

Machine Learning for Run-Time Energy
Optimisation in Many-Core Systems

Dwaipayan Biswas†, Vibishna Balagopal†, Rishad Shafik‡, Bashir M. Al-Hashimi†, and Geoff V. Merrett†
† Department of Electronics and Computer Science, University of Southampton, United Kingdom, SO17 1BJ

‡
 School of Electrical and Electronic Engineering, Newcastle University, United Kingdom, NE1 7RU

Email: †{db9g10, vb1a15, gvm, bmah}@ecs.soton.ac.uk, ‡ rishad.shafik@ncl.ac.uk

Abstract—In recent years, the focus of computing has moved
away from performance-centric serial computation to energy-
efficient parallel computation. This necessitates run-time
optimisation techniques to address the dynamic resource
requirements of different applications on many-core
architectures. In this paper, we report on intelligent run-time
algorithms which have been experimentally validated for
managing energy and application performance in many-core
embedded system. The algorithms are underpinned by a cross-
layer system approach where the hardware, system software and
application layers work together to optimise the energy-
performance trade-off. Algorithm development is motivated by
the biological process of how a human brain (acting as an agent)
interacts with the external environment (system) changing their
respective states over time. This leads to a pay-off for the action
taken, and the agent eventually learns to take the optimal/best
decisions in future. In particular, our online approach uses a
model-free reinforcement learning algorithm that suitably selects
the appropriate voltage-frequency scaling based on workload
prediction to meet the applications’ performance requirements
and achieve energy savings of up to 16% in comparison to state-
of-the-art-techniques, when tested on four ARM A15 cores of an
ODROID-XU3 platform.

Keywords—Energy Management; Dynamic Voltage/ Frequency
Scaling; Reinforcement Learning; Multi-Core Systems;

I. INTRODUCTION

Energy efficiency and high performance continue to be
prime research objectives for processor designers of multi-
core/many-core platforms [1]. One approach to energy
minimization is through Dynamic Voltage Frequency Scaling
(DVFS), enabling on-the-fly optimisation of frequency (F) and
voltage (V). This can yield a cubic reduction in dynamic power
consumption while maintaining a required Quality of Service
(QoS) [2]. DVFS is controlled by the system software,
examples of which include Linux’s power governors. DVFS
techniques can be broadly classified into two types: offline and
online. The majority of the research has focused on offline
mechanisms, which pre-characterize the applications; the
profiled workloads/tasks (pertaining to the application) are
used during run-time to control the Voltage-Frequency (V-F)
levels to achieve energy minimization [3], [4]. However, a lack
of run-time adaptation to variations in workload characteristics
and changes in application performance requirements renders
these techniques less effective. Online techniques control the

V-F levels based on processor workloads and can be either
reactive [5] (where V-F is controlled depending on historical
CPU workloads) or proactive [6], [7] (the predicted workload
is used to control the V-F levels for minimising energy). In
reactive approaches, if the CPU workload is lower/higher than
a pre-defined threshold, subsequently, a decreased/increased V-
F is used. However, in proactive approaches, the impact of
control depending on a predicted workload scenario is
observed and adjusted through feedback from hardware
performance monitors.

Online approaches using machine learning algorithms learn
the V-F settings required for an application to minimize energy
consumption while application generated processor workloads
vary. However, the majority of online approaches [8], [9] do
not consider changing application performance requirements.
Processor workloads are exercised differently depending on the
application tasks being executed. Applications running on
modern embedded systems incur workload and performance
variations which change dynamically depending on the
computation, challenging existing energy management
techniques. Moreover, existing online approaches [10] use a
single run-time formulation of V-F scaling for a given
performance requirement and hence fail to adapt to the
dynamic variations during application execution.

