
Energy-Efficient Approximate Multiplier Design using

Bit Significance-Driven Logic Compression

Issa Qiqieh, Rishad Shafik, Ghaith Tarawneh, Danil Sokolov, and Alex Yakovlev

School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

E-mails: {i.qiqieh1, rishad.shafik, ghaith.tarawneh, danil.sokolov, alex.yakovlev}@newcastle.ac.uk

Abstract—Approximate arithmetic has recently emerged as a
promising paradigm for many imprecision-tolerant applications.
It can offer substantial reductions in circuit complexity, delay and
energy consumption by relaxing accuracy requirements. In this
paper, we propose a novel energy-efficient approximate multiplier
design using a significance-driven logic compression (SDLC)
approach. Fundamental to this approach is an algorithmic and
configurable lossy compression of the partial product rows based
on their progressive bit significance. This is followed by the
commutative remapping of the resulting product terms to reduce
the number of product rows. As such, the complexity of the
multiplier in terms of logic cell counts and lengths of critical
paths is drastically reduced. A number of multipliers with dif-
ferent bit-widths (4-bit to 128-bit) are designed in SystemVerilog
and synthesized using Synopsys Design Compiler. Post-synthesis
experiments showed that up to an order of magnitude energy
savings, and reductions of 65% in critical delay and almost 45%
in silicon area can be achieved for a 128-bit multiplier compared
to an accurate equivalent. These gains are achieved with low
accuracy losses estimated at less than 0.00071 mean relative error.
Additionally, we demonstrate the energy-accuracy trade-offs for
different degrees of compression, achieved through configurable
logic clustering. In evaluating the effectiveness of our approach,
a case study image processing application showed up to 68.3%
energy reduction with negligible losses in image quality expressed
as peak signal-to-noise ratio (PSNR).

I. INTRODUCTION

There is a persistent demand for higher computational

performance at low energy cost for emerging applications. It

is unlikely that improvements from manufacturing processes

alone, such as technology nodes or many-core system-on-

chip, will be able to cope with this challenge. Thus there

is a genuine need to develop disruptive design approaches

to achieve transformational energy reductions. Approximate

computing systems design is a promising approach to this

end [1].

The basic premise of approximate computing is to re-

place traditional complex and energy-wasteful data processing

blocks by low-complexity ones with reduced logic counts. As a

result, effective chip area and energy consumption are reduced

at the cost of imprecision introduced to the processed data.

Research has shown that the majority of modern applications

such as digital signal processing, computer vision, robotics,

multi-media and data analytics have some level of tolerance to

such imprecision [2]. This can be leveraged as an opportunity

for energy-efficient systems design for current and future

generations of application-specific systems.

Multipliers are crucial arithmetic units in many of

these applications, for two major reasons. Firstly, they are

characterized by complex logic design, being one of the

most energy-demanding data processing units in modern

microprocessors. Secondly, compute-intensive applications

typically exercise a large number of multiplication operations

to compute outcomes. These factors have prompted close

attention in approximate multiplier design research, since

improvements made in the power/speed of a multiplier are

expected to substantially impact on overall system power/

performance trade-offs [3].

TABLE I: Summary of approximate multiplier design approaches.

Approach Methodology Features and Limitations

[4] [5] Aggressive voltage scaling:
lowering the supply voltage
below its nominal value.

Unexpected time-induced er-
rors, which normally impact the
most significant bits.

[6] [7] Truncation: eliminating partial
products from the least signif-
icant columns.

As more columns are elimi-
nated, the resulting errors are
maximised.

[8] [9] Modular re-design: large effi-
cient multipliers using inaccu-
rate small multiplier blocks.

Scalability is not simple and
this method may not signifi-
cantly reduce the critical path.

[10] S/W-based perforation: approx-
imation of the generation of the
partial products.

Decreasing the depth of the ac-
cumulation tree by utilizing a
tool, and also real-time needs.

[11] [12] Automated re-design: systemat-
ically reducing the complexity
of circuits.

Greedy approach depending on
circuit activity profile and out-
put significance.

