Energy-Efficient Approximate Multiplier Design using
Bit Significance-Driven Logic Compression

Issa Qigieh, Rishad Shafik, Ghaith Tarawneh, Danil Sokolov, and Alex Yakovlev
School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
E-mails: {i.qiqiehl, rishad.shafik, ghaith.tarawneh, danil.sokolov, alex.yakovlev} @newcastle.ac.uk

Abstract—Approximate arithmetic has recently emerged as a
promising paradigm for many imprecision-tolerant applications.
It can offer substantial reductions in circuit complexity, delay and
energy consumption by relaxing accuracy requirements. In this
paper, we propose a novel energy-efficient approximate multiplier
design using a significance-driven logic compression (SDLC)
approach. Fundamental to this approach is an algorithmic and
configurable lossy compression of the partial product rows based
on their progressive bit significance. This is followed by the
commutative remapping of the resulting product terms to reduce
the number of product rows. As such, the complexity of the
multiplier in terms of logic cell counts and lengths of critical
paths is drastically reduced. A number of multipliers with dif-
ferent bit-widths (4-bit to 128-bit) are designed in System Verilog
and synthesized using Synopsys Design Compiler. Post-synthesis
experiments showed that up to an order of magnitude energy
savings, and reductions of 65% in critical delay and almost 45%
in silicon area can be achieved for a 128-bit multiplier compared
to an accurate equivalent. These gains are achieved with low
accuracy losses estimated at less than 0.00071 mean relative error.
Additionally, we demonstrate the energy-accuracy trade-offs for
different degrees of compression, achieved through configurable
logic clustering. In evaluating the effectiveness of our approach,
a case study image processing application showed up to 68.3%
energy reduction with negligible losses in image quality expressed
as peak signal-to-noise ratio (PSNR).

I. INTRODUCTION

There is a persistent demand for higher computational
performance at low energy cost for emerging applications. It
is unlikely that improvements from manufacturing processes
alone, such as technology nodes or many-core system-on-
chip, will be able to cope with this challenge. Thus there
is a genuine need to develop disruptive design approaches
to achieve transformational energy reductions. Approximate
computing systems design is a promising approach to this
end [1].

The basic premise of approximate computing is to re-
place traditional complex and energy-wasteful data processing
blocks by low-complexity ones with reduced logic counts. As a
result, effective chip area and energy consumption are reduced
at the cost of imprecision introduced to the processed data.
Research has shown that the majority of modern applications
such as digital signal processing, computer vision, robotics,
multi-media and data analytics have some level of tolerance to
such imprecision [2]. This can be leveraged as an opportunity
for energy-efficient systems design for current and future
generations of application-specific systems.

Multipliers are crucial arithmetic units in many of
these applications, for two major reasons. Firstly, they are
characterized by complex logic design, being one of the
most energy-demanding data processing units in modern
microprocessors. Secondly, compute-intensive applications
typically exercise a large number of multiplication operations
to compute outcomes. These factors have prompted close
attention in approximate multiplier design research, since
improvements made in the power/speed of a multiplier are
expected to substantially impact on overall system power/
performance trade-offs [3].

TABLE I: Summary of approximate multiplier design approaches.

Approach

Methodology

Features and Limitations

(4] [3]

Aggressive voltage scaling:
lowering the supply voltage
below its nominal value.

Unexpected time-induced er-
rors, which normally impact the
most significant bits.

(61 [7]

Truncation: eliminating partial
products from the least signif-
icant columns.

As more columns are elimi-
nated, the resulting errors are
maximised.

(81 [9]

Modular re-design: large effi-
cient multipliers using inaccu-
rate small multiplier blocks.

Scalability is not simple and
this method may not signifi-
cantly reduce the critical path.

[10]

S/W-based perforation: approx-
imation of the generation of the
partial products.

Decreasing the depth of the ac-
cumulation tree by utilizing a
tool, and also real-time needs.

[(117(12]

Automated re-design: systemat-
ically reducing the complexity

Greedy approach depending on
circuit activity profile and out-

of circuits. put significance.

[13] [14]| Manual re-design: manual al-
teration of the functional be-
haviours of the structure.

Disparate ideas of redesigning
the multiplier extend from ar-
chitecture to transistor level.