In this paper, we report on a biologically inspired run-time
framework for management power in many-core systems. The
framework is based upon the Reinforcement Learning (RL)
approach described in [11], [12]. The framework invokes
workload prediction and appropriate V-F control to achieve
energy minimisation for applications executed on a multi-core
hardware platform. The challenges of a prediction-control
problem are met using RL which is inspired from the biological
process of the human brain’s reaction to changes in the
surrounding environment [13]. We use Q-learning (a variant of
RL [13]) for developing the RTM framework, where the RTM
residing in the operating system controls cross-layer
interactions between the application and hardware layers by
taking decisions which lead to a pay-off over time. We
demonstrate our proposed approach by executing various
applications: MPEG4 decoding, an FFT, and PARSEC and
SPLASH2 benchmarks. These execute on the four ARM A15
cores of an ODROID XU3 platform, showing improved energy
consumption while adapting to performance and workload
variation.

This work was supported in part by the Engineering and Physical
Research Council (EPSRC) for their financial support under grant numbers
EP/K034448/1 “PRiME: Power-efficient, Reliable, Many-core Embedded
systems” (www.prime-project.org) and EP/L000563/1 “Continuous on-line
adaptation in many-core systems: From graceful degradation to graceful
amelioration”.

II. EFFICIENT RUN-TIME ENERGY MANAGEMENT

A cross-layer view of an embedded system, highlighting
the interaction between the application, run-time and hardware
layers, is shown in Fig. 1. The Application layer is the top layer
where applications are being executed. Each application
comprises of a series of tasks/workloads being executed at
given time intervals (decision epochs) where the specific
performance requirements of each task are specified through an
Application Programming Interface (API). The Run-time layer
in the middle represents the operating system (OS) and system
software, responsible for coordinating an application’s
execution on the hardware platform. The bottom Hardware
layer comprises processing elements (e.g. four ARM A15
processor cores) and their associated peripherals [14]. The run-
time management algorithm (RTM) is implemented as a power
governor in the OS, where its primary responsibility is energy
minimisation through optimised control of hardware levers (V-
F settings) at regular decision epochs for given performance
requirements.

Fig. 1. Cross-layer interaction between the Application (comprising of
tasks/workloads), Run-time and Hardware layers.

 The key interactions between the Run-time (within the OS
layer) and Hardware layers could be represented conceptually
as closed loop system, illustrated in Fig. 2(a). Here, the data
extracted from the hardware (performance monitoring units
(PMUs), power measurements, etc.) and the performance
requirements of the application (frames per second, deadlines,
latencies, etc.) act as inputs to the RTM which operates based
on a learning algorithm and can make intelligent decisions
leading to energy savings. This closed loop system is motivated
by the operation of the human brain (in this case acting as an
agent) interacting with the surrounding environment, whereby
the brain continually learns from observations and takes
appropriate actions which yield a reward (positive or negative
depending on the action); see Fig. 2(b). Over time, the goal is
to reinforce good decisions to maximize positive rewards [13].

(a)

Brain
(agent)

Environmental
State

Receives a Payoff
(positive/negative)

for the action

A
ge

nt
 O

bs
e

rv
es

 th
e

en
vi

ro
n

m
en

t
st

a
te T

akes an
 A

ctio
n

 (b)

Fig. 2. (a) Closed-loop interaction of RTM with Hardware (b) Closed-loop
interaction of Human Brain with Environment [15]

The RTM uses the Q-learning algorithm, which works by
observing the current state of a system and selecting an action,
leading to a change in the system state. As a result, an
immediate numerical pay-off is computed which qualifies the
action based on a positive or negative return. Positive pay-offs
are termed as profits and negative pay-offs are termed as
penalties. The RTM’s objective is to learn and select actions to
maximize the long-term sum or average of future pay-offs.
Initially, the RTM is agnostic about its actions on the system
states and the related pay-offs, storing its decisions in a look-up
table (referred to as a Q-table). This is termed the exploration
phase, which is followed by the exploitation phase where the
RTM evaluates those decisions which led to a positive pay-off,
and finally, with complete knowledge of the inherent
characteristics of the tasks being executed, always selects the
best actions (which yielded the highest pay-off) for a given
system state. The mapping of the different components of the
Q-learning algorithm to our run-time framework is discussed in
detail in the following sub-sections.