[13] [14] Manual re-design: manual al-
teration of the functional be-
haviours of the structure.

Disparate ideas of redesigning
the multiplier extend from ar-
chitecture to transistor level.

Table I summarizes the key features and limitations of re-

search efforts to date in the domain of approximate multipliers.

These can be largely categorized as modifications of either

timing or functional behaviors. Firstly, timing behavior can be

modified using aggressive supply voltage scaling techniques

[4], [5]. Operating below nominal voltage allows for reduc-

tions in energy consumption at the cost of time-induced errors.

These errors cannot be rigorously bounded, and so extra error-

compensation circuits need to be incorporated. Secondly, func-

tional modifications deal with logic reduction techniques and

can be performed by relaxing the need for accurate Boolean

equivalence in favor of energy and circuit area reductions.

For example, truncating multiplier product terms allows for

the elimination of some of the least significant partial product

terms [6], [7]. As more columns are eliminated, further energy

reduction is achieved; however, errors also increase. Modular

re-design with low-complexity combinational logic is another

effective technique [8], [9]. This allows for building larger

energy-efficient multipliers using small approximate ones;

however, the hierarchical organization of small approximate

blocks will eventually propagate errors which increase with

the multiplier size. A software-based perforation technique has

been proposed [10] by obtaining the optimized set of partial

product terms based on power-area-accuracy trade-offs. Auto-

mated design approaches [11], [12] present design flows for

generating approximate circuits using circuit activity profiles

and quality bounds, and an evolutionary design process based

on Cartesian Genetic Programming (CGP) has been utilized to

implement approximate multipliers [15]. A number of power-

and area-efficient multiplier redesign approaches have been

proposed by changing the functional behavior. These changes

extend from the architecture to transistor-level [13], [14]. The

key principle of the above studies is to achieve reduced logic

complexity, which is also the main aim of our work.

A typical (N×N) accurate multiplier generates N2 product

terms, which are then accumulated as a final product of size

2N . The accuracy of this product depends largely on the

significance of bits; preserving higher-significance bits is likely

to generate an outcome closes to the exact product than that of

lower-significance bits. This can be exploited to progressively

compress higher order combinatorial terms systematically and

to achieve substantial energy savings at low loss of accuracy. In

our work, we leverage this opportunity to make the following

key contributions:

1) We propose a novel energy-efficient approximate multi-

plier design approach using bit significance-driven logic

compression (SDLC).

2) At the core of our approach is a configurable logic

clustering of product terms appropriately chosen for a

given energy-accuracy trade-off, followed by remapping

using their commutative properties to reduce the result-

ing number of product terms.

3) We demonstrate the comparative gains (with up to an

order of magnitude energy reduction) through the design

and synthesis of multipliers of different sizes (from 4 to

128 bits). Furthermore, we implement the multiplier in a

real case-study image processing application to highlight

its key advantages.

To the best of our knowledge, this is the first demonstration

of a systematic logic compression-based approximate multi-

plier design approach using a real application. The rest of

the paper is organized as follows. Section II introduces the

proposed approximate multiplier design. Section III provides

the error analysis associated with different bit-widths of the

proposed multiplier. The experimental results and design trade-

offs are described in Section IV. Finally, Section V concludes

the paper.

II. PROPOSED APPROXIMATE MULTIPLIER DESIGN

Our proposed approach consists of two major steps. In the

first, lossy compression is carried out through logic clustering.

Figure 1: Process chart showing the difference between the major stages in: (a)
conventional multiplication, and (b) the proposed approach to multiplication.

The resulting compressed terms are then remapped using their

commutative properties. These steps together with the variable

compression method, are described below.

1) Logic Compression: Parallel multiplication design is

generally divided into three consecutive stages: partial product

formation, accumulation, and carry propagation adder. In an

(N ×N) multiplier, N2 AND gates are utilized in parallel to

generate the partial product bit-matrix. This matrix is then

column-wise accumulated to generate the final product by

using carry propagation adders.