Table I summarizes the key features and limitations of re-
search efforts to date in the domain of approximate multipliers.
These can be largely categorized as modifications of either
timing or functional behaviors. Firstly, timing behavior can be
modified using aggressive supply voltage scaling techniques
[4], [5]. Operating below nominal voltage allows for reduc-
tions in energy consumption at the cost of time-induced errors.
These errors cannot be rigorously bounded, and so extra error-
compensation circuits need to be incorporated. Secondly, func-
tional modifications deal with logic reduction techniques and
can be performed by relaxing the need for accurate Boolean
equivalence in favor of energy and circuit area reductions.
For example, truncating multiplier product terms allows for
the elimination of some of the least significant partial product
terms [6], [7]. As more columns are eliminated, further energy

reduction is achieved; however, errors also increase. Modular
re-design with low-complexity combinational logic is another
effective technique [8], [9]. This allows for building larger
energy-efficient multipliers using small approximate ones;
however, the hierarchical organization of small approximate
blocks will eventually propagate errors which increase with
the multiplier size. A software-based perforation technique has
been proposed [10] by obtaining the optimized set of partial
product terms based on power-area-accuracy trade-offs. Auto-
mated design approaches [11], [12] present design flows for
generating approximate circuits using circuit activity profiles
and quality bounds, and an evolutionary design process based
on Cartesian Genetic Programming (CGP) has been utilized to
implement approximate multipliers [15]. A number of power-
and area-efficient multiplier redesign approaches have been
proposed by changing the functional behavior. These changes
extend from the architecture to transistor-level [13], [14]. The
key principle of the above studies is to achieve reduced logic
complexity, which is also the main aim of our work.

A typical (N x N) accurate multiplier generates N2 product
terms, which are then accumulated as a final product of size
2N. The accuracy of this product depends largely on the
significance of bits; preserving higher-significance bits is likely
to generate an outcome closes to the exact product than that of
lower-significance bits. This can be exploited to progressively
compress higher order combinatorial terms systematically and
to achieve substantial energy savings at low loss of accuracy. In
our work, we leverage this opportunity to make the following
key contributions:

1) We propose a novel energy-efficient approximate multi-
plier design approach using bit significance-driven logic
compression (SDLC).

2) At the core of our approach is a configurable logic
clustering of product terms appropriately chosen for a
given energy-accuracy trade-off, followed by remapping
using their commutative properties to reduce the result-
ing number of product terms.

3) We demonstrate the comparative gains (with up to an
order of magnitude energy reduction) through the design
and synthesis of multipliers of different sizes (from 4 to
128 bits). Furthermore, we implement the multiplier in a
real case-study image processing application to highlight
its key advantages.

To the best of our knowledge, this is the first demonstration
of a systematic logic compression-based approximate multi-
plier design approach using a real application. The rest of
the paper is organized as follows. Section II introduces the
proposed approximate multiplier design. Section III provides
the error analysis associated with different bit-widths of the
proposed multiplier. The experimental results and design trade-
offs are described in Section IV. Finally, Section V concludes
the paper.

II. PROPOSED APPROXIMATE MULTIPLIER DESIGN

Our proposed approach consists of two major steps. In the
first, lossy compression is carried out through logic clustering.

N-bit Multiplier N-bit Multiplicand

Partial Product Formation.

Significant-Driven Logic Compression
and remapping of the resulting
product terms

Partial Product Accumulation.]
v

N-bit Multiplier N-bit Multiplicand
~ ~ -

[Partial Product Formation. I

[__Partial Product Accumulation. |||
v

Producing the final product using a

Producing the final product using a | |
Carry Propagation Adder.

Carry Propagation Adder.

2N-bit Accurate Product 2N-bit Approximate Product
(a) (b)

Figure 1: Process chart showing the difference between the major stages in: (a)
conventional multiplication, and (b) the proposed approach to multiplication.

The resulting compressed terms are then remapped using their
commutative properties. These steps together with the variable
compression method, are described below.

1) Logic Compression: Parallel multiplication design is
generally divided into three consecutive stages: partial product
formation, accumulation, and carry propagation adder. In an
(N x N) multiplier, N> AND gates are utilized in parallel to
generate the partial product bit-matrix. This matrix is then
column-wise accumulated to generate the final product by
using carry propagation adders.

