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Abstract—Continued technology scaling in VLSI has enabled
more and more computation cores to be integrated in the same
chip. This has facilitated the parallelization of processing and
the increase of performance whilst keeping energy consumption
at reasonable levels. To study the potential improvement of
performance in such many core systems, three existing models
have been popular in both the research community and industry.
Amdahl’s law is the original speedup model that estimates
the maximum performance improvement with fixed workloads.
Gustafson’s law is a popular model that introduces variable
workloads and estimates fixed time speedup. Sun and Ni combined
the above two models into one considering the memory-bounded
situation. These models are further extended via the Hill-Marty
model to cover a limited form of heterogeneity. This paper extends
these models to cover a more comprehensive assumption of core
heterogeneity. We also present power and energy models based
on the extended heterogeneous models. Our models cover popular
power and performance control methods such as Dynamic Voltage
Frequency Scaling (DVFS), power gating, etc. A case study is
performed with an ARM big.LITTLE architecture containing
Cortex A7 and A1lS cores, including a comprehensive analysis
with different ratios of parallel and sequential workloads to
identify the most energy-efficient system configuration based on
these models. Experimental results demonstrated high correlations
between practically measured power normalized performance and
that of the proposed extended models.

Index Terms—many-core processors; speedup;
efficiency; power and energy normalized performance.
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I. INTRODUCTION

Technology scaling has facilitated significant performance
improvement at reduced power consumption through increased
operating frequency and smaller device geometries [1]. Accord-
ing to Dennard’s CMOS scaling law [2] despite such smaller
geometries the power density of these devices remains constant.
This is because the number of transistors per unit of area is
also increasing substantially, which also conforms to Moore’s
[3] and Koomey’s laws [4]. Dennard’s law further states that
the performance per watt is growing exponentially, doubling
every 1.5 years.

Over the years significant research has been carried out
to understand the trend of performance growth with many
interconnected cores. An examples of these models is Pollack’s
Rule, which suggests that performance is increasing approxi-
mately proportional to the square root of the complexity [5].
Following this rule, doubling the number of processors also
doubles the performance [1]. Therefore, multi-core systems will
deliver further improvement in throughput and latency for the
same die area.

The most appropriate metric to describe performance gain is
speedup. The first scalable model in relation to the multi-core

TABLE I: Existing Speedup Models and the Proposed Model
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[6] Yes No No Yes No No
[7] Yes No No Yes | Yes No
[8] Yes No No Yes | Yes | Yes
[14] Yes Simple No Yes No No
[15] Yes Simple No Yes | Yes | Yes
[16] Yes Simple Yes | Yes No No
[17] Yes No No Yes | Yes | Yes
Extended | Yes | Normal form | Yes | Yes | Yes | Yes

Model (Section III)

processor model is explained by Amdahl’s law [6]. It assumes
that a fixed workload is executed in N processors of a multi- or
many-core system and compares the throughput/performance
with the same workload executed in a single processor. In
1988, Gustafson introduced the principle of scalable computing
in multi-core processors pertaining to the fixed time model.
This model proposes a linear speedup model that increases the
workload proportional to increasing machine scalability, while
the execution time remains fixed [7]. In other words, more
parallel processors complete larger workloads spending the
same amount of time and the speedup is calculated according to
how much larger the workload is in multiple cores compared
with that in a single core. In 1990, Sun and Ni suggested a
new model, which included extended workload calculations by
considering the capability of the memory. It is important to note
that the executed workload and time should change based on
the capability of the system, while the performance calculations
appeared linear within the increasing cores [8], [9].

On the other hand, power consumption management is a
significant issue in scalable systems. For instance, DVFS, clock
gating and power gating techniques are designed for this reason.
The fine grain power management suggested by [1], [10] [11]
[12] [13] are some of the scaling techniques used in order to
decrease power consumption.

Speedup models described in existing studies for the compre-
hensive understanding of core modeling are listed in Table I.
The Hill-Marty model extended Amdahl’s law to cover het-
erogeneous configurations with a limited assumption of core
heterogeneity consisting of a single big core and many smaller
ones of exactly the same type. [14]. The study in [17] extended



Hill-Marty analysis to all three major speedup models. The
authors of [15] evaluated the homogeneous speedup models
alone. The other important issue represented by energy effi-
ciency is demonstrated by [16] for the homogeneous and simple
heterogeneous Amdahl’s model.