The RTM works at system time ticks referred as ti-1, ti and
ti+1, where the respective intervals are also termed as decision
epochs. The role of the RTM at time ti can be enlisted as:

(1) computes pay-off for the interval ti-1 - ti;

(2) updates the Q-table corresponding to the state-action for ti-1;

(3) selects an action for the interval ti - ti+1 based on a predicted
value of state.

The RTM proactively manages energy and hence the next state
is predicted and an appropriate action is chosen prior to the
system reaching the state. Each of these main steps are
explained in further detail in the following subsections.

A. State Prediction and Q-table

Predicting the state of the system is a key step in RL and in
our methodology the expected workload is classified into a
system state at the beginning of each decision epoch [8], [9].
The state of the system is represented using the CPU Cycle
Count (CC), obtained using the performance monitoring unit.
The choice of CC as a preferred workload parameter over other
parameters such as memory accesses, cache misses, or
instruction rate is motivated by the fact that it directly presents
a measure of CPU activity while executing instructions of a
specific task. Workload prediction schemes generally use
adaptive filters [16], which fall short of fine-grained prediction

due to a lag inherent in the filtering technique. Hence, they
have limited utility for applications incurring dynamic
workload changes [3], [17]. In our approach, the current CPU
workload is estimated based on a history of past workloads,
and this is mapped to a system state based on the current
performance. The states form the rows of the look-up table,
referred to as the Q-table and is determined using the CC and
current performance (average slack, L). The size of the Q-table
is limited by discretising the range of workloads (slack and
cycle count) into N levels. Here we have used N as 5 in view of
a pre-characterisation of the applications, performed to
ascertain the inherent workload variability (viz. design space
exploration). The algorithm used for state prediction is the
Exponential Weighted Moving Average (EWMA) [18],
whereby the predicted workload for the ti+1-th decision epoch,
CCi+1 is given by:

 1 (1)i i iCC actualCC predCC (1)

where, γ is the smoothing factor. The predicted state for the
interval (ti - ti+1) is determined from the previous state
[predicted for the interval (ti-1 - ti): predCCi] and the actual
state during that interval (actualCCi). However, workload
prediction through (1) still provides mispredictions at run-time
due to variations in workload. The impact of such
mispredictions on the corresponding V-F controls is discussed
in Section III-B. Therefore, for each predicted workload
(CCi+1) and the current performance (Li), the system state is
mapped to one of the discrete N levels.

The size of the Q-table in terms of the total number of
state–action pairs (|A{V, F}|×|S{CC,L}|; where |S| represents
all states in Q-table, each having |A| actions) is important for
the RL algorithm, and is carefully chosen as it influences the
trade-off between learning overhead and the energy
minimization achieved. With the given state prediction and Q-
table formation, the RL algorithm carries out exploration and
evaluation of the V-F controls as discussed below.

B. Exploration

This is a crucial phase which involves learning of
appropriate actions (V-F controls) depending on system states.
The intuitive relationship between the state-action pairs is
defined using a discrete Exponential Probability Distribution
(EPD) function for the selection of an action which is in
contrast to the commonly used random selection policy based
on a Uniform Probability Distribution (UPD) [19]. The EPD is
expressed as:

 ,() exp
ii aa A V Fp a F L (2)

where λ represents the uniform probability of actions, F is the
operating frequency for action a, β is a constant, L is the slack
measurement and A represents the set of all possible actions.
For values of L close to zero, the Exponential Probabilities
(EP) guided by λ are almost uniform. The Q-value at the start
of a decision epoch ti+1, corresponding to a selected V-F action
is updated with respect to Bellman’s optimality equation:

 max

1 1(,) (,)(1) ,
ii i i i i a i tQ s a Q s a R Q S a (3)

where α is the learning rate, γ is the discount factor for
descaling the current maximum Q-value for a row, Si is the
observed state at the decision epoch ti, and Si+1 is the predicted
state in the ti+1 -th decision epoch determined by the estimated
workload and current performance (EWMA). The reward
function Ri at ti (4) is computed as a function of the resulting
average slack ratio at the ti-th decision epoch (Li) and its
change since the last decision epoch (L).