The proposed approach begins by generating all partial
products using the same number of AND gates, similar to
conventional multiplication. Before proceeding to the accumu-
lation stage, the number of bits in the partial product matrix
is reduced by performing lossy logic compression. The aim
is to reduce the number of rows in the partial product matrix,
thereby achieving low-complexity hardware before proceeding
to accumulation. Figure 1 shows the difference between the
design stages in accurate and the proposed multiplication. The
shaded box highlights the contribution in this paper. To achieve
lossy compression, we follow three key principles as follows.

a. Clustering a group of rows: The proposed multiplier
organizes the partial product terms using different sizes of
significant-driven logic clusters. Each logic cluster targets
a group of columns containing two bits starting from the
least significant bits in successive partial products. In general,
each 2 x L logic cluster is responsible for two operations: 1)
generating 2L partial product bits within two contiguous rows,
i.e., L pairs of vertically aligned bits, by utilizing 2L, AND
gates. Then, ii) minimizing these 2L bits by half using L OR
gates. Figure 2 illustrates the utilization of four sizes of logic
clusters in 8-bit parallel multiplier. The first 2 x 7 logic cluster
forms 14 partial products by utilizing 14 AND logic gates and
extracts 7-bit value by using an array of 7 OR logic gates. The
second 2 x 6 logic cluster minimizes 12 partial products into
6 bits. In a similar way the third and fourth logic clusters use
2x5 and 2 x4 to minimize 10 and 8 partial products into 5 and
4 bits respectively. By doing so, each logic cluster compresses
a group of vertically aligned bits within two successive partial
products based on their progressive bit significance.

b. Generation of a reduced set of product terms: Us-
ing an array of OR gates in each logic cluster compresses
the partial product terms by half. A reduced set of pre-
processed partial product matrix is thus ready to be ac-

A7 A6 A6 A5 A5 A4 A4 A3 A3 A2 A2 A1 A1 A0

[Bo [B1 |BO [B1 |BO Bt |[Bo [B1 |BO |B1 |BO |B1 |BO |B1
il il il i il i il il i il I
e Logic
\
» - \ Cluster
N Size = 2X7
pel ps| ~~~_pal p3l P2 [Pl pol \
- \
Each logic cluster Saal A7 A6 A5 A A3 A2 At A0
compresses a group SS..X_ BT B6 _B5 B4 B3 B2 B1) B0
of bits within two 780 A6BO A3BO0 AZBO AIBO| A0BO

successive partial
products based on
their progressive bit
significance, as such
the critical column
is reduced by half.

A5B1
A4B2

A2B1 A1B1 AOBA| ogic Cluster, =2 X 7
A1BZ] A0B2

A7B2 [A6B2 A2B2

1 '
AB3 A6B3 [A5B3 |A4BI A3B3 A2B3 A1B3
TATB4, A6B4 [ASB4 A4B4 |A3B4 AZB4 A1B4| A0B4
Vo o
ATB5 |A6B5, ASB5 |A4B5 A3B5 |A2B5 A1B5 AOBS| Logic Cluster, = 2X 5

A7B6 A6B6 :ASBS: A4B6 A3B6 A2B6 1A1B6| AOB6
I H !

AOB3|; ogic Cluster, =2 X 6

! 1|
ATBT AGBT ASBT |A4BT| |A3B7 AZB7 A1B7_'AOB7| {ogic Cluster = 2X 4
R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 RS R4 R3 R2 R1 RO

Figure 2: Distribution of four different sizes of logic clusters used to compress
partial products based on their progressive bit-significance in (8 x 8) parallel
multiplier architecture.

cumulated by applying any convenient scheme of multipli-
cation, such as carry-save array, Wallace and Dadda tree.
In theory, a two-input OR gate is sufficient to sum up
two bits, ie., 0+ 1'=1"+0’="0’OR‘I’="1"OR‘0’=‘1" and
also ‘0’+°0’="0’OR‘0’=°0’. However, the OR gate fails to
give an accurate sum if the two inputs are “ones”, i.e.,
‘I’+1’#‘1’0OR‘1’, the difference value is ‘1’ as the adder
returns ‘10’ and OR outputs ‘1°.

c. Significance-driven progressive cluster sizing: Since the
main goal is to design a power-efficient multiplier with negligi-
ble loss of accuracy, the size of the logic clusters is decreased
when going down in the partial product matrix. The more
significant bits are treated with progressively higher precision,
while bits with lower significance are compressed using the
SDLC approach. This permits the most significant product
terms to be accumulated on a carry-propagation basis as in the
conventional multiplier. Thus, the accuracy of the significant
bits of the final product is less affected.

