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Abstract—In recent years, the focus of computing has moved 
away from performance-centric serial computation to energy-
efficient parallel computation. This necessitates run-time 
optimisation techniques to address the dynamic resource 
requirements of different applications on many-core 
architectures. In this paper, we report on intelligent run-time 
algorithms which have been experimentally validated for 
managing energy and application performance in many-core 
embedded system. The algorithms are underpinned by a cross-
layer system approach where the hardware, system software and 
application layers work together to optimise the energy-
performance trade-off. Algorithm development is motivated by 
the biological process of how a human brain (acting as an agent) 
interacts with the external environment (system) changing their 
respective states over time. This leads to a pay-off for the action 
taken, and the agent eventually learns to take the optimal/best 
decisions in future. In particular, our online approach uses a 
model-free reinforcement learning algorithm that suitably selects 
the appropriate voltage-frequency scaling based on workload 
prediction to meet the applications’ performance requirements 
and achieve energy savings of up to 16% in comparison to state-
of-the-art-techniques, when tested on four ARM A15 cores of an 
ODROID-XU3 platform. 
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I.  INTRODUCTION 

Energy efficiency and high performance continue to be 
prime research objectives for processor designers of multi-
core/many-core platforms [1]. One approach to energy 
minimization is through Dynamic Voltage Frequency Scaling 
(DVFS), enabling on-the-fly optimisation of frequency (F) and 
voltage (V). This can yield a cubic reduction in dynamic power 
consumption while maintaining a required Quality of Service 
(QoS) [2]. DVFS is controlled by the system software, 
examples of which include Linux’s power governors. DVFS 
techniques can be broadly classified into two types: offline and 
online. The majority of the research has focused on offline 
mechanisms, which pre-characterize the applications; the 
profiled workloads/tasks (pertaining to the application) are 
used during run-time to control the Voltage-Frequency (V-F) 
levels to achieve energy minimization [3], [4]. However, a lack 
of run-time adaptation to variations in workload characteristics 
and changes in application performance requirements renders 
these techniques less effective. Online techniques control the 

V-F levels based on processor workloads and can be either 
reactive [5] (where V-F is controlled depending on historical 
CPU workloads) or proactive [6], [7] (the predicted workload 
is used to control the V-F levels for minimising energy). In 
reactive approaches, if the CPU workload is lower/higher than 
a pre-defined threshold, subsequently, a decreased/increased V-
F is used. However, in proactive approaches, the impact of 
control depending on a predicted workload scenario is 
observed and adjusted through feedback from hardware 
performance monitors. 

Online approaches using machine learning algorithms learn 
the V-F settings required for an application to minimize energy 
consumption while application generated processor workloads 
vary. However, the majority of online approaches [8], [9] do 
not consider changing application performance requirements. 
Processor workloads are exercised differently depending on the 
application tasks being executed. Applications running on 
modern embedded systems incur workload and performance 
variations which change dynamically depending on the 
computation, challenging existing energy management 
techniques. Moreover, existing online approaches [10] use a 
single run-time formulation of V-F scaling for a given 
performance requirement and hence fail to adapt to the 
dynamic variations during application execution. 

In this paper, we report on a biologically inspired run-time 
framework for management power in many-core systems. The 
framework is based upon the Reinforcement Learning (RL) 
approach described in [11], [12]. The framework invokes 
workload prediction and appropriate V-F control to achieve 
energy minimisation for applications executed on a multi-core 
hardware platform. The challenges of a prediction-control 
problem are met using RL which is inspired from the biological 
process of the human brain’s reaction to changes in the 
surrounding environment [13]. We use Q-learning (a variant of 
RL [13]) for developing the RTM framework, where the RTM 
residing in the operating system controls cross-layer 
interactions between the application and hardware layers by 
taking decisions which lead to a pay-off over time. We 
demonstrate our proposed approach by executing various 
applications: MPEG4 decoding, an FFT, and PARSEC and 
SPLASH2 benchmarks. These execute on the four ARM A15 
cores of an ODROID XU3 platform, showing improved energy 
consumption while adapting to performance and workload 
variation. 
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II. EFFICIENT RUN-TIME ENERGY MANAGEMENT 