From Table I, it can be seen that the existing models[6],
[71, 8], [9], [10], [11], [12], [13], however, have a general
limitation of not studying the energy-efficiency of computer
system configurations, in addition to limiting any study of core
heterogeneity to a simple assumption only applicable to CPU-
GPU like configurations. To address these limitation, this paper
makes the following contributions:

. extends the assumption of system core heterogeneity to
cover such modern configurations as FPGA-based accel-
eration schemes, complex structures with many types of
cores, complex Systems on Chip (SoC) including mobile
computing platforms, data centers with large numbers of
heterogeneous processing units, etc.;

. extends the three major speedup models (Table I) to
estimate power and energy normalized speedup metrics
[14], [15], [16], [17];

. studies the comparative power/performance trade-offs of
these models for energy-efficient computing based on
homogeneous and heterogeneous configurations;

. incorporates representations of the effects of such power
and energy optimization techniques as DVFS and clock
and power gating in the power models, i.e. heterogeneity
in power control methods in addition to core structures;

. uses a mobile computing platform centered around ARM
big. LITTLE Cortex A7-A15 cores in the form of Odroid-
XU3 as a case study covering all aspects of the new
modeling.

To the best of our knowledge this is the first comprehensive
power and energy normalized performance analysis of the
major many-core speedup models. It also represents the first at-
tempt to extend these models to cover wider core heterogeneity.
The rest of the paper is organized as follows. Section II gives
the background on existing speedup models for homogeneous
systems; Section III extends existing speedup models to cover
a wider assumption of core heterogeneity; Section IV derives
the average power consumption models for all three extended
models; Section V describes a method for power and energy
normalized performance analysis of these extended models for
homogeneous and heterogeneous configurations; Case studies
are described in the three subsequent sections; Section VI
describes the experimental platform; Section VII studies the
experimental platform using our models; Section VIII cross-
validates these models with experiments; And Section IX
concludes the paper.

II. HOMOGENEOUS SPEEDUP MODELS

For a homogeneous system we consider a system consisting
of N cores, each core having performance of I P.S; instructions
per second. This section describes various existing models for
determining the system’s speedup SP (N) in relation to a
single core, which can be used to find the performance of the
system:

IPSy = SP(N)-IPS,. (1)

The parallel part of a workload is P and the sequential part
is (1 — P), This parameter reflects an application’s capability
of performing parallel computation. Some applications can
show P = 1, however, in real life systems, there are always
communication and shared resource access overheads that
further reduce this value. Thus, this parameter is application
and hardware-dependent, and is not always known. There is
research on how this problem can be addressed [18]. In our
models we assume that P is giver or can be determined.

A. Amdahl’s Law (Fixed Workload)

The general idea of this model is to compare execution
time for some fixed workload WL on a single core with the
execution time for the same workload on the entire N-core
system [6].

Time T (1) to execute workload WL on a single core is
WL/IPS;, whereas T (N) adds up the sequential execution
time on one core and the parallel execution time on all N cores:

(1-P)-WL P-WL
T(N) = 2
(V) IPS, N -IPS;’ @
thus the speed up can be found as follows:
T(1) 1
SP(N) = = . 3
U AT R ®

B. Gustafson’s Model (Fixed Time)

Gustafson re-evaluated the fixed workload speedup model
to derive a new fixed time model [7]. In this model, the
workload increases with number of cores, while the execution
time is fixed. An important note is that the workload scales
asymmetrically: the parallel part is scaled to the number of
cores, whilst the sequential part is not increased.

Let’s denote the initial workload and extended workload as
W L and W L/ respectively. The time to execute initial workload
and extended workload are T' (N) and T” (V) respectively. The
workload scaling ratio can be found from:

WL
(1) = 1PS,’ 4
(A1-P) WL P-WL
T(N)="~—7ps N-IPS;’ ©®)

and, since T' (1) = T (N) , the extended workload can be found
as:

WL =N -WL. 6)

1-P)-WL P-N-WL
IPS; IPS,

(1) = ( (7)

From the relation of scaled and unscaled execution time the
following equation for speedup can be calculated:

T ()

SP(N) =

—(1-P)+P-N. (8)

The sequential part of the workload uses one core to perform
its calculation at the performance [PS;, and the parallel
execution uses N cores to perform its calculation at the
performance N - IPS;.
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Fig. 1: The proposed extended structure of a heterogeneous
system (c) compared to a homogeneous system (a) and the
previous assumption [14] on heterogeneity (b). The numbers
in the core boxes denote the equivalent number of BCE:s.