Despite using the same number of AND gates as the accu-
rate multiplier, this approach will deterministically reduce the
hardware complexity of partial product accumulation, e.g., the
count of the compressor cells needed in column compression
multiplication for Wallace and Dadda cases, and also the
number of half and full adders in the carry-save array will
be decreased since the number of bits in the accumulation
tree is minimized.

2) Commutative Remapping: The logic compression step
(Section II-1) reduces the number of partial product terms.
This reduction can be leveraged to reduce number of rows
prior to the accumulation stage. This can be achieved by
remapping the partial product terms based on the commutative
property of the bits, i.e., bits with the same weight are gathered
in the same column. Due to the reduced number of rows,
the critical path delay is drastically reduced (see Section IV).
Figure 3 demonstrates how the size of the partial product bit-
matrix in the case of an (8 x 8) multiplier is reduced using
the SDLC approach. The lined boxes refer to a group of bits
targeted by different sizes of logic clusters in which the height
of the critical column is reduced by half.

The proposed approach is scalable for any (N x N) mul-

OPartial Product Bit A, B;.

O Compressed Bit Resulting from Logic Clusters.

XY Jululalulafulal]
eOdooooOe
oooode
leloOooe

o00O0OOOD® ©9°

° °

P {alatalalals] |:>
00 °
(8 ${alalalala]

(©)

Figure 3: Dot notation shows the major two steps in SDLC approach in
the case of (8 x 8) multiplier: (a) clustering a group of rows in the partial
product bit-matrix after bitwise multiplication; (b) generating a reduced set
of product terms after applying logic compression; (c) ordered matrix after
applying commutative remapping of the bit sequence resulting from the SDLC
approach. The dotted rectangles indicate the height of the critical column
which is reduced by half compared to the accurate accumulation tree.

tiplier, as shown in Algorithm 1. This algorithm generates
a reduced and ordered partial product bit-matrix, which can
then be treated as an accumulation tree by any scheme of
multiplication. Line (9) indicates how partial product bits are
compressed using logic clusters. The main loop (lines 6 to
17) is responsible for remapping product terms in an ordered
bit-matrix, as demonstrated in Figure 3.

3) Variable Logic Cluster Approach: The proposed
approach is capable of achieving higher degrees of
compression by increasing logic cluster depth. Figure 4
demonstrates the impact of increasing depth to 3 and 4
bits in the case of (8 x 8), showing the key steps in logic
compression and commutative remapping. As can be seen,
with increased depth we can achieve further reduction in
the partial product terms, leading to fewer rows for final
accumulation.

Algorithm 1 Generating a reduced partial product matrix M
using the Significant-Driven Logic Clusters (SDLC) approach
for (N x N) multiplier, {V N € {20 : 0 € N*}}

procedure SDLC(M, A, B)

: Output: M[1,2,..., ¥][1,2,...,2N — 1]
Inputs: A[1,2,..., N]
B[1,2,...,N]

1:

2 > Reduced Matrix
3

4:

5: Initialize:p < 1

6.

7

8

> Multiplicand bits

> Multiplier bits

> Bit Position

> Forming rows of M

> First bit in each row of M

> Forming outputs of each logic cluster

for i < 1 to & do
M{i][p] + A(0) A B(2i — 2)
for j <1 to N —ido

9: MU +0] « (AG)AB(2i—2)) v (AG—1)AB(2i—1)
10: end for

11: Initialize:§ < 1 > Bit Position
12: for k+ 2i—1 to N —1do > Forming unaffected MSBs
13: MTJillp + (N — i) + 8] + A(N — i) A B(k)
14: §+d6+1
15: end for
16: p—p+2 > Shift left by 2 (next row)

17: end for
18: return M
19: end procedure

> M is then treated as a reduced accumulation tree

III. ERROR ANALYSIS

A number of simulations are carried out to examine the
impact of error on the proposed approach for different sizes
of multiplier. Several error metrics have been discussed [16]
and [17] for evaluating the effectiveness and quantifying errors
of approximate adders and multipliers. For any (N x N)
approximate multiplier, the error distance (ED) is defined as
the arithmetic difference between the accurate product (P) and
erroneous product (P’), i.e., ED = |P — P’|. The relative
error distance (RED) is the ratio of ED over the accurate

O Compressed Bit Resulting from Logic Clusters.