A cross-layer view of an embedded system, highlighting 
the interaction between the application, run-time and hardware 
layers, is shown in Fig. 1. The Application layer is the top layer 
where applications are being executed. Each application 
comprises of a series of tasks/workloads being executed at 
given time intervals (decision epochs) where the specific 
performance requirements of each task are specified through an 
Application Programming Interface (API). The Run-time layer 
in the middle represents the operating system (OS) and system 
software, responsible for coordinating an application’s 
execution on the hardware platform. The bottom Hardware 
layer comprises processing elements (e.g. four ARM A15 
processor cores) and their associated peripherals [14]. The run-
time management algorithm (RTM) is implemented as a power 
governor in the OS, where its primary responsibility is energy 
minimisation through optimised control of hardware levers (V-
F settings) at regular decision epochs for given performance 
requirements.  

 

Fig.  1. Cross-layer interaction between the Application (comprising of 
tasks/workloads), Run-time and Hardware layers. 

 The key interactions between the Run-time (within the OS 
layer) and Hardware layers could be represented conceptually 
as closed loop system, illustrated in Fig. 2(a). Here, the data 
extracted from the hardware (performance monitoring units 
(PMUs), power measurements, etc.) and the performance 
requirements of the application (frames per second, deadlines, 
latencies, etc.) act as inputs to the RTM which operates based 
on a learning algorithm and can make intelligent decisions 
leading to energy savings. This closed loop system is motivated 
by the operation of the human brain (in this case acting as an 
agent) interacting with the surrounding environment, whereby 
the brain continually learns from observations and takes 
appropriate actions which yield a reward (positive or negative 
depending on the action); see Fig. 2(b). Over time, the goal is 
to reinforce good decisions to maximize positive rewards [13]. 
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Fig.  2. (a) Closed-loop interaction of RTM with Hardware (b) Closed-loop 
interaction of Human Brain with Environment [15] 

The RTM uses the Q-learning algorithm, which works by 
observing the current state of a system and selecting an action, 
leading to a change in the system state. As a result, an 
immediate numerical pay-off is computed which qualifies the 
action based on a positive or negative return. Positive pay-offs 
are termed as profits and negative pay-offs are termed as 
penalties. The RTM’s objective is to learn and select actions to 
maximize the long-term sum or average of future pay-offs. 
Initially, the RTM is agnostic about its actions on the system 
states and the related pay-offs, storing its decisions in a look-up 
table (referred to as a Q-table). This is termed the exploration 
phase, which is followed by the exploitation phase where the 
RTM evaluates those decisions which led to a positive pay-off, 
and finally, with complete knowledge of the inherent 
characteristics of the tasks being executed, always selects the 
best actions (which yielded the highest pay-off) for a given 
system state. The mapping of the different components of the 
Q-learning algorithm to our run-time framework is discussed in 
detail in the following sub-sections. 

The RTM works at system time ticks referred as ti-1, ti and 
ti+1, where the respective intervals are also termed as decision 
epochs. The role of the RTM at time ti can be enlisted as:  

(1) computes pay-off for the interval ti-1 - ti;  

(2) updates the Q-table corresponding to the state-action for ti-1;  

(3) selects an action for the interval ti - ti+1 based on a predicted 
value of state.  

The RTM proactively manages energy and hence the next state 
is predicted and an appropriate action is chosen prior to the 
system reaching the state. Each of these main steps are 
explained in further detail in the following subsections. 