C. Sun and Ni’s Model (Memory Bounded)

Sun and Ni mixed the previous two speedup models by
considering the memory bounded constraints [8], [9]. In this
model the execution time and the workload change according to
the memory capability. The parameter g (V) reflects the scaling
of the workload in relation to scaling the memory with the
number of cores:

WL =g(N)-WL. )

A typical example g (N) is given for an M x M matrix
multiplication, which has the memory requirement of O(M?)
and the computation cost (workload) of O(M?3). In this case,
g(N)=N&.

The time to execute the scaled workload can be found
from (4) and (5).

1-P)-WL P-g(N)-WL
T (1 :( 1
(1) IPS, IPS, ’ (19)
y (1-P)-WL P-g(N)-WL
T (N) = . 11
(V) IPS, N-IPS; an
The speedup is calculated as follows:
_ @y _(A-P+P-g(N)
SP(N)= N 1P+ PQT(M . (12)

Because the workload is scaled by g (N) according to (9),
one of the important properties of this model is that for g (N) =
1 Sun and Ni’s model (12) transforms into Amdahl’s Law (3),
and for g (V) = N it becomes Gustafson’s Law (8).

III. HETEROGENEOUS SPEEDUP MODELS

Previous attempts to extend speedup laws to heterogeneous
systems were mainly focused on a single high performance core
and many smaller cores of the same type [14], In this work we
aim to to cover more diverse cases of heterogeneity pertaining
to such modern architectures as ARM big.LITTLE [19] which
are not directly covered by existing speedup models.

Performance-wise, the presented models describe hetero-
geneity using the following normal form representation. A
considered heterogeneous system consists of X clusters (types)
of homogeneous cores with number of cores defined as a vector
N = (Ny,...,Nx). Vector @ = (aq,...,ax) defines the
performance of each core by cluster (type) in relation to some
base core equivalent (BCE), such that for all 1 < ¢ < X
we have IPS; = «; - IPS;. The structure is shown in
Figure 1. This section extends homogeneous speedup models
for determining the heterogeneous systems speedup SP (W)
in relation to a single BCE, which can then be used to find
the performance of the system using (1). This representation
of heterogeneity has the following limitations that have to be
noted.

Drawing equivalence to a given BCE implies that there exists
an equivalent representation of a workload. While the concept
of the workload in homogeneous system is well defined, it is not
possible to execute the same code on different heterogeneous
core types unless they have the same instruction set (ISA). It
may still be possible to draw equivalence, but in this paper we
cover only iso-ISA systems and consider cross-ISA comparison
as future development of the models.

The performance results from the real experiments, described
in Section VIII, also show that the relative core performances
may differ on per-instruction basis. In other words, core type
i may execute instruction A faster than core typej, but core
type 7 may execute instruction B faster than core type i, with
both A and B in the instruction set of the BCE. Hence, on
average, this will cause application- and platform-dependent
«. Parameter P in the original homogeneous models is also
application- and platform-dependent. Hence our assumption on
the parameters does not reduce the applicability of the extended
models in comparison to the original ones.

A. Heterogeneous Amdahl’s Law (Fixed Workload)

For heterogeneous systems the combined performance of all
cores while executing the parallel code P can be found as a
weighted sum of all performances:

X
N, -IPS; = ZNZ- ;- IPSy,

i=1

(13)

N, is called a performance-equivalent number of BCEs. In
other words, this performance is equal to N, BCE cores exe-
cuting the same parallel code; N, can be a fractional number.
However, in the case of synchronized-parallel execution (i.e. if
the parallel execution waits for the slowest core to finish), a
different equation has to be used to find N,:

X
No =mina- Y _N;. (14)
i=1
where min @ is calculated only on the cores in use. For the
model explorations in this paper (Section VII) we use (13). In
the experimental validation (Section VIII) we use (14).
We also assume that the sequential part is executed on a
single core in the cluster X. Hence, the time to execute the
fixed workload W L on the given heterogeneous system is:

— (1-P)WL P-WL
Tx (N) = .
x () ax -IPS, N, -IPS,

15)



The speedup in relation to single BCE is:

_ T(1) 1
P(N) = — = .
S ( ) TX (N,a) % NL

(16)

B. Heterogeneous Gustafson’s Model (Fixed Time)

Because of the workload scaling, we cannot directly compare
speedup while executing the sequential code in the core X to
single BCE execution. Let’s first find the speedup SPx (N)
relative to a single core X. This is done similarly to Gustafson’s
derivation (Section II-B).