OPartial Product BitA;B;.

° i®}e eDODOOOOO®
.DDDDDDDD elele DOOOOOOO
° eei0d OO0
eooooono |:>
ooooo®

(b) ©

(@)
~ o, e ¥ eooooooOOOe
5 ooooooooo eleOnOOOOOO®
o e
° ° |:>
i (qulalalalulafala]
o =4
00 - o0

(d) (e) (®

Figure 4: Dot notation showing the impact of increasing the depth of the
logic clusters in the case of (8 x 8) multiplier: (a) clustering a group
of bits within three successive rows in the partial product bit-matrix after
bitwise multiplication; (b) generating a reduced set of product terms after
targeting the depth of 3-row logic compression; (c) ordered matrix after
applying commutative remapping of the bit sequence resulting from the SDLC
approach; (d), (e) and (f) the same process when applying 4-bit logic clusters.
The dotted rectangles indicate the heights of the critical columns which are
further reduced compared to the accurate accumulation tree.

output, i.e., RED = % = |P;P | The error rate (ER) is
defined as the ratio of incorrect outputs with respect to the total
number of outputs. For any (N x N) approximate multiplier,
the mean RED (MRED) is deﬁzré?vd alls [17]:

MRED = w . (1)
The Mean Error Distance (MED) is another useful error metric
defined as the average of the ED values , i.e., MED = %va.
For comparing multipliers of different sizes, the normalized
MED (NMED) is defined as [17]:

MED Zig ED

NMED = = 2 , ()
Pmaa: Pmaa:

where P,,,, is the maximum product that can be obtained
from an (N x N) accurate multiplier, i.e., Ppq, = (2V —1)2.

Exhaustive simulations are performed in Matlab by im-
plementing a functional model of the SDLC approach. The
response of all approximate multipliers are evaluated for all
possible combinations of operands. Table II shows four error
metrics using varying sizes of the proposed multiplier. It can
be seen that MRED and NMED fall drastically as the size of
the multiplier is increased from 4 to 16-bit. The increasing
trend in the error rate is expected due to the increased bit-
width of the multiplier. This is because the error occurrence
increases as well due to the growing likelihood of finding a
pair of vertically aligned “ones” through two successive rows.
In such cases, the corresponding OR gate will return an error,
as detailed in Section II-1.

However, such error rates can be misleading, as the eventual
impact of error is reflected in error distance metrics such as
MRED and NMED [18]. Also, the readings of MAX(RED)

TABLE II: Different error metrics for varying sizes of proposed multiplier.

[BitWidth [MRED | NMED | ER (%) | MAX(RED) (%) |

4-bit 2.77313 | 0.010556 19.53 31.1111
6-bit 2.65879 | 0.006393 34.96 32.8042
8-bit 1.98826 | 0.003527 49.11 33.2026
12-bit 0.00824 | 0.000952 70.68 33.3308
16-bit 0.00071 | 0.000084 78.72 33.3325

90%

80% The vast majority of outputs are either

exact or close to exact outputs.

= Mul 4-bit X 4-bit

3
o
X

B Mul 8-bit X 8-bit

of Errors
[}
2
N

The probability of errors is S Mul 12-bit X 12-bit

drastically decreased.

Probgbilit{g

W
]
*

Rare Occurrence for higher errors and the mass
of the distribution is gradualluy concentrated to
the leftmost in higher bit-widths.

Figure 5: Error percentage distribution for 4-bit, 8-bit and 12-bit proposed
multiplier after applying 2-bit depth compression.

would not denote severe degradation of the final output
because the occurrence of these errors is regarded as very
rare. This can be seen in Figure 5, which demonstrates the
probability distribution for all relative errors resulting from
three different sizes of multipliers using the SDLC approach.
The probability distribution shows that the proposed approach
tends to produce exact or close to exact results. This is seen
in the sharp decline of the probability of errors with higher
REDs, e.g., the MAX(RED) listed in Table II. Furthermore,
as the bit-width of the multiplier is increased, the mass of the
distribution is gradually concentrated at a lower error distance.
This is because the proposed approach does not sacrifice the
precision of the more significant bits when using significance-
driven logic compression.