 i iR a L b L (4)

where a and b are predetermined constants to ensure actions
improving Li values are rewarded or vice-versa. The Li values
are estimated as:

0

1 n

i ref i OVH
tref

L T T T
D T

 (5)

where Tref is the reference execution time, Ti is the application
task execution time, D is the number of elapsed decision
epochs since the start of the application with a given Tref, TOVH
is the total overheads caused by learning and adaptation steps
(V-F). Hence, L is calculated as the difference of Li-1 and Li.
The Ti can be calculated as the ratio of the observed processor
cycles and the chosen operating frequency at the i-th decision
epoch [12].

C. Exploitation

 Following exploration, we have the exploitation phase
where the learnt state–action relationships are exploited. The
transition from the exploration to exploitation phase is greedy
heuristic controlled through EP, denoted by ε (0 ≤ ε ≤ 1). To
accelerate the process of exploitation, ε is updated as:

 1 exp[1]i i (6)

where α is the learning factor per decision epoch. Exploration
or exploitation is carried out based on εi to determine the best
explored state-action pair (in terms of positive reward).

D. Many-core formulation

 The algorithmic formulation is adapted for many-core
systems, through simple modifications. First, the predicted
workload per core is normalized with respect to the total
system workload as:

 1
1

1

j
j i

i C
j

i
j

predCC
normCC

predCC

 (7)

where 1
j

ipredCC is the predicted workload and 1
j

inormCC is
the normalized workload, for the j-th core (j=1 to C, where C is
the total number of cores on the embedded system). With a
given discretised levels of normalized workload (1

j
inormCC)

and average slack ratio (L), a number of Q-table states are
defined and organized in rows [similar to (2) and (3)]. For each

state, the available V-F controls are used in the action space
organized in columns to form the Q-table. This Q-table is then
shared among the processor cores to allow RL through one
core action update per decision epoch (controlled in round-
robin manner). Such V-F control per decision epoch helps to
reduce Q-table complexity significantly as opposed to
controlling multiple cores per decision epoch, which requires
combinations of V-F settings of all cores in the Q-table.

III. EXPERIMENTAL RESULTS

The adaptive energy minimization approach was
implemented as a power governor in Linux kernel revision
3.10.96 running on the Odroid XU3 platform. In our
experiments we use only the A15 cluster, supporting 19 V-F
settings (2000 MHz – 200 MHz in 100 MHz steps). We test
various applications: an MPEG4 decoder, FFT, and the
PARSEC and SPLASH2 benchmarks. Each application is
transformed to a periodic structure, where it is executed for
several iterations each of which is accompanied by a deadline
serving as the application’s performance requirement. At each
iteration, multiple threads are spawned with each thread
performing a task on the input data. These iterations are termed
frames in this context. Power is measured from on-board power
sensors each frame and subsequently, the energy is calculated
by multiplying average power with execution time.

A. Energy minimisation

An H.264-based video decoder application is executed
with a football sequence of approximately 3000 frames using
the following three approaches: 1) multicore DVFS control
[20] (the thermal constraint was neglected for equivalence of
comparison); 2) Linux on-demand governor per core [5]; 3)
the approach in this paper. Table I highlights the normalized
performance and energy consumption of the various
approaches. It is important to note that performance is
normalized to the required performance per frame (Tref) and
energy normalization is carried out with respect to Oracle
(through offline determination of optimized V-F for the
observed CPU workloads) performance. A normalised energy
>1 implies higher energy consumption, while <1 is a lower
consumption. Similarly, a normalised performance >1 implies
underperformance while <1 is over-performance.

TABLE I
COMPARATIVE EVALUATION OF NORMALISED ENERGY AND PERFORMANCE

REQUIREMENTS [12]

Methodology
Normalized

energy
Normalized
performance

Linux Ondemand [5] 1.29 0.77
Multi-core DVFS control [20] 1.20 0.89

Proposed 1.11 0.96

The proposed approach achieves improved energy

consumption compared to existing approaches. On-demand is
agnostic of application performance requirements and hence
consumes the most energy. Multi-core learning [20] and on-
demand [5] over-perform due to poor adaptation to variations,
resulting in up to 16% higher energy consumption.