WL

Tx (1) = ———= 17
()= Ty (0
1l-P)WL P-WL
Tx (N) = 1
x(N) =" ips, T NL1psy 1%
Tx (1) = Tx (N), hence the extended workload can be
found as:
/ N
WL = — - -WL. 19)
ax
1-P)-WL P-N,-WL
Ty (1 ! . 2
x (1) ax -IPS; ' (ax)?-IPS;’ 0
— T% (1) P-N,
Px(N)=2X~=(1-P)+ —=. 21
§Px (N) = 7 1y = 0= D)+ — - @1

The speedup of a single core X in relation to BCE is ax,
thus the total speedup relative to BCE is:

SP(N) :O[Xspx(ﬁ):(l—P)Oéx-i-PNa 22)

The sequential part of the workload uses one core in the
cluster X to perform its calculation at the performance ax -
IPS, and the parallel execution uses all cores to perform its
calculation at the performance N, - I P.S;.

C. Heterogeneous Sun and Ni’s Model (Memory Bounded)

Similarly to Amdahl’s and Gustafson’s cases, we can extend
Sun and Ni’s model as follows:

, v (1=P)-WL P-g(N)-WL
I ll) = ax 198 " Tax.1p5, P
) _(1-P)-WL P-g(N)-WL
T (N) = ax - IPS N,-1p5, Y
— Ti(1) 1 (1-P)+P-g(N)
SPx (N) = 2= =—- — 25
W= EW e o P5() )

The speedup in a heterogeneous system relative to BCE is
calculated as follows:

(1—P)+P-g(W)

a-p) , Po(N)
ax + Na

When g (N) = 1, this model transforms into heterogeneous
Amdahl’s Law (16), and for ¢ (N) = iv—; it becomes hetero-
geneous Gustafson’s Law (22), as expected from (19).

For all heterogeneous models, substitution ax = 1, N, = N
will give the homogeneous versions of respective models. In
other words, homogeneity is a special case of heterogeneity.

IV. AVERAGE POWER CONSUMPTION MODELS

The power consumption models are built under the assump-
tion that the cores consume power when idle. When idle power
is zero, this assumption covers the special case of power gating.

Let’s the active power of a core in the homogeneous system
(Section II) be W, and the idle power of a core be W;
respectively. Active power can also be expressed as a sum of
idle power and effective power W; (used for computation),
Wa = Wi+ W,;. In the total power consumption of the system,
the constant term of total idle power W, does not benefit to
the model and can be added later. The power models W (V)
are focused on the effective power, and the total power of the
system can be calculated as follows:

Wiotar = W (N) + Wiaie,

In the normal from representation of a heterogeneous system
(Section III), the difference between power consumptions of
the cores is expressed by the vector 3 = (1, ..., Bx), which
defines the effective power in relation to a BCE’s effective
power, such that for all 1 < j < X we have effective power
W; = B; - Wi. All idle powers of heterogeneous cores are
combined into W;g.. In the general case, we say that:

Wigte = N; - Wi,

27)

(28)

where N; is idle power equivalent number of BCEs and W; is
the idle power of a single BCE.

The effective power model can be found as a time-weighted
average of the sequential power Wg the and parallel power
Whp:

r  WsTs (N)+Wp - Tp (N)

Ts(N)+Tp(N)

where Ts (N) and Tp (N) are speedup-dependent times to
execute sequential and parallel parts respectively.
In the homogeneous system:

Ws =Wy, Wp=N - W;.

W (N) ; (29)

(30)

In the heterogeneous system, if we execute the sequential
code on a single core X:
Ws = Bx - W1),(
Wp=Wi->_,Bj-Nj=Ng- W,
for average case of parallel execution (13) For

synchronized-parallel execution (14), Ng is calculated as fol-
lows:

€2y

X
N;B;
Ng =mina - . 32
3 = mina ; - (32)
Ng is called a power-equivalent number of BCEs. Hetero-
geneous power models will transform into homogeneous if
ax =pfx =1and N, = Ng=N.
A. Power Model for Amdahl’s Law (Fixed Workload)
From (15) we know that:
— 1-P)-WL P-WL
ro (W)= L PLWE oy PWE
ax - IPS, N, -IPS;
By substituting (33) and (31) into (29) we have a power
model for the heterogeneous system:

W(N):(fj(-(l—P)—i—%i-P)-SP(N)-WL (34)



where the speedup SP (N) is calculated using (16). For
homogeneous system, this will transform into:

W (N)=SP(N) W, (35)
thus for Amdahl’s Law the power scales with the speedup.
B. Power Model for Gustafson’s Model (Fixed Time)

In this model we have a fixed time 7', so the workload splits
execution into:

Ts (N):(I—P)-T, Tp (N):P»T. (36)

Thus, we can find a power model for the heterogeneous system:

_(Bx-(1-P)+Nsz-P
W(N>_(a§~(lp)+Ni~P

For homogeneous system, this will transform into:

W (N) = SP(N)- Wy,

) -SP(N)-Wyi, (37)

(38)
where the speedup SP (N) is calculated using (22).