Table III depicts the error trade-off with increased degree of
compression achieved through higher depths of logic clusters
in (8 x 8) multiplier. As expected, increased depth leads to
higher error rates (up to 78%) when clustering with 4-row
logic compression. However, results for the MRED metric are
only marginally higher when compared with logic compression
with 2- or 3-bit logic clusters. Similar observations can be
made in the case of the NMED metric. The impact of increased
degree of compression is further investigated in the application
case-study in Section IV.

IV. EXPERIMENTAL RESULTS AND DESIGN TRADE-OFFS

To demonstrate the proposed approach, we applied it on
eight different sizes of widely known multipliers ranging from
4-bit to 128-bit. For the purpose of fair comparison, accurate
ripple adders were used in both accurate and approximate
multipliers to accumulate the partial product rows within the
accumulation stage (see Figure 1). A generic SystemVerilog
code was used to generate synthesizable modules for all
accurate and approximate versions. These modules have been
parametrized and configured differently during instantiation
according to the bit-width of multiplier. The generated codes
were implemented and synthesised using two different off-the-

TABLE III: MRED, NMED, error rate and maximum RED for different depths
of logic compression in (8 x 8) multiplier.

[Cluster-Depth | MRED | NMED | ER (%) | MAX(RED) (%) |

2-bit 1.9883 0.0035 49.11 332
3-bit 4.6847 0.0101 65.73 42.69
4-bit 10.5836 | 0.0327 71.57 46.48

90% = Dynamic Power Reduction ®=Leakage Power Reduction
@ Area Reduction B Delay Reduction
80% -|{ @ Energy Reduction
—~

o
S70% A
c
S60% -
(8]
350%
[0]
X 40% -
30% -
20% -

10% -

4-bit

6-bit 8-bit 12- blt 16-bit 32-bit 64-bit 128- blt

it-Width

Figure 6: From left to right: dynamic and leakage power, area, delay and
energy reductions for different bit-widths of proposed multiplier.

shelf tools: Mentor Graphics Questa Sim was used to compile
the SystemVerilog codes and run the associated test benches;
and Synopsys Design Compiler was utilized for synthesising
all sizes of accurate and proposed multipliers when mapping
the circuits to the Faraday’s 90nm technology library and
evaluating for power, delay and area.

Figure 6 presents a comparison of dynamic/leakage power,
area, delay and energy reductions for all eight sizes of pro-
posed multipliers when compared with a conventional accurate
multiplier (Figure 1(a)). As seen, there are significant improve-
ments in all design trade-offs. This is basically because SDLC
approach reduces the complexity of multiplier implementation
by reducing the number of rows in the accumulation tree.
Furthermore, this reduction in hardware complexity leads to
low switching capacitance and leakage readings as well as
shortened critical paths.

The experiments show noteworthy reductions in terms of
power consumption, runt-time and also silicon area used. For
dynamic and leakage power, the reductions obtained from
applying the SDLC approach range from 37.5%-67.4% and
34%-72.1% respectively when the bit-width ranges from a 4-
bit to 128-bit multiplier. Furthermore, the range of savings
in the operating delay for the same sizes of the proposed
multiplier is from 38.5%-65.6%. The reduction in complexity
also leads to silicon area to be reduced by 33.4%-62.9%, and
energy consumed is substantially reduced by 65.5%-88.74%.
The non-linear trend of the bars in some cases is attributed to
the inconsistency of the ratio of the array of additions in the
accumulation tree between the approximate and the accurate
multiplier.

Figure 7 illustrates the dynamic/leakage power, delay, area
and energy savings with increased degree of logic compres-
sion. Higher depth of clustering achieves considerable savings
in all design trade-offs since by increasing the depth of
logic clusters, the hardware complexity associated with lower
numbers of product rows is also decreased.

We evaluate the efficiency of the proposed technique on
a real life image-processing application. Such an application
consists of additions and multiplications using key multipliers
as building blocks. Our analysis considers the Gaussian blur
filter [19] since it is widely used in graphics software, typically
to reduce image noise and detail by acting as a low-pass filter.