The proposed approach begins by generating all partial

products using the same number of AND gates, similar to

conventional multiplication. Before proceeding to the accumu-

lation stage, the number of bits in the partial product matrix

is reduced by performing lossy logic compression. The aim

is to reduce the number of rows in the partial product matrix,

thereby achieving low-complexity hardware before proceeding

to accumulation. Figure 1 shows the difference between the

design stages in accurate and the proposed multiplication. The

shaded box highlights the contribution in this paper. To achieve

lossy compression, we follow three key principles as follows.

a. Clustering a group of rows: The proposed multiplier

organizes the partial product terms using different sizes of

significant-driven logic clusters. Each logic cluster targets

a group of columns containing two bits starting from the

least significant bits in successive partial products. In general,

each 2 × L logic cluster is responsible for two operations: i)

generating 2L partial product bits within two contiguous rows,

i.e., L pairs of vertically aligned bits, by utilizing 2L AND

gates. Then, ii) minimizing these 2L bits by half using L OR

gates. Figure 2 illustrates the utilization of four sizes of logic

clusters in 8-bit parallel multiplier. The first 2×7 logic cluster

forms 14 partial products by utilizing 14 AND logic gates and

extracts 7-bit value by using an array of 7 OR logic gates. The

second 2× 6 logic cluster minimizes 12 partial products into

6 bits. In a similar way the third and fourth logic clusters use

2×5 and 2×4 to minimize 10 and 8 partial products into 5 and

4 bits respectively. By doing so, each logic cluster compresses

a group of vertically aligned bits within two successive partial

products based on their progressive bit significance.

b. Generation of a reduced set of product terms: Us-

ing an array of OR gates in each logic cluster compresses

the partial product terms by half. A reduced set of pre-

processed partial product matrix is thus ready to be ac-

Each logic cluster

compresses a group

of bits within two

successive partial

products based on

their progressive bit

significance, as such

the critical column

is reduced by half.

Figure 2: Distribution of four different sizes of logic clusters used to compress
partial products based on their progressive bit-significance in (8× 8) parallel
multiplier architecture.

cumulated by applying any convenient scheme of multipli-

cation, such as carry-save array, Wallace and Dadda tree.

In theory, a two-input OR gate is sufficient to sum up

two bits, i.e., ‘0’+‘1’=‘1’+‘0’=‘0’OR‘1’=‘1’OR‘0’=‘1’ and

also ‘0’+‘0’=‘0’OR‘0’=‘0’. However, the OR gate fails to

give an accurate sum if the two inputs are “ones”, i.e.,

‘1’+‘1’ 6=‘1’OR‘1’, the difference value is ‘1’ as the adder

returns ‘10’ and OR outputs ‘1’.

c. Significance-driven progressive cluster sizing: Since the

main goal is to design a power-efficient multiplier with negligi-

ble loss of accuracy, the size of the logic clusters is decreased

when going down in the partial product matrix. The more

significant bits are treated with progressively higher precision,

while bits with lower significance are compressed using the

SDLC approach. This permits the most significant product

terms to be accumulated on a carry-propagation basis as in the

conventional multiplier. Thus, the accuracy of the significant

bits of the final product is less affected.

Despite using the same number of AND gates as the accu-

rate multiplier, this approach will deterministically reduce the

hardware complexity of partial product accumulation, e.g., the

count of the compressor cells needed in column compression

multiplication for Wallace and Dadda cases, and also the

number of half and full adders in the carry-save array will

be decreased since the number of bits in the accumulation

tree is minimized.

2) Commutative Remapping: The logic compression step

(Section II-1) reduces the number of partial product terms.

This reduction can be leveraged to reduce number of rows

prior to the accumulation stage. This can be achieved by

remapping the partial product terms based on the commutative

property of the bits, i.e., bits with the same weight are gathered

in the same column. Due to the reduced number of rows,

the critical path delay is drastically reduced (see Section IV).

Figure 3 demonstrates how the size of the partial product bit-

matrix in the case of an (8 × 8) multiplier is reduced using

the SDLC approach. The lined boxes refer to a group of bits

targeted by different sizes of logic clusters in which the height

of the critical column is reduced by half.

The proposed approach is scalable for any (N × N) mul-

Partial Product Bit A
i
B
i
. Compressed Bit Resulting from Logic Clusters.