A. State Prediction and Q-table 

Predicting the state of the system is a key step in RL and in 
our methodology the expected workload is classified into a 
system state at the beginning of each decision epoch [8], [9]. 
The state of the system is represented using the CPU Cycle 
Count (CC), obtained using the performance monitoring unit. 
The choice of CC as a preferred workload parameter over other 
parameters such as memory accesses, cache misses, or 
instruction rate is motivated by the fact that it directly presents 
a measure of CPU activity while executing instructions of a 
specific task. Workload prediction schemes generally use 
adaptive filters [16], which fall short of fine-grained prediction 



 

 

due to a lag inherent in the filtering technique. Hence, they 
have limited utility for applications incurring dynamic 
workload changes [3], [17]. In our approach, the current CPU 
workload is estimated based on a history of past workloads, 
and this is mapped to a system state based on the current 
performance. The states form the rows of the look-up table, 
referred to as the Q-table and is determined using the CC and 
current performance (average slack, L). The size of the Q-table 
is limited by discretising the range of workloads (slack and 
cycle count) into N levels. Here we have used N as 5 in view of 
a pre-characterisation of the applications, performed to 
ascertain the inherent workload variability (viz. design space 
exploration). The algorithm used for state prediction is the 
Exponential Weighted Moving Average (EWMA) [18], 
whereby the predicted workload for the ti+1-th decision epoch, 
CCi+1 is given by: 

 1 (1 )i i iCC actualCC predCC        (1) 

where, γ is the smoothing factor. The predicted state for the 
interval (ti - ti+1) is determined from the previous state 
[predicted for the interval (ti-1 - ti): predCCi] and the actual 
state during that interval (actualCCi). However, workload 
prediction through (1) still provides mispredictions at run-time 
due to variations in workload. The impact of such 
mispredictions on the corresponding V-F controls is discussed 
in Section III-B. Therefore, for each predicted workload 
(CCi+1) and the current performance (Li), the system state is 
mapped to one of the discrete N levels. 
 

The size of the Q-table in terms of the total number of 
state–action pairs (|A{V, F}|×|S{CC,L}|; where |S| represents 
all states in Q-table, each having |A| actions) is important for 
the RL algorithm, and is carefully chosen as it influences the 
trade-off between learning overhead and the energy 
minimization achieved. With the given state prediction and Q-
table formation, the RL algorithm carries out exploration and 
evaluation of the V-F controls as discussed below. 

B. Exploration 

This is a crucial phase which involves learning of 
appropriate actions (V-F controls) depending on system states. 
The intuitive relationship between the state-action pairs is 
defined using a discrete Exponential Probability Distribution 
(EPD) function for the selection of an action which is in 
contrast to the commonly used random selection policy based 
on a Uniform Probability Distribution (UPD) [19]. The EPD is 
expressed as: 

    ,( ) exp
ii aa A V Fp a F L      (2) 

where λ represents the uniform probability of actions, F is the 
operating frequency for action a, β is a constant, L is the slack 
measurement and A represents the set of all possible actions. 
For values of L close to zero, the Exponential Probabilities 
(EP) guided by λ are almost uniform. The Q-value at the start 
of a decision epoch ti+1, corresponding to a selected V-F action 
is updated with respect to Bellman’s optimality equation: 

 
 max

1 1( , ) ( , )(1 ) ,
ii i i i i a i tQ s a Q s a R Q S a          (3) 

where α is the learning rate, γ is the discount factor for 
descaling the current maximum Q-value for a row, Si is the 
observed state at the decision epoch ti, and Si+1 is the predicted 
state in the ti+1 -th decision epoch determined by the estimated 
workload and current performance (EWMA). The reward 
function Ri at ti (4) is computed as a function of the resulting 
average slack ratio at the ti-th decision epoch (Li) and its 
change since the last decision epoch (  L).   

 i iR a L b L    (4) 

where a and b are predetermined constants to ensure actions 
improving Li values are rewarded or vice-versa. The Li values 
are estimated as: 
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where Tref is the reference execution time, Ti is the application 
task execution time, D is the number of elapsed decision 
epochs since the start of the application with a given Tref, TOVH 
is the total overheads caused by learning and adaptation steps 
(V-F). Hence,  L is calculated as the difference of Li-1 and Li. 
The Ti can be calculated as the ratio of the observed processor 
cycles and the chosen operating frequency at the i-th decision 
epoch [12]. 