90% -
80% -
70%

= 60%

s

= 50%

=

3 40%

[
30%
20%
10%

= 8-bit (2-Row Logic Clusters)
= 8-bit (3-Row Logic Clusters)
= 8-bit (4-Row Logic Clusters)

Energy

Dynamic Leakage Delay Area

Figure 7: Dynamic power, leakage power, delay, area and energy savings for
different degrees of logic compression of 8-bit multiplier.

This filter involves the convolution of a ‘kernel’, described
by a Gaussian function, with the pixels of the image. The
values of a given pixel in the output image are calculated
by multiplying each kernel value by the corresponding input
image pixel values; then all the obtained values are added and
the result will be the value for the current pixel that overlaps
with the centre of the kernel.

To illustrate the effect of variable logic clusters in the
proposed approach, different versions of an 8-bit approxi-
mate multiplier together with the Gaussian blur algorithm
are implemented in Matlab covering 2-, 3- and 4-bit depth
clustering. The Gaussian kernel is (3 x 3) with a 1.5 standard
deviation value and it uses 8-bit fixed point arithmetic and is
applied to 8-bit grayscale input image size (200 x 200) pixels.
We approximate Gaussian blur by replacing the standard
multiplication in the Gaussian filter with the aforementioned
approximate (8 x 8) multipliers. The peak signal-to-noise ratio
(PSNR) is a fidelity metric used to measure the quality of the
output images. PSNR is expressed as:)

255

PSNR =10log;, (]\LS’E , 3)
where MSE is the mean squared-error measured with respect
to the reference pixel. Figure 8 demonstrates the impact of dif-
ferent bit-depth clustering on the image quality after applying
the Gaussian blur filter. The standard (8 x 8) multiplier and
three different levels of approximation for the proposed (8 x 8)
multiplier are used. In fact, the utility of the proposed approach
yields fruitful results. The PSNR for the case of 2-, 3- and 4-bit
depth clustering are 50.2 dB, 39 dB, 30 dB respectively. The
values of PSNR are computed compared to the image resulting
after applying Gaussian blur filtering with the case of exact
multiplication. Thus, the proposed approach can provide a
significant dynamic energy saving up to 68.3% with acceptable
quality of output image, especially when utilizing smaller bit

Exact Multiplier 2-bit Clustering 3-bit Clustering 4-bit Clustering

Reference Image PSNR = 50.2 dB PSNR 39 dB PSNR' 30dB
Energy Saving 59.5% 68.3% 78.5%

Figure 8: Output quality after applying Gaussian blur filtering to three different
versions of the proposed (8 x 8) multiplier.

w4-bit

N 8-bit

B 16-bit

o 3 |
ETM[20] Kulkarni [8] Proposed ETM[20] Kulkarni[8] Proposed
Area Reduction Power Reduction

Figure 9: Area and power savings for various scalable approximate multipliers.

depth clusters such as 2- and 3-bit.

Figure 9 shows comparative power and area advantages of
our approach for different bit-widths. The comparisons are
carried out with the following two existing approaches: Kulka-
rni [8] and ETM [20], chosen for their direct relevance to our
work. In the Kulkarni approach, a large multiplier is produced
using small approximate multipliers as building blocks. The
design approach in the ETM follows truncation principles by
dividing the multiplier into accurate and approximate parts. In
the approximate part, probabilistic bit manipulation is used to
generate the product terms. Our approach produces better re-
sults as the bit-width of the multiplier is increased. This is seen
with the 16-bit multiplier, where our approach outperforms
both approaches in terms of power and area. This is because
the number of product rows is halved (with 2-bit clustering)
and commutative remapping is used to reduce the parallel ac-
cumulation complexity. The corresponding error comparisons
of these approaches are shown in Table IV, demonstrating
comparative errors (in terms of MRED, NMED and also ER)
using the proposed (8 x8) multiplier (with 2-bit clustering). As
expected, our approach outperforms both approaches in terms
of MRED, NMED due to its bit significance-driven logic com-
pression. As the proposed approach progressively preserves
the high-order bits, it is expected to exhibit significantly lower

errors for multipliers with higher bit-widths.
TABLE IV: Comparative errors in terms of MRED, NMED and also ER for
various scalable (8 x 8) approximate multipliers.