B. Impact of state prediction

 As a result of the EWMA algorithm, the predicted and
actual workload (number of cycles, CC) and the average slack
ratios (L) undergo mispredictions. This was observed while
executing the MPEG4 decoding at 24 SVGA fps, as shown in
Fig. 3. The smoothing factor (γ) for our analysis was
experimentally determined as 0.6. There are mispredictions
during the exploration frames for the first 25 frames and also
during the exploitation phase after 90 frames. The highest
average misprediction with respect to the average workload
was approximately 8%, evident for the first 100 frames, with a
lowest misprediction value of 3% following it. Under-
prediction of the workload (where actual is higher than
predicted) results in a deadline miss by the frames, whereas
over-prediction (where actual is lower than predicted) results
in higher power consumption. Most video decoders drop
frames, which miss deadlines, resulting in a glitch in the output
video which degrades user experience. The impact of state
misprediction is mitigated by considering the current
performance offset in terms of average slack (Li) in conjunction
with the current predicted workload (predCCi) for mapping the
next state (cf. Section II). In case of a performance offset
(positive/negative Li) caused through misprediction, the
behavior is learnt and appropriate V-F control is applied to
maximise reward (4).

Fig. 3. Workload misprediction for MPEG4 and learning impact on average
slack.

C. Number of Explorations

 The advantage our approach employing EPD (2) during
initial learning (i.e., RL step), is illustrated in Table II,
highlighting the average number of explorations for three
applications compared against an existing approach [21].

TABLE II
 COMPARATIVE EVALUATION OF THE NUMBER OF EXPLORATIONS [12]

Application
Number of explorations
[21] Our approach

MPEG4 (30 fps) 144 83
H.264 (15 fps) 149 90
FFT (32 fps) 119 74

It can be observed that our approach benefits from reduced
exploration due to the relationship between current
performance and the V-F action (4) [21]. FFT uses the fewest
explorations since it exhibits less workload variations resulting
in faster learning by the algorithm. MPEG4 and H.264
applications exhibited longer exploration due to higher
workload variations and hence more states being visited.

D. Learning Overhead

 The learning overhead has three components: (1) sensor
sampling comprising performance counter register accesses,
(2) processing and (3) V-F transitions. Processing and V-F
transitions are key factors as they are compute intensive. The
time overhead (TOVH) was evaluated by averaging the
differences of per-frame execution time of ffmpeg decoding
three frames (Tref – 31ms) compared to the multi-core DVFS
control approach [20]. This is illustrated in Table III. As the
learning of each core is shared by other cores in our approach,
converges quicker and hence requires fewer decision epochs.

 TABLE III
 COMPARATIVE EVALUATION OF WORST CASE LEARNING OVERHEAD [12]

Methodology Time overhead (TOVH)
(in decision epochs)

Multi-core DVFS control [20] 205
Our approach 105

IV. DISCUSSION

In this paper, we have proposed a run-time management
approach for adaptive energy minimisation in multi-core
embedded systems incurring low-overhead. The algorithm uses
Q-learning to select V-F control for a predicted workload and a
given application performance requirement. The algorithm is
biologically inspired from the manner a human brain reacts and
adapts to a changing environment to maximise rewards and
reinforce optimal decisions, over a long period. The proposed
RTM is implemented as a power governor, and validated
through experiments with real applications and various
benchmark suites, achieving up to 16% energy savings
compared to state-of-the art. Our future work is investigating
how to extend this approach to manage the energy
consumption of multiple concurrently executing applications.

REFERENCES
[1] D.N. Truong, W.H. Cheng, T. Mohsenin, et al. "A 167-processor

computational platform in 65 nm CMOS," IEEE Journal of Solid-State
Circuits 44, no. 4 (2009): 1130-1144.