C. Exploitation 

 Following exploration, we have the exploitation phase 
where the learnt state–action relationships are exploited. The 
transition from the exploration to exploitation phase is greedy 
heuristic controlled through EP, denoted by ε (0 ≤ ε ≤ 1). To 
accelerate the process of exploitation, ε is updated as: 

  1 exp[ 1 ]i i      (6) 

where α is the learning factor per decision epoch. Exploration 
or exploitation is carried out based on εi to determine the best 
explored state-action pair (in terms of positive reward). 

D. Many-core formulation 

 The algorithmic formulation is adapted for many-core 
systems, through simple modifications. First, the predicted 
workload per core is normalized with respect to the total 
system workload as: 

   1
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where 1
j

ipredCC  is the predicted workload and 1
j

inormCC  is 
the normalized workload, for the j-th core (j=1 to C, where C is 
the total number of cores on the embedded system). With a 
given discretised levels of normalized workload ( 1

j
inormCC  ) 

and average slack ratio (L), a number of Q-table states are 
defined and organized in rows [similar to (2) and (3)]. For each 



 

 

state, the available V-F controls are used in the action space 
organized in columns to form the Q-table. This Q-table is then 
shared among the processor cores to allow RL through one 
core action update per decision epoch (controlled in round-
robin manner). Such V-F control per decision epoch helps to 
reduce Q-table complexity significantly as opposed to 
controlling multiple cores per decision epoch, which requires 
combinations of V-F settings of all cores in the Q-table. 

III. EXPERIMENTAL RESULTS 

The adaptive energy minimization approach was 
implemented as a power governor in Linux kernel revision 
3.10.96 running on the Odroid XU3 platform. In our 
experiments we use only the A15 cluster, supporting 19 V-F 
settings (2000 MHz – 200 MHz in 100 MHz steps). We test 
various applications: an MPEG4 decoder, FFT, and the 
PARSEC and SPLASH2 benchmarks. Each application is 
transformed to a periodic structure, where it is executed for 
several iterations each of which is accompanied by a deadline 
serving as the application’s performance requirement. At each 
iteration, multiple threads are spawned with each thread 
performing a task on the input data. These iterations are termed 
frames in this context. Power is measured from on-board power 
sensors each frame and subsequently, the energy is calculated 
by multiplying average power with execution time. 

A. Energy minimisation 

An H.264-based video decoder application is executed 
with a football sequence of approximately 3000 frames using 
the following three approaches: 1) multicore DVFS control 
[20] (the thermal constraint was neglected for equivalence of 
comparison); 2) Linux on-demand governor per core [5]; 3) 
the approach in this paper. Table I highlights the normalized 
performance and energy consumption of the various 
approaches. It is important to note that performance is 
normalized to the required performance per frame (Tref) and 
energy normalization is carried out with respect to Oracle 
(through offline determination of optimized V-F for the 
observed CPU workloads) performance. A normalised energy 
>1 implies higher energy consumption, while <1 is a lower 
consumption. Similarly, a normalised performance >1 implies 
underperformance while <1 is over-performance. 

TABLE I 
COMPARATIVE EVALUATION OF NORMALISED ENERGY AND PERFORMANCE 

REQUIREMENTS [12] 

Methodology 
Normalized  

energy 
Normalized 
performance 

Linux Ondemand [5] 1.29 0.77 
Multi-core DVFS control [20] 1.20 0.89 

Proposed 1.11 0.96 

 
The proposed approach achieves improved energy 

consumption compared to existing approaches. On-demand is 
agnostic of application performance requirements and hence 
consumes the most energy. Multi-core learning [20] and on-
demand [5] over-perform due to poor adaptation to variations, 
resulting in up to 16% higher energy consumption.  