C. Power Model for Sun and Ni’s Model (Memory Bounded)
From (24) we can find:

—  (1-P)- WL — _ P-g(N)-WL
Ts (N) = ax - IPS;  Te (N) = N, - IPS,

Thus, we can find a power model for the heterogeneous
system:

. (39)

Bx

W(N)(”‘X

(1-P)+x2-P-g(N)
(1-P)+P-g(N)

)-SP(N).Wl,

(40)

where the speedup SP (N) is calculated using (26). This

model will transform into (34) if g (N) = 1, or (37) for

g (W) = g—; For homogeneous system, (40) will also trans-
form into:

W (N) = SP(N)-W;. (A1)

All power models — (34), (37), and (40) — can be represented
using power scaling PS (N), which can be derived from the
respective model equations:

W (N)=PS(N)-SP(N) - Wh. (42)

V. POWER-NORMALIZED AND ENERGY-NORMALIZED
PERFORMANCE

The power model explains the total power consumption in
this model during workload execution. It is likewise represents
the cooling capacity. Furthermore, it is simple to model the
performance achievable at the same cooling capacity from
calculating performance per watt (Perf/Watt). This model is
reciprocal of energy per instruction (EPIy) because perfor-
mance is the reciprocal of execution time.

EPIy can be found from dividing the total power (27) by
the system’s performance (1):

o Wiota o w (N) + Widie
~ IPSy  IPS;-SP(N)’

EPIy (43)

which is true for all cases of W (N) Amdahl’s, Gustafson’s,
or Sun and Ni’s.

For a single BCE we can denote energy per instruction as a
sum of effective energy £ PS; and idle energy EPS;:
Wi W;
IPS;  IPSy’

Applying the power model (42) to (43) and also consider-
ing (28), we find:

EPIpcE =

(44)

—, N, -EPI;
EPIy =EPI, - PS (N) + <P (W) . (45)
This equation shows that the effective component of the
energy increases with the power scaling PS (N), and the idle
energy decreases with the speedup SP (N).
Energy-normalized performance represents how much per-
formance one can gain if willing to increase energy per

operation. This gain in relation to BCE can be found as:

IPSy IPS; \7' .~ EPIy
(EPIN) ' <EPIBCE> =5P(N)- EPIgcy’

The equation shows that the increment factor scales with the
speedup, and this is true for all three models.

(40)

VI. EXPERIMENTAL PLATFORM

We carry out an extensive case study demonstrating the
use of these models. This study is based on a multi-core
mobile platform, the Odroid-XU3 board [19]. The main part
of it is the 28nm Application Processor Exynos 5422. It is
an SoC hosting an ARM big.LITTLE heterogeneous octa-core
processor consisting of four Cortex A7 cores and four Cortex
A1S5 cores. The big Cortex-AlS5 is a high performance 32-bit
core having 32 KB instruction and 32KB data L1 caches and
2 MB L2 cache and the maximum frequency of 2.0 GHz. The
LITTLE Cortex-A7 is a low power 32-bit core including the
same L1 cache size and 512 KB L2 cache, and the maximum
frequency of 1.4 GHz.

This SoC also has four power domains: A7 power domain,
A15 power domain, GPU and memory power domains. The
Odroid-XU3 board allows per-domain DVFS using voltage-
frequency pairs, however for frequencies within the range of
200MHz to 800MHz, the voltage stays constant (DFS-only).

The traditional simple assumption for heterogeneous archi-
tectures, shown in ure 1(b), cannot describe systems such
as big.LITTLE. Our models do not suffer from the same
restrictions and can be applied to big.LITTLE and similar
structures.

VII. MODEL EXPLORATION

Models of the Odroid-XU3 platform have been created using
our methods and these models are used to calculate predicted
system behaviors under various operating conditions. Metrics
including speedup, performance, power, energy per operation,
etc. are obtained from exploring with models.