(a) (b) (c)

2
-b

it

2
-b

it

2
-b

it

2
-b

it

Figure 3: Dot notation shows the major two steps in SDLC approach in
the case of (8 × 8) multiplier: (a) clustering a group of rows in the partial
product bit-matrix after bitwise multiplication; (b) generating a reduced set
of product terms after applying logic compression; (c) ordered matrix after
applying commutative remapping of the bit sequence resulting from the SDLC
approach. The dotted rectangles indicate the height of the critical column
which is reduced by half compared to the accurate accumulation tree.

tiplier, as shown in Algorithm 1. This algorithm generates

a reduced and ordered partial product bit-matrix, which can

then be treated as an accumulation tree by any scheme of

multiplication. Line (9) indicates how partial product bits are

compressed using logic clusters. The main loop (lines 6 to

17) is responsible for remapping product terms in an ordered

bit-matrix, as demonstrated in Figure 3.

3) Variable Logic Cluster Approach: The proposed

approach is capable of achieving higher degrees of

compression by increasing logic cluster depth. Figure 4

demonstrates the impact of increasing depth to 3 and 4

bits in the case of (8 × 8), showing the key steps in logic

compression and commutative remapping. As can be seen,

with increased depth we can achieve further reduction in

the partial product terms, leading to fewer rows for final

accumulation.

Algorithm 1 Generating a reduced partial product matrix M

using the Significant-Driven Logic Clusters (SDLC) approach

for (N ×N) multiplier, {∀ N ∈ {2σ : σ ∈ N
∗}}

1: procedure SDLC(M,A,B)

2: Output: M [1, 2, ..., N

2
][1, 2, ..., 2N − 1] ⊲ Reduced Matrix

3: Inputs: A[1, 2, ..., N] ⊲ Multiplicand bits

4: B[1, 2, ..., N] ⊲ Multiplier bits

5: Initialize:ρ← 1 ⊲ Bit Position

6: for i← 1 to N

2
do ⊲ Forming rows of M

7: M [i][ρ]← A(0) ∧ B(2i− 2) ⊲ First bit in each row of M

8: for j ← 1 to N − i do ⊲ Forming outputs of each logic cluster

9: M [i][j+ ρ]← (A(j)∧B(2i− 2)) ∨ (A(j− 1)∧B(2i− 1))
10: end for

11: Initialize:δ ← 1 ⊲ Bit Position

12: for k ← 2i− 1 to N − 1 do ⊲ Forming unaffected MSBs

13: M [i][ρ + (N − i) + δ]← A(N − i) ∧ B(k)
14: δ ← δ + 1
15: end for

16: ρ← ρ + 2 ⊲ Shift left by 2 (next row)

17: end for

18: return M ⊲ M is then treated as a reduced accumulation tree

19: end procedure

III. ERROR ANALYSIS

A number of simulations are carried out to examine the

impact of error on the proposed approach for different sizes

of multiplier. Several error metrics have been discussed [16]

and [17] for evaluating the effectiveness and quantifying errors

of approximate adders and multipliers. For any (N × N)
approximate multiplier, the error distance (ED) is defined as

the arithmetic difference between the accurate product (P) and

erroneous product (P ′), i.e., ED = |P − P ′|. The relative

error distance (RED) is the ratio of ED over the accurate

3
-b

it

3
-b

it

2
-b

it

4
-b

it

4
-b

it

(d) (e) (f)

(a) (b) (c)

Partial Product Bit A
i
B
i
. Compressed Bit Resulting from Logic Clusters.

