more energy than the Linux

governors is that the optimum point reached is at the lowest

frequency 1.2GHz which is chosen by the powersave

governor already.

The data collected from the particular example with

Stremcluster compared with the proposed run-time, both

tending to choose the same execution state, provides an

indication of the overhead of the run-time optimization itself.

The results show that this overhead is very low (less than 1%

in IPS/Watt).

B. Concurrent Applications

More experiments are designed to show how the proposed

run-time optimization behaves when controlling different

applications running concurrently. Again the results are

compared to earlier results obtained by the Linux governors

in Table II. Table IV shows these results. Several

observations can be made.

TABLE IV. COMPARING PROPOSED METHOD WITH GOVERNORS FOR

CONCURRENT EXECUTION OF DIFFERENT APPLICATIONS

Program
Table Column Head

Governor IPS/Watt Energy (J)
Total Run-

time (S)

canneal

& freqmine

Rj 4.43E+08 6107.12 235.40

Oa 3.69E+08 7313.76 139

PFb 3.66E+08 7363.25 139.4

PSc 4.09E+08 6592.77 369.2

freqmine &

streamcluster

Rj 4.18E+08 8773.43 328.00

Oa 3.55E+08 8990.58 169.2

PFb 3.44E+08 9440.69 177.8

PSc 3.99E+08 9136.47 503.2

streamcluster

& canneal

Rj 1.96E+08 6434.56 297.40

Oa 1.29E+08 9407.77 191.2

PFb 1.29E+08 9410.32 190.8

PSc 2.13E+08 5673.91 318

Observation 8: The experiment of canneal and freqmine

running concurrently shows promising results with a

reduction in energy consumed by 7.37% and an IPS/Watt

increase of 8.10% over the lowest energy governor

(powersave). Not only is there a reduction in energy there is

also a reduction in total run-time of 36.24%. The run-time

script works as planned for the mix of these two applications.

Observation 9: The mix of freqmine and streamcluster

also shows a reduction in energy over the lowest energy

governor (ondemand). A reduction in energy of 2.42% and an

increase in IPS/Watt of 17.79% is shown when compared to

the ondemand governor. We do however see an increase in

the time taken of 93.85%. Time taken is not the focus of this

script though and is only a bonus if it completes in less time.

If we compare the results of the governor that should be using

the least power (powersave) we not only see a reduction in

energy of 3.97% but also a reduction in total time taken by

34.82%.

Observation 10: Lastly the mix of canneal and

streamcluster. We do not see a reduction in energy here but

rather an increase of 13.41%, this is not as intended. Possible

reasons for this are down to the fact that streamcluster

earlier when running on its own had problems decreasing

energy. streamcluster has a lower CPI value than canneal

and therefore is assigned more cores than canneal. This

could lead to the big energy increase as the problematic

application is taking up a majority of the processing power.

Further experiments and investigations need to be done to

assess what is causing the problems with streamcluster.

Fig. 6. Frequencies over time for all 4 cores when running

streamcluster and freqmine together

The results from Table IV are promising and shows that a

script such as the one outlined in this paper may have real

world energy saving benefits. Fig. 6 shows how the frequency

is dynamically changed over time and different for each core

and hence application. We can see freqmine on cores 0/1/2

which rise up to maximum frequency and hold that frequency

for the duration of executing freqmine with only small

deviations from it. Whereas we see streamcluster

constantly changing its frequency as the application changes

the type of processing it is doing (and hence its CPI). This is

in stark contrast to the other governors where the frequency

simply holds at one frequency across all 4 cores for the entire

run of the applications.

Fig. 7. IPS over time for freqmine and streamcluster running together

In Fig. 7 we can see from the IPS figures how these two

applications are split up between the cores. The application

with the higher CPI (streamcluster) is running on only one

core (core 3). freqmine with a lower CPI is assigned to run

on the other 3 cores 0/1/2. This differential allocation allows

further IPS/Watt optimizations.