A. Calculating Parameters

A set of characterization experiments was carried out to
determine power consumptions and performances for each core
type. The main parameters for this study can be arranged into
the following points.



System’s heterogeneity: Following the extended heteroge-
neous system structure assumption proposed in Section III,
we can set the constants for Odroid-XU3. Two types of cores
(A7 and Al15) give us X = 2. In our experiments, in order
to improve measurement accuracy, one of the A7 cores was
reserved for exclusive use by the operating system. Therefore
the numbers of cores by type are Na7 = 3 and Na15 = 4.

Core active powers: Theoretical active power calculations
are derived from the experiments. The power is measured
while executing a full workload on the processor’s cores
and sweeping through all DVFS points [20]. In general, the
theoretical dynamic power estimation can be calculated by the
power equation [21]:

Powerpynamic = C - V2.F 47
where V' is the voltage, F' is the frequency, and C' is the
constant, which relates to the combined capacitance of the
switching logic. We use the experimental data to curve-fit by
MATLAB and derive the Cortex A7 and Al5 power equa-
tions. The result is the following values for C: in A7 it is
equal to 0.127nF and in AlS5 it is 0.599nF, with R-squared
values greater than 0.99. Considering A7 as BCE, we have
Bar = 1,8415 = 4.71 to supply our power models from
SectionIV.

Core idle powers: Theoretical idle power calculations sup-
ported by the experiments [20] give the value of A15 idle power
as W;a15 = 0.021W. Having one of the A7 cores occupied
by the operating system prevents measuring idle power for
that domain. In this study we accept the minimum measured
power of 0.008W as the domain’s idle power W, 47, which is
also our BCE’s idle power W;. We also do not switch off the
cores, so the total idle power of the system remains constant:
Wiaie = N; - W;. From the above measurements, we calculate
N; = 3.625.

Relative performance of cores: We did not use performance
counters to find the actual number of clocks per instruction
(C'PI) for different types of instructions. Given these are RISC
processors, we assume the general value of CPI = 1 without
losing generality.

From the characterization experiments, we found that on the
average an A15 core has 1.5 times the throughput of an A7 core
when both are running at the same frequency. We also want
to calculate the models for different DVFS points. However,
for frequency values when A7 cannot be run and Al5 can, or
for the DFS-only region, the performance specifying vector &
changes. Therefore, for each DVFS point the value for av415 is
computed as follows:

) freqais

aA15 — 1.5 .
Jreqar

(48)

We assume av47 = 1 considering A7 is our BCE.

Parallelization parameter: The speedup models take pa-
rameter P from the nature of the executed workload. In our
theoretical calculations we investigate a number of values for
P. In the next section we provide results for two example values
(P =0.9 and P = 0.1) covering highly parallelizable and not
parallelizable cases.

B. Outcomes

In this section we present selected calculation results orga-
nized in three groups. More comprehensive set of results can
be found in [22].

Metric explorations on a fixed DVFS point: In the first group
of results we present the following metrics of interest calculated
for a various combination of active and idle cores on a fixed
DVEFS point (freqar = freqais = 1400MHz):

o Performance I PSy according to (1),

o Average power consumption Wy, according to (27),

o Energy per instruction EPIy according to (45),

o Energy-normalized performance according to (46).

These parameters have been estimated for all presented
heterogeneous speedup and power models. The graphs for
different models display similar trends, hence we only present
Sun and Ni’s model for its generality; g (N) was set to the
matrix multiplication example presented in Section II:

g <N) N (iii)g .

Figure 2 shows the graphs for the listed parameters for P = 0.9
and P =0.1.

It can be seen from the data that although the power
consumption increases with the number of cores participating
in the computation, the performance also increases with the
cumulative effect being that the performance per unit of power
spent still improving with more cores used. This is mainly
because of the influence of idle power. If you don’t use a core,
the idle power is wasted.

The higher the parallelization factor, the better the perfor-
mance and energy-normalized performance, as expected.

More interestingly, from the energy per instruction metric
one can see it increasing when the number of Al5 cores
increase but decrease when the number of A7 cores increase.
This is on account of the much higher efficiency of A7 cores
in terms of energy per instruction.

Homogeneous example: This group of results illustrate the
scaling of the energy per instruction EPIy and the energy-
normalized performance with the system’s frequency. The
values for frequencies have been selected within the allowed
range of 200MHz to 2000MHz and the same frequency have
been set for A7 and AlS cores if possible (for values above
1400MHz, the frequency for A7 is set to the allowed maximum
of 1400MHz). This point causes a non-smooth change in a 415
leading to a peculiar non-smooth behavior of the metrics.
There are two other less obvious behavior boundaries: S00MHz,
where DVFS switches to DFS, and 1900MHz, above which the
AL1S5 cores experience throttling because of thermal issues. All
these points are reflected by our models.