Figure 4: Dot notation showing the impact of increasing the depth of the
logic clusters in the case of (8 × 8) multiplier: (a) clustering a group
of bits within three successive rows in the partial product bit-matrix after
bitwise multiplication; (b) generating a reduced set of product terms after
targeting the depth of 3-row logic compression; (c) ordered matrix after
applying commutative remapping of the bit sequence resulting from the SDLC
approach; (d), (e) and (f) the same process when applying 4-bit logic clusters.
The dotted rectangles indicate the heights of the critical columns which are
further reduced compared to the accurate accumulation tree.

output, i.e., RED = ED
P

=
|P−P ′|

P
. The error rate (ER) is

defined as the ratio of incorrect outputs with respect to the total

number of outputs. For any (N ×N) approximate multiplier,

the mean RED (MRED) is defined as [17]:

MRED =

∑22N−1
i=0 RED

22N
. (1)

The Mean Error Distance (MED) is another useful error metric

defined as the average of the ED values , i.e., MED =
∑

ED

22N
.

For comparing multipliers of different sizes, the normalized

MED (NMED) is defined as [17]:

NMED =
MED

Pmax

=

∑
2
2N

−1

i=0
ED

22N

Pmax

, (2)

where Pmax is the maximum product that can be obtained

from an (N ×N) accurate multiplier, i.e., Pmax = (2N −1)2.

Exhaustive simulations are performed in Matlab by im-

plementing a functional model of the SDLC approach. The

response of all approximate multipliers are evaluated for all

possible combinations of operands. Table II shows four error

metrics using varying sizes of the proposed multiplier. It can

be seen that MRED and NMED fall drastically as the size of

the multiplier is increased from 4 to 16-bit. The increasing

trend in the error rate is expected due to the increased bit-

width of the multiplier. This is because the error occurrence

increases as well due to the growing likelihood of finding a

pair of vertically aligned “ones” through two successive rows.

In such cases, the corresponding OR gate will return an error,

as detailed in Section II-1.

However, such error rates can be misleading, as the eventual

impact of error is reflected in error distance metrics such as

MRED and NMED [18]. Also, the readings of MAX(RED)

TABLE II: Different error metrics for varying sizes of proposed multiplier.

Bit-Width MRED NMED ER (%) MAX(RED) (%)

4-bit 2.77313 0.010556 19.53 31.1111

6-bit 2.65879 0.006393 34.96 32.8042

8-bit 1.98826 0.003527 49.11 33.2026

12-bit 0.00824 0.000952 70.68 33.3308

16-bit 0.00071 0.000084 78.72 33.3325

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0
-1

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1
0

1
0
-1
1

1
1
-1
2

1
2
-1
3

1
3
-1
4

1
4
-1
5

1
5
-1
6

1
6
-1
7

1
7
-1
8

1
8
-1
9

1
9
-2
0

2
0
-2
1

2
1
-2
2

2
2
-2
3

2
3
-2
4

2
4
-2
5

2
5
-2
6

2
6
-2
7

2
7
-2
8

2
8
-2
9

2
9
-3
0

3
0
-3
1

3
1
-3
2

3
2
-3
3

3
3
-3
4

P
ro

b
a
b

ili
ty

 o
f
E

rr
o

rs

Relative Error Percentages

Mul 4-bit X 4-bit

Mul 8-bit X 8-bit

Mul 12-bit X 12-bit

The vast majority of outputs are either
exact or close to exact outputs.

Rare Occurrence for higher errors and the mass
of the distribution is gradualluy concentrated to

the leftmost in higher bit-widths.

The probability of errors is
drastically decreased.

Figure 5: Error percentage distribution for 4-bit, 8-bit and 12-bit proposed
multiplier after applying 2-bit depth compression.

would not denote severe degradation of the final output

because the occurrence of these errors is regarded as very

rare. This can be seen in Figure 5, which demonstrates the

probability distribution for all relative errors resulting from

three different sizes of multipliers using the SDLC approach.

The probability distribution shows that the proposed approach

tends to produce exact or close to exact results. This is seen

in the sharp decline of the probability of errors with higher

REDs, e.g., the MAX(RED) listed in Table II. Furthermore,

as the bit-width of the multiplier is increased, the mass of the

distribution is gradually concentrated at a lower error distance.

This is because the proposed approach does not sacrifice the

precision of the more significant bits when using significance-

driven logic compression.