VI. CONCLUSIONS

An optimization scheme targeting power-normalized

performance has been developed for controlling concurrent

application executions on platforms with multiple cores. The

method is centered around an operational state-space model,

which has independent variables that describe the operational

space, i.e. the input and output of the control mechanism. The

dependent variable is the metric being optimized. In choosing

the power-normalized performance as the metric and

investigating the concurrent execution of different

applications, this work fills significant gaps in the research

literature.

In the first instance, models are obtained off-line from

experimental data. Explorations with model simplification

are shown to be successful as by and large optimal results are

obtained from using these models in a run-time control

algorithm compared with existing Linux governors. In many

cases the improvements obtained are quite significant.

The method with which the state-space model which

underpins this method is obtained, linear regression with least

squares approximation, can be used in online learning based

solutions. This opens up future research possibilities where

the model is tunable during run-time for better optimization

results and remove the need for using the same average model

for different applications. Another future research potential

opened up by this work is in the investigation of other, more

sophisticated optimization algorithms. The experimental

platform constructed during this work will facilitate these

kinds of research in the future.

For experimental purposes, our method was implemented

on an Intel Core i7 platform with 4 cores, running Linux

system software as a case study. However, the underlying

modelling and run-time methodology can be applied to any

platform, whilst the implementation of which will be

platform-specific. A hard prerequisite for the platform is that

some form of feedback mechanism is available to avoid the

need for obtaining high-precision off line models.

Performance counters have become standard on

contemporary platforms to make this a non-issue. The authors

do have access to experimental platforms with modern

heterogeneous mobile processors and high performance

computing platforms with a large number of cores. It is

planned that work will immediately start on extending this

research over those kinds of platforms. It is expected that

modern embedded and high performance systems will benefit

from using the proposed method to achieve energy efficiency.

ACHNOWLEGEMENTS

This work is part of the EPSRC PRiME project

(EP/K034448/1). The authors wish to thank members of the

PRiME team in Newcastle University for fruitful discussions.

REFERENCES

[1] A. Prakash, S. Wang, A. E. Irimiea and T. Mitra, "Energy-

efficient execution of data-parallel applications on

heterogeneous mobile platforms," Computer Design (ICCD),

2015 33rd IEEE International Conference on, New York, NY,

2015, pp. 208-215.

[2] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty and A.

Herkersdorf, "High-level timing analysis of concurrent

applications on MPSoC platforms using memory-aware trace-

driven simulations," VLSI System on Chip Conference (VLSI-

SoC), 2010 18th IEEE/IFIP, Madrid, 2010, pp. 229-234.

[3] Intel Corporation, "Timeline of Processors," Intel, 2012.

[Online]

http://www.intel.co.uk/content/www/uk/en/history/history-

intel-chips-timeline-poster.html. [Accessed 17 December

2015].

[4] Intel Corporation, "Intel Core i7-6700k Processor," Intel, 2015.

[Online]: http://ark.intel.com/products/88195/Intel-Core-i7-

6700K-Processor-8M-Cache-up-to-4_20-GHz. [Accessed 17

December 2015].

[5] A.-C. Orgerie, M. D. de Assuncao, L. Lefevre. 2014. A survey

on techniques for improving the energy efficiency of large-

scale distributed systems. ACM Comput. Surv. 46, 4, Article

47 (March 2014), 31 pages.

[6] S. Mittal, "A Survey of Techniques For Improving Energy

Efficiency in Embedded Computing Systems," Int. J. of

CAE&T, 2014.

[7] S. Borkar, "Design challenges of technology scaling," in IEEE

Micro, vol. 19, no. 4, pp. 23-29, Jul-Aug 1999.

[8] V. Pallipadi and A. Starikovskiy, "The Ondemand Governor,"

Intel Open Source Technology Center, Ottawa, 2006.