[2] F. David. "An ARM perspective on addressing low-power energy-
efficient SoC designs," Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and design, ACM,
2012.

[3] K. Choi, W.C. Cheng, and M. Pedram. "Frame-based dynamic voltage
and frequency scaling for an MPEG player," Journal of Low Power
Electronics 1.1 (2005): 27-43.

[4] Y. Gu, and S. Chakraborty, “Control theory-based DVS for interactive
3D games,” in Proceedings of the 45th annual Design Automation
Conference, 2008, pp. 740–745.

[5] V. Pallipadi, and A. Starikovskiy, “The ondemand governor,” in
Proceedings of the Linux Symposium, 2006, vol. 2, pp. 215–230.

[6] M. Pedram, "Power optimization and management in embedded
systems," Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, ACM, 2001.

[7] R. Jejurikar, and R. Gupta, "Dynamic voltage scaling for systemwide
energy minimization in real-time embedded systems," Low Power
Electronics and Design, 2004. ISLPED'04. Proceedings of the 2004
International Symposium on. IEEE, 2004.

[8] S. Yue, D. Zhu, Y.Wang, and M. Pedram, “Reinforcement learning
based dynamic power management with a hybrid power supply,” in
Proc. IEEE 30th Int. Conf. Comput. Design (ICCD), Montreal, QC,
Canada, 2012, pp. 81–86.

[9] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Trans. Design
Autom. Electron. Syst., vol. 18, no. 2, pp. 1–32, Mar. 2013.

[10] R. Ye, Q. Xu, "Learning-based power management for multicore
processors via idle period manipulation," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33.7 (2014):
1043-1055.

[11] A. Das, B.M. Al-Hashimi, and G.V. Merrett, "Adaptive and Hierarchical
Runtime Manager for Energy-Aware Thermal Management of
Embedded Systems." ACM Transactions on Embedded Computing
Systems (TECS) 15.2 (2016): 24.

[12] R.A. Shafik, S. Yang, A. Das, L.A. Maeda-Nunez, G.V. Merrett and
B.M. Al-Hashimi, "Learning Transfer-Based Adaptive Energy
Minimization in Embedded Systems," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no.
6, pp. 877-890, June 2016.

[13] P. Tommasino, D. Caligiore, M. Mirolli, and G. Baldassarre, "A
Reinforcement Learning Architecture that Transfers Knowledge
between Skills when Solving Multiple Tasks," IEEE Transactions on
Cognitive and Developmental Systems (2016).

[14] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
ACM SIGPLAN Notices, 2011, vol. 46, no. 3, pp. 199–212.

[15] D. Silver, Reinforcement Learning Advanced Topics 2015
(COMPM050/COMPGI13), UCL lecture notes. Available:
www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html [Accessed: Jan 16]

[16] A. Sinha, and A.P. Chandrakasan, "Dynamic voltage scheduling using
adaptive filtering of workload traces," In VLSI Design, 2001. Fourteenth
International Conference on, pp. 221-226. IEEE, 2001.

[17] S. Sinha, S.J. Suh, B. Bakkaloglu, and Y. Cao, "Workload-aware
neuromorphic design of the power controller," IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 1, no. 3 (2011):
381-390.

[18] A.K. Coskun, T.S. Rosing, and K.C. Gross, "Utilizing predictors for
efficient thermal management in multiprocessor SoCs," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28.10 (2009): 1503-1516.

[19] T. Jiang, D. Grace, and P. D. Mitchell, “Efficient exploration in
reinforcement learning-based cognitive radio spectrum sharing,” IET
Commun., vol. 5, no. 10, pp. 1309–1317, Jul. 2011.

[20] Y. Ge, and Q Qiu, "Dynamic thermal management for multimedia
applications using machine learning," Proceedings of the 48th Design
Automation Conference, ACM, 2011.

[21] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, "Achieving autonomous
power management using reinforcement learning," ACM Transactions
on Design Automation of Electronic Systems (TODAES) 18, no. 2
(2013): 24.