Table III depicts the error trade-off with increased degree of

compression achieved through higher depths of logic clusters

in (8 × 8) multiplier. As expected, increased depth leads to

higher error rates (up to 78%) when clustering with 4-row

logic compression. However, results for the MRED metric are

only marginally higher when compared with logic compression

with 2- or 3-bit logic clusters. Similar observations can be

made in the case of the NMED metric. The impact of increased

degree of compression is further investigated in the application

case-study in Section IV.

IV. EXPERIMENTAL RESULTS AND DESIGN TRADE-OFFS

To demonstrate the proposed approach, we applied it on

eight different sizes of widely known multipliers ranging from

4-bit to 128-bit. For the purpose of fair comparison, accurate

ripple adders were used in both accurate and approximate

multipliers to accumulate the partial product rows within the

accumulation stage (see Figure 1). A generic SystemVerilog

code was used to generate synthesizable modules for all

accurate and approximate versions. These modules have been

parametrized and configured differently during instantiation

according to the bit-width of multiplier. The generated codes

were implemented and synthesised using two different off-the-

TABLE III: MRED, NMED, error rate and maximum RED for different depths
of logic compression in (8× 8) multiplier.

Cluster-Depth MRED NMED ER (%) MAX(RED) (%)

2-bit 1.9883 0.0035 49.11 33.2

3-bit 4.6847 0.0101 65.73 42.69

4-bit 10.5836 0.0327 77.57 46.48

10%

20%

30%

40%

50%

60%

70%

80%

90%

4-bit 6-bit 8-bit 12-bit 16-bit 32-bit 64-bit 128-bit

R
e
d
u
c
ti
o
n
 (

%
)

Bit-Width

Dynamic Power Reduction Leakage Power Reduction
Area Reduction Delay Reduction
Energy Reduction

Figure 6: From left to right: dynamic and leakage power, area, delay and
energy reductions for different bit-widths of proposed multiplier.

shelf tools: Mentor Graphics Questa Sim was used to compile

the SystemVerilog codes and run the associated test benches;

and Synopsys Design Compiler was utilized for synthesising

all sizes of accurate and proposed multipliers when mapping

the circuits to the Faraday’s 90nm technology library and

evaluating for power, delay and area.

Figure 6 presents a comparison of dynamic/leakage power,

area, delay and energy reductions for all eight sizes of pro-

posed multipliers when compared with a conventional accurate

multiplier (Figure 1(a)). As seen, there are significant improve-

ments in all design trade-offs. This is basically because SDLC

approach reduces the complexity of multiplier implementation

by reducing the number of rows in the accumulation tree.

Furthermore, this reduction in hardware complexity leads to

low switching capacitance and leakage readings as well as

shortened critical paths.

The experiments show noteworthy reductions in terms of

power consumption, runt-time and also silicon area used. For

dynamic and leakage power, the reductions obtained from

applying the SDLC approach range from 37.5%-67.4% and

34%-72.1% respectively when the bit-width ranges from a 4-

bit to 128-bit multiplier. Furthermore, the range of savings

in the operating delay for the same sizes of the proposed

multiplier is from 38.5%-65.6%. The reduction in complexity

also leads to silicon area to be reduced by 33.4%-62.9%, and

energy consumed is substantially reduced by 65.5%-88.74%.

The non-linear trend of the bars in some cases is attributed to

the inconsistency of the ratio of the array of additions in the

accumulation tree between the approximate and the accurate

multiplier.

Figure 7 illustrates the dynamic/leakage power, delay, area

and energy savings with increased degree of logic compres-

sion. Higher depth of clustering achieves considerable savings

in all design trade-offs since by increasing the depth of

logic clusters, the hardware complexity associated with lower

numbers of product rows is also decreased.

We evaluate the efficiency of the proposed technique on

a real life image-processing application. Such an application

consists of additions and multiplications using key multipliers

as building blocks. Our analysis considers the Gaussian blur

filter [19] since it is widely used in graphics software, typically

to reduce image noise and detail by acting as a low-pass filter.

10%

20%

30%

40%

50%

60%

70%

80%

90%

Dynamic Leakage Delay Area Energy

R
ed

uc
tio

n(
%

)

8-bit (2-Row Logic Clusters)

8-�it (3-Row Logic �lu�ter�)

8-�it (4-Row Logic �lu�ter�)

Figure 7: Dynamic power, leakage power, delay, area and energy savings for
different degrees of logic compression of 8-bit multiplier.