ETM [20] | Kulkarni [8] | Proposed
MRED (%) 25.2 3.25 1.99
NMED(%) 2.8 1.39 0.335
ER(%) 98.8 46.73 49.11

V. CONCLUSIONS
In this paper, a novel approximate multiplier design is

proposed using significance-driven logic compression (SDLC).
This design approach utilizes an algorithmic and configurable
lossy compression based on bit significance to form a reduced
set of partial product terms. This is then reorganized and
accumulated using various schemes of parallel multiplication.
On a statistical basis, the results of NMED and MRED metrics
show how the impact of error is alleviated when the size of
the multiplier is increased. Additionally, the error distributions
show high right-skewness for error probabilities, indicating
that the proposed multiplier gives close to exact products for
most inputs. The results obtained after synthesis have shown
a substantial decrease in run-time, power consumption and
even in silicon area. We demonstrate energy-accuracy trade-
offs for different levels of approximations achieved through
configurable logic clustering. To illustrate the effect of variable

logic clusters, case study of an image-processing application
shows that the proposed approach can provide significant
energy and area savings with negligible loss in output quality,
especially when utilizing smaller bit depth clusters. We believe
that the proposed approach can be used with already existing
low-power compute units to extract manifold benefits with a
minimal loss in output quality.

ACKNOWLEDGMENT
The authors would like to thank MOHE (Jordan), BAU

(Jordan) and EPSRC PRiME project EP/K034448/1(UK) for
their funding and support.
REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), pp. 1-6, May 2013.

[2] L. Sekanina, “Introduction to approximate computing: Embedded tuto-
rial,” in 2016 IEEE 19th DDECS, pp. 1-6, April 2016.

[3] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A com-
parative evaluation of approximate multipliers,” in 2016 IEEE/ACM
International Symposium on NANOARCH, pp. 191-196, July 2016.

[4] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design
of voltage-scalable meta-functions for approximate computing,” in 2011
DATE, pp. 1-6, March 2011.

[51 Y. Liu, T. Zhang, and K. K. Parhi, “Computation error analysis in
digital signal processing systems with overscaled supply voltage,” IEEE
Transactions on VLSI Systems, vol. 18, pp. 517-526, April 2010.

[6] N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,
“Truncated binary multipliers with variable correction and minimum
mean square error,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, pp. 1312-1325, June 2010.

[7] J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,”
in DSD, 2003, pp. 112-119, Sept 2003.

[8] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 2011 24th Internatioal
Conference on VLSI Design, pp. 346-351, Jan 2011.

[9] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier with

error correction,” in 2013 IEEE 31st ICCD, pp. 33-38, Oct 2013.

G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,

“Design-efficient approximate multiplication circuits through partial

product perforation,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 24, pp. 3105-3117, Oct 2016.

S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-

nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in

DAC, 2012 49th ACM/EDAC/IEEE, pp. 796-801, June 2012.

R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:

Modeling and analysis of circuits for approximate computing,” in 2011

IEEFE/ACM ICCAD, pp. 667-673, Nov 2011.

K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient ap-

proximate wallace tree multiplier for error-resilient systems,” in Fifteenth

ISQED, pp. 263-269, March 2014.

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power

digital signal processing using approximate adders,” IEEE Transactions

on CAD of Integrated Circuits and Systems, vol. 32, pp. 124-137, 2013.

Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate dig-

ital circuits design,” IEEE Transactions on Evolutionary Computation,

vol. 19, pp. 432444, June 2015.

C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance

approximate multiplier with configurable partial error recovery,” in 2014

DATE, pp. 1-4, March 2014.

[17] J.Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-

proximate and probabilistic adders,” IEEE Transactions on Computers,

vol. 62, pp. 1760-1771, Sept 2013.

I. S. Chong, H. yeon Cheong, and A. Ortega, “New quality metric for

multimedia compression using faulty hardware,” in In Intl Workshop on

Video Processing and Quality Metrics for Consumer Electronics, 2006.

C. Solomon and T. Breckon, Fundamentals of digital image processing :

a practical approach with examples in Matlab. Wiley-Blackwell, 2011.

K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed

multiplier for error-tolerant application,” in EDSSC, pp. 1-4, 2010.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