B. Impact of state prediction 

 As a result of the EWMA algorithm, the predicted and 
actual workload (number of cycles, CC) and the average slack 
ratios (L) undergo mispredictions. This was observed while 
executing the MPEG4 decoding at 24 SVGA fps, as shown in 
Fig. 3. The smoothing factor (γ) for our analysis was 
experimentally determined as 0.6. There are mispredictions 
during the exploration frames for the first 25 frames and also 
during the exploitation phase after 90 frames. The highest 
average misprediction with respect to the average workload 
was approximately 8%, evident for the first 100 frames, with a 
lowest misprediction value of 3% following it. Under-
prediction of the workload (where actual is higher than 
predicted) results in a deadline miss by the frames, whereas 
over-prediction (where actual is lower than predicted) results 
in higher power consumption. Most video decoders drop 
frames, which miss deadlines, resulting in a glitch in the output 
video which degrades user experience. The impact of state 
misprediction is mitigated by considering the current 
performance offset in terms of average slack (Li) in conjunction 
with the current predicted workload (predCCi) for mapping the 
next state (cf. Section II). In case of a performance offset 
(positive/negative Li) caused through misprediction, the 
behavior is learnt and appropriate V-F control is applied to 
maximise reward (4).  

 

Fig.  3. Workload misprediction for MPEG4 and learning impact on average 
slack. 

C. Number of Explorations 

 The advantage our approach employing EPD (2) during 
initial learning (i.e., RL step), is illustrated in Table II, 
highlighting the average number of explorations for three 
applications compared against an existing approach [21]. 

TABLE II 
 COMPARATIVE EVALUATION OF THE NUMBER OF EXPLORATIONS [12] 

Application 
Number of explorations 
[21] Our approach 

MPEG4 (30 fps) 144 83 
H.264 (15 fps) 149 90 
FFT (32 fps) 119 74 

  



 

 

It can be observed that our approach benefits from reduced 
exploration due to the relationship between current 
performance and the V-F action (4) [21]. FFT uses the fewest 
explorations since it exhibits less workload variations resulting 
in faster learning by the algorithm. MPEG4 and H.264 
applications exhibited longer exploration due to higher 
workload variations and hence more states being visited. 

D. Learning Overhead 

 The learning overhead has three components: (1) sensor 
sampling comprising performance counter register accesses, 
(2) processing and (3) V-F transitions. Processing and V-F 
transitions are key factors as they are compute intensive. The 
time overhead (TOVH) was evaluated by averaging the 
differences of per-frame execution time of ffmpeg decoding 
three frames (Tref – 31ms) compared to the multi-core DVFS 
control approach [20]. This is illustrated in Table III. As the 
learning of each core is shared by other cores in our approach, 
converges quicker and hence requires fewer decision epochs. 

 TABLE III 
 COMPARATIVE EVALUATION OF WORST CASE LEARNING OVERHEAD [12] 

Methodology Time overhead (TOVH)  
(in decision epochs) 

Multi-core DVFS control [20] 205 
Our approach 105 

IV. DISCUSSION 

In this paper, we have proposed a run-time management 
approach for adaptive energy minimisation in multi-core 
embedded systems incurring low-overhead. The algorithm uses 
Q-learning to select V-F control for a predicted workload and a 
given application performance requirement. The algorithm is 
biologically inspired from the manner a human brain reacts and 
adapts to a changing environment to maximise rewards and 
reinforce optimal decisions, over a long period. The proposed 
RTM is implemented as a power governor, and validated 
through experiments with real applications and various 
benchmark suites, achieving up to 16% energy savings 
compared to state-of-the art. Our future work is investigating 
how to extend this approach to manage the energy 
consumption of multiple concurrently executing applications. 
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