This filter involves the convolution of a ‘kernel’, described

by a Gaussian function, with the pixels of the image. The

values of a given pixel in the output image are calculated

by multiplying each kernel value by the corresponding input

image pixel values; then all the obtained values are added and

the result will be the value for the current pixel that overlaps

with the centre of the kernel.

To illustrate the effect of variable logic clusters in the

proposed approach, different versions of an 8-bit approxi-

mate multiplier together with the Gaussian blur algorithm

are implemented in Matlab covering 2-, 3- and 4-bit depth

clustering. The Gaussian kernel is (3× 3) with a 1.5 standard

deviation value and it uses 8-bit fixed point arithmetic and is

applied to 8-bit grayscale input image size (200×200) pixels.

We approximate Gaussian blur by replacing the standard

multiplication in the Gaussian filter with the aforementioned

approximate (8×8) multipliers. The peak signal-to-noise ratio

(PSNR) is a fidelity metric used to measure the quality of the

output images. PSNR is expressed as:

PSNR = 10 log10

(

2552

MSE

)

, (3)

where MSE is the mean squared-error measured with respect

to the reference pixel. Figure 8 demonstrates the impact of dif-

ferent bit-depth clustering on the image quality after applying

the Gaussian blur filter. The standard (8 × 8) multiplier and

three different levels of approximation for the proposed (8×8)
multiplier are used. In fact, the utility of the proposed approach

yields fruitful results. The PSNR for the case of 2-, 3- and 4-bit

depth clustering are 50.2 dB, 39 dB, 30 dB respectively. The

values of PSNR are computed compared to the image resulting

after applying Gaussian blur filtering with the case of exact

multiplication. Thus, the proposed approach can provide a

significant dynamic energy saving up to 68.3% with acceptable

quality of output image, especially when utilizing smaller bit

Exact Multiplier 2-bit Clustering 3-bit Clustering 4-bit Clustering

Reference Image PSNR = 50.2 dB PSNR = 39 dB PSNR = 30 dB

Energy Saving 59.5% 68.3% 78.5%

Figure 8: Output quality after applying Gaussian blur filtering to three different
versions of the proposed (8× 8) multiplier.

0%
10%
20%
30%
40%
50%
60%

4-�it 8-�it 16-�it

ETM [20] Kulkarni [8] Proposed ETM [20] Kulkarni [8] Proposed
Area Reduction Power Reduction

Figure 9: Area and power savings for various scalable approximate multipliers.

depth clusters such as 2- and 3-bit.

Figure 9 shows comparative power and area advantages of

our approach for different bit-widths. The comparisons are

carried out with the following two existing approaches: Kulka-

rni [8] and ETM [20], chosen for their direct relevance to our

work. In the Kulkarni approach, a large multiplier is produced

using small approximate multipliers as building blocks. The

design approach in the ETM follows truncation principles by

dividing the multiplier into accurate and approximate parts. In

the approximate part, probabilistic bit manipulation is used to

generate the product terms. Our approach produces better re-

sults as the bit-width of the multiplier is increased. This is seen

with the 16-bit multiplier, where our approach outperforms

both approaches in terms of power and area. This is because

the number of product rows is halved (with 2-bit clustering)

and commutative remapping is used to reduce the parallel ac-

cumulation complexity. The corresponding error comparisons

of these approaches are shown in Table IV, demonstrating

comparative errors (in terms of MRED, NMED and also ER)

using the proposed (8×8) multiplier (with 2-bit clustering). As

expected, our approach outperforms both approaches in terms

of MRED, NMED due to its bit significance-driven logic com-

pression. As the proposed approach progressively preserves

the high-order bits, it is expected to exhibit significantly lower

errors for multipliers with higher bit-widths.
TABLE IV: Comparative errors in terms of MRED, NMED and also ER for
various scalable (8× 8) approximate multipliers.