Figure 3 shows the graphs for the energy per instruction
EPIy in different heterogeneous core combinations for P =
0.9. Figure 4 shows the graphs for the energy-normalized
performance, also for P = 0.9.

Homogeneous example: Figure 5 presents an example of
applying the presented models to a homogeneous system for
completeness, demonstrating that X = 1 also works. From this
figure, we can make an interesting observation: if you put more
cores to solving a problem with a low parallelization capability




(P = 0.1), energy per instruction suffers, especially at the lower
frequencies.

VIII. CROSS-VALIDATION

The models operate on application- and platform-dependent
parameters, which are typically unknown and imply high ef-
fort in characterization. However, in order to prove that the
proposed models work, it is sufficient to show that, if @, 3
and P are defined, the performance and power behavior of the
system follows the model’s prediction. These parameters can
be fixed by a set of synthetic benchmarks.

The proper validation of the applicability of the proposed
modeling will require extensive runs of standard benchmark
suites and real-life applications, and is a subject of future work.
Also, in this paper we present cross-validation results only for
the Amdahl’s model extension.

A. Calculating parameters

The model characterization is derived from single core
experiments. These characterized models are used to predict
multi-core execution in different core configurations. These pre-
dictions are then cross-validated against experimental results.

In our experiments we use three benchmarks: square root
calculation (sqrt), integer arithmetic (int), and logarithm calcu-
lation (log). The characterization and cross-validation is done
separately for each benchmark. Hence we derive three sets of
parameters.

Parallelization parameter: The benchmarks have been de-
veloped specifically for this experiment in order to provide
control over the parallelization parameter P. Hence, P is not
a measured parameter, but a control parameter that tells the
application the ratio of distribution between the parallel (multi-
threaded) and sequential (single thread) execution.

The benchmarks implement synchronized-parallel execution,
hence the models for these benchmarks should use N, and N,
calculated according to (14) and (32) respectively.

Relative performance of cores: All experiments in this
section are run with both A7 and Al5 cores at 1400MHz. In
this study, we set BCE to A7, hence aa7 = 1; and ava15 can
be found as a ratio of execution times a415 = Ta7/Tais,
as shown in Table II. It can be seen that, A15 is expectedly
faster than A7 for integer arithmetic and logarithm calculation,
however square root calculation is faster on A7. This is con-
firmed multiple times in many experiments [20]. Three different
benchmarks provide different o415 values, which strengthens
our study.

Core idle and active powers: Idle powers are determined
as average over 1min of measurements while the platform is
running only the operating system. The idle power values are
the same as in Section VII : W, 47 = 0.1363W and W, 415 =
0.3759W, which are used for all benchmarks. The standard
deviation during the idle power measurements is 1.949% of
the mean value.

Effective powers W7, W15 are calculated from measured
active powers by subtracting idle power according to (27).
The power ratios are then found as S47 = 1 and Ba15 =
Wa15/W az; the values are presented in Table II.

B. Outcomes

A large number of experiments have been carried out cov-
ering all benchmarks (sqrt, int, and log) and all core configu-
rations, and repeated for P = 0.3 and P = 0.9.

Model predictions and experimental measurements for se-
lected homogeneous and heterogeneous multi-core configura-
tions can be found in Table IIl. The measured speedup is
calculated as time for a single A7 core execution (Table II)
over the benchmark’s measured execution time.

An important observation is that the differences between
the model predictions and experimental measurements are very
small. For the results that are not presented, the error values are
similar. The speedup error never exceeds 1%, and the power
error never exceeds 4%, which is comparable to the standard
deviation of the characterization measurements.

A possible explanation for the low error values can be that
the used synthetic benchmarks produce constant @, 3 and P
values: P is constant as it is a control parameter; @, B are
constants because the benchmarks are based on repeating the
same calculation. In real life applications, these should have at
least some degree of variability. However, these small errors
also prove that the models can be used with high confidence if
it is possible to track these parameters.

A counter intuitive result for 7-core (three A7 cores and
four A15 cores) execution having lower power consumption
than four A15 cores and no A7 cores can be explained by
synchronized-parallel execution. Because the parallel workload
is equally split between these cores, the A15 cores finish early
and wait for A7 cores. This idling reduces the average total
power consumption, however it implies that intelligent work-
load distribution can improve core utilization by scheduling
more tasks to A15 cores than to A7 ones so that they finish at
the same time. This is a possible objective for future research.