[9] L. A. Torrey, J. Coleman and B. P. Miller, "Comparing

Interactive Scheduling in Linux," University of Wisconsin,

Madison,

http://pages.cs.wisc.edu/~ltorrey/papers/torrey_spe06.pdf.

[10] R. Shafik; S. Yang; A. Das; L. Maeda-Nunez; G. Merrett; B.

Al-Hashimi, "Learning Transfer-based Adaptive Energy

Minimization in Embedded Systems," in IEEE Trans on CAD

of IC&S, vol. PP., no. 99, pp.1-14.

[11] A. Das, R. Shafik, G.Merrett, B. Al-Hashimi, A. Kumar, B.

Veeravalli "Multinomial logistic regression-based workload

noise classification and adaptive frequency scaling for energy

minimization of embedded systems," DATE'15, Grenoble,

FR, 19 - 21 Mar 2015.

[12] Z. Chen, D. Marculescu. "Distributed reinforcement learning

for power limited many-core system performance

optimization," DATE '15. Grenoble, FR, pp.1521-1526.

[13] Y. Wang; M. Pedram, "Model-Free Reinforcement Learning

and Bayesian Classification in System-Level Power

Management," in IEEE Transactions on Computers , vol.PP,

no.99, pp.1-1.

[14] R. Cochran, C. Hankendi, A. Coskun, S. Reda, "Pack & Cap:

adaptive DVFS and thread packing under power caps."

MICRO-44. ACM, New York, NY, USA, 175-185.

[15] V. Spiliopoulos, S. Kaxiras, G. Keramidas, "Green governors:

A framework for Continuously Adaptive DVFS," in

International Green Computing Conference and Workshops

(IGCC), 2011, pp.1-8, 25-28 July 2011.

[16] C. Hankendi, and A. K. Coskun. "Adaptive power and resource

management techniques for multi-threaded workloads." In

IEEE 27th International Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), pp. 2302-

2305, 2013.

[17] C. Bienia, S. Kumar, J. P. Singh and K. Li, "The PARSEC

Benchmark Suite: Charaterization and Architectual

Implications," PACT 2008. ACM, pp. 72-81, New York, NY,

USA, 2008.

[18] N. S. Kim et al., "Leakage current: Moore's law meets static

power," in Computer, vol. 36, no. 12, pp. 68-75, Dec. 2003.

[19] A. P. Chandrakasan and R. W. Brodersen, "Minimizing power

consumption in digital CMOS circuits," in Proceedings of the

IEEE, vol. 83, no. 4, pp. 498-523, Apr 1995.

[20] C. Bienia, S. Kumar and Kai Li, "PARSEC vs. SPLASH-2: A

quantitative comparison of two multithreaded benchmark

suites on Chip-Multiprocessors," IEEE International

Symposium on Workload Characterization, 2008, Seattle, WA,

2008, pp. 47-56.

[21] likwid - light weight performance tools, [Online]:

https://github.com/RRZE-HPC/likwid/wiki.

[22] M. Hähnel, B. Döbel, M. Völp, H. Härtig. Measuring energy

consumption for short code paths using RAPL. SIGMETRICS

Perform. Eval. Rev. 40, 3 (January 2012), 13-17.

[23] J. Cohen et al. Applied Multiple Regression/Correlation

Analysis For The Behavioral Sciences. Routledge, 2013.

[24] Matlab, http://uk.mathworks.com/products/matlab/.

[25] B. Moore, "Principal component analysis in linear systems:

Controllability, observability, and model reduction," in IEEE

Trans on Automatic Control, vol. 26, no. 1, pp. 17-32, Feb

1981.

[26] R. Poley, Control Theory Fundamentals, CreateSpace

Independent Publishing Platform; 3 edition (24 Mar. 2015).

http://pages.cs.wisc.edu/~ltorrey/papers/torrey_spe06.pdf
https://github.com/RRZE-HPC/likwid/wiki
http://uk.mathworks.com/products/matlab/