ETM [20] Kulkarni [8] Proposed

MRED (%) 25.2 3.25 1.99

NMED(%) 2.8 1.39 0.335

ER(%) 98.8 46.73 49.11

V. CONCLUSIONS

In this paper, a novel approximate multiplier design is

proposed using significance-driven logic compression (SDLC).

This design approach utilizes an algorithmic and configurable

lossy compression based on bit significance to form a reduced

set of partial product terms. This is then reorganized and

accumulated using various schemes of parallel multiplication.

On a statistical basis, the results of NMED and MRED metrics

show how the impact of error is alleviated when the size of

the multiplier is increased. Additionally, the error distributions

show high right-skewness for error probabilities, indicating

that the proposed multiplier gives close to exact products for

most inputs. The results obtained after synthesis have shown

a substantial decrease in run-time, power consumption and

even in silicon area. We demonstrate energy-accuracy trade-

offs for different levels of approximations achieved through

configurable logic clustering. To illustrate the effect of variable

logic clusters, case study of an image-processing application

shows that the proposed approach can provide significant

energy and area savings with negligible loss in output quality,

especially when utilizing smaller bit depth clusters. We believe

that the proposed approach can be used with already existing

low-power compute units to extract manifold benefits with a

minimal loss in output quality.

ACKNOWLEDGMENT

The authors would like to thank MOHE (Jordan), BAU

(Jordan) and EPSRC PRiME project EP/K034448/1(UK) for

their funding and support.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test

Symposium (ETS), pp. 1–6, May 2013.
[2] L. Sekanina, “Introduction to approximate computing: Embedded tuto-

rial,” in 2016 IEEE 19th DDECS, pp. 1–6, April 2016.
[3] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A com-

parative evaluation of approximate multipliers,” in 2016 IEEE/ACM

International Symposium on NANOARCH, pp. 191–196, July 2016.
[4] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design

of voltage-scalable meta-functions for approximate computing,” in 2011

DATE, pp. 1–6, March 2011.
[5] Y. Liu, T. Zhang, and K. K. Parhi, “Computation error analysis in

digital signal processing systems with overscaled supply voltage,” IEEE

Transactions on VLSI Systems, vol. 18, pp. 517–526, April 2010.
[6] N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,

“Truncated binary multipliers with variable correction and minimum
mean square error,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 57, pp. 1312–1325, June 2010.
[7] J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,”

in DSD, 2003, pp. 112–119, Sept 2003.
[8] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power

with an underdesigned multiplier architecture,” in 2011 24th Internatioal

Conference on VLSI Design, pp. 346–351, Jan 2011.
[9] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier with

error correction,” in 2013 IEEE 31st ICCD, pp. 33–38, Oct 2013.
[10] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,

“Design-efficient approximate multiplication circuits through partial
product perforation,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 24, pp. 3105–3117, Oct 2016.
[11] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-

nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC, 2012 49th ACM/EDAC/IEEE, pp. 796–801, June 2012.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in 2011

IEEE/ACM ICCAD, pp. 667–673, Nov 2011.
[13] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient ap-

proximate wallace tree multiplier for error-resilient systems,” in Fifteenth

ISQED, pp. 263–269, March 2014.
[14] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power

digital signal processing using approximate adders,” IEEE Transactions

on CAD of Integrated Circuits and Systems, vol. 32, pp. 124–137, 2013.
[15] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate dig-

ital circuits design,” IEEE Transactions on Evolutionary Computation,
vol. 19, pp. 432–444, June 2015.

[16] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in 2014

DATE, pp. 1–4, March 2014.
[17] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-

proximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, pp. 1760–1771, Sept 2013.

[18] I. S. Chong, H. yeon Cheong, and A. Ortega, “New quality metric for
multimedia compression using faulty hardware,” in In Intl Workshop on

Video Processing and Quality Metrics for Consumer Electronics, 2006.
[19] C. Solomon and T. Breckon, Fundamentals of digital image processing :

a practical approach with examples in Matlab. Wiley-Blackwell, 2011.
[20] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed

multiplier for error-tolerant application,” in EDSSC, pp. 1–4, 2010.