IX. CONCLUSIONS

This paper addresses the emerging issue of the system het-
erogeneity becoming more common and diverse in its structure
well beyond the traditional CPU+GPU assumption. This is done
by introducing the extended model for system heterogeneity.
The three known speedup models (Amdahl’s Law, Gustafson’s
model, Sun and Ni’s model) are extended to cover this wider
heterogeneity. In addition to performance speedup, the paper
presents the models for power and energy related system
metrics.

The derived theoretical models have been applied to a real-
life heterogeneous system, whose structure does not fit into
the traditional heterogeneity assumption. The model parameters
have been characterized from a set of experiments, and the
metrics of interest have been calculated to demonstrate the
model capabilities. These metrics include speedup, average
power scaling, energy per instruction and energy-normalized
performance. Cross-validations comparing model results to
experimental results show very small errors, typically below
1% for speedup and below 4% for power.
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TABLE II: Characterization experiments: single core execution

benchmark sqrt int log
fixed workload, iterations 2.4-108 4.08 - 109 2.4-108
core type ¢ A7 Al5 A7 AlS A7 AlS
measured time, ms 75020 79892 79329 64046 62927 35711
measured active power, W 0.2563 0.8407 0.2620 0.8418 0.2874 0.9406
power measurement std dev 3.934% | 3.617% | 4919% | 4.392% | 4.519% | 6.530%
calculated effective power, W 0.1200 0.4648 0.1257 0.4659 0.1511 0.5647
a; 1 0.9390 1 1.2386 1 1.7621
Bi 1 3.8733 1 3.7064 1 3.7373

TABLE III: Initial cross-validation results for heterogeneous Amdahl’s Law

time, ms speedup average total power, W
bench | P [ Nar [ Nais measured || predicted | measured [ error predicted [ measured | error
sqrt 0.3 3 0 59992 1.2500 1.2505 0.04% 0.6622 0.6686 0.96%
sqrt 0.3 0 4 61911 1.2116 1.2117 0.01% 1.1119 1.0993 1.15%
sqrt 0.3 2 2 61910 1.2116 1.2118 0.01% 1.0438 1.0312 1.22%
sqrt 0.3 3 4 59359 1.2641 1.2638 0.02% 1.0769 1.0666 0.97%
sqrt 0.9 3 0 29988 2.5000 2.5017 0.07% 0.8122 0.8042 0.99%
sqrt 0.9 0 4 25977 2.8893 2.8879 0.05% 1.9424 1.9252 0.89%
sqrt 0.9 2 2 25961 2.8893 2.8897 0.02% 1.4548 1.4239 2.17%
sqrt 0.9 3 4 18300 4.1082 4.0995 0.21% 1.9515 1.9403 0.58%
int 0.9 3 0 31705 2.5000 2.5021 0.08% 0.8265 0.8305 0.49%
int 0.9 0 4 20823 3.8112 3.8097 0.04% 1.9457 1.9351 0.55%
int 0.9 2 2 24264 3.2708 3.2694 0.04% 1.3739 1.3537 1.49%
int 0.9 3 4 16637 47777 4.7682 0.20% 1.8478 1.8117 1.99%
log 0.9 3 0 25118 2.5000 2.5053 0.21% 0.8900 0.8925 0.29%
log 0.9 0 4 11580 5.4219 5.4341 0.22% 2.2497 2.2135 1.64%
log 0.9 2 2 17722 3.5492 3.5508 0.04% 1.3791 1.3615 1.29%
log 0.9 3 4 11690 5.3960 5.3830 0.24% 1.8889 1.8570 1.72%
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Fig. 2: Model exploration on a single DVFS point (1400MHz), two different parallelization ratios P=0.1 and 0.9, and core
configurations with 1-3 A7 cores and 1-4 A15 cores. The metrics compared include performance, power, energy per instruction
and energy normalized performance.
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Fig. 3: Energy per instruction, exploring through a number of core combinations and frequencies from 200MHz to 2GHz, with
P=0.9.
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Fig. 4: Energy normalized performance, exploring through a number of core combinations and frequencies from 200MHz to
2GHz, with P=0.9.
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Fig. 5: Energy per operation, comparing the three different models and P=0.1 and P=0.9. Homogeneous systems with between
one and three A7 cores and zero Al5 cores running.



