
Energy-Efficient Approximate Wallace-Tree Multiplier using
Significance-Driven Logic Compression

Issa Qiqieh∗, Rishad Shafik∗, Ghaith Tarawneh∗, Danil Sokolov∗, Shidhartha Das†, Alex Yakovlev∗
∗School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK,

†ARM, 110 Fulbourn Rd, Cambridge CB1 9NJ, Cambridge, UK
Emails:∗{i.qiqieh1, rishad.shafik, ghaith.tarawneh, danil.sokolov, alex.yakovlev}@newcastle.ac.uk,†Shidhartha.Das@arm.com

Abstract—In this paper, we propose an energy-efficient approx-
imate multiplier design approach. Fundamental to this approach
is configurable lossy logic compression, coupled with low-cost
error mitigation. The logic compression is aimed at reducing the
number of product rows using progressive bit significance, and
thereby decreasing the number of reduction stages in Wallace-
tree accumulation. This accounts for substantially lower number
of logic counts and lengths of the critical paths at the cost
of errors in lower significant bits. These errors are minimised
through a parallel error detection logic and compensation vector.
To validate the effectiveness of our approach, multiple 8-bit
multipliers are designed and synthesized using Synopses Design
Compiler with different logic compression levels. Post synthesis
experiments showed the trade-offs between energy and accuracy
for these compression levels, featuring up to 70% reduction in
power-delay product (PDP) and 60% lower area in the case
of a multiplier with 4-bit logic compression. These gains are
achieved at a low loss of accuracy, estimated at less than 0.0554 of
mean relative error. To demonstrate the impact of approximation
on a real application, a case study of image convolution filter
was extensively investigated, which showed up to 62% (without
error compensation) and 45% (with error compensation) energy
savings when processing image with a multiplier using 4-bit logic
compression.

I. INTRODUCTION

Approximate computing has been introduced as an efficient
solution for achieving higher computational performance at
low energy cost for imprecision-resilient applications. The
basic premise of approximate computing is to replace tradi-
tional complex and energy-wasteful data processing blocks by
low-complexity ones with reduced logic counts. As a result,
effective chip area and energy consumption are reduced at the
cost of imprecision introduced to the processed data [1].

Research has shown that the majority of modern appli-
cations could be ordered under the domain of approximate
computing, such as digital signal processing, computer vision,
robotics, multimedia and data analytics [2]. This can be lever-
aged as an opportunity for energy-efficient system design for
current and future generations of application-specific systems.

Approximate arithmetic, such as approximate adders and
multipliers, can be exploited as means of reducing energy
requirements, increasing speed, reducing cost and increasing
reliability in many of these applications [3] [4]. Multipliers
are crucial arithmetic units in many of the aforementioned
applications, for two major reasons. Firstly, they are charac-
terized by complex logic design, being one of the most energy-

demanding data processing units in modern microprocessors.
Secondly, compute-intensive applications typically exercise a
large number of multiplication operations [5]. These factors
have prompted approximate multiplier design research, since
improvements made in the power/speed of a multiplier are
expected to substantially influence the overall system power/
performance trade-offs [6].

Recently reported multiplier design approaches can be
largely categorized as modifications of either timing or func-
tional behaviors. Timing behavior can be modified by lowering
the supply voltage below its nominal value which allows for
reductions in energy consumption at the cost of time-induced
errors [7]. Since timing errors are caused by long carry chains,
i.e., impact the most significant bit of the final product, it
is necessary to quantify the impact of timing violation by
modifying the conventional multiplier to allow for graceful
degradation [8].

Functional modifications deal with logic reduction tech-
niques and can be performed by relaxing the need for accurate
Boolean equivalence in favor of energy and circuit area
reductions. For example, truncating multiplier product terms
allows for the elimination of some of the least significant
partial product terms [9]. As more columns are eliminated,
further energy reduction is achieved; however, errors also
increase. Large efficient multipliers using inaccurate small
multiplier blocks is another effective technique [10] [11];
however, the hierarchical organization of small approximate
blocks may not significantly reduce the critical path and also
will eventually propagate more errors when increasing the size
of multiplier. Automated design approaches [12]–[14] present
design flows for generating approximate circuits using circuit
activity profiles, quality bounds and evolutionary processes.
The key principle of the above studies is to achieve reduced
logic complexity, which is also the main aim of our work.

In this paper, we propose an energy efficient approximate
multiplier using significance driven logic compression. Com-
pared to our previous work in [15], we present the following
new key contributions:

1) Incorporate a Wallace-tree accumulation method to-
gether with the significance-driven logic compression
(SDLC) approach to shorten the reduction stages.

2) Add a parallel error detection and compensation method
to minimise the impact of lossy compression.

978-1-5386-0446-5/17/$31.00 c© 2017 Crown

3) Use a real application to extensively investigate the
conflicting design trade-offs between accuracy and im-
plementation cost (power-delay product and area).

The rest of the paper is organized as follows. Section II
introduces the proposed approximate multiplier design. Sec-
tion III shows the error detection and compensation method
used to reduce the errors. Section IV provides the error
analysis associated with different levels of logic compressions.
The experimental results and design trade-offs are described
in Section V. Finally, Section VI concludes the paper.

II. PROPOSED APPROXIMATE WALLACE MULTIPLIER

In this section, we introduce an approximate Wallace-
tree multiplier design approach using hardware-based logic
compression techniques. The proposed approach consists of
two major steps. First, systematic lossy compression is carried
out using SDLC approach [15] to generate a reduced number
of partial product rows. Second, Wallace method is applied to
reduce the number of these rows to the height of two to be
then combined using a carry propagating adder. These steps
together with different logic compression levels, are described
below.

1) Significance-Driven Logic Compression (SDLC): Ac-
cording to [15], SDLC approach generates all partial products
in an (N × N) multiplier using N2 AND gates, similar
to conventional multiplication. Then various sizes of logic
clusters are utilized to compress a group of vertically-aligned
bits within a group of successive partial products based on
their progressive bit significance. Each logic cluster is able
to produce an approximate but acceptable row. After that
a commutative remapping technique is used to reduce the
number of rows in the partial product bit-matrix. This leads to
decrease the number of reduction stages in the Wallace accu-
mulation tree and therefore reduction in hardware complexity
of Wallace multiplier. To achieve lossy compression in the
SDLC approach, we follow two key principles as follows.

a. Reduction of partial product terms: The proposed multi-
plier organizes the partial product terms using different sizes
of logic clusters. Each logic cluster targets a group of d
consecutive rows of partial products. Each of the l columns of
this cluster are reduced to a single bit thanks to compression
operation using a d-input OR gate. To preserve the high-order
bits of the final product, d-bit OR compression is not applied
everywhere. In general, each (d×l) logic cluster is responsible
for two operations: i) generating (d × l) partial product bits
within d contiguous rows, by utilizing (d×l) AND gates. Then,
ii) compressing these bits by just a row of l bits using l d-
input OR gates. Figure 1 demonstrates the impact of increasing
depth of the logic cluster from 2- to 3- and 4-bit in the case
of (8×8) parallel multiplier. The lined boxes refer to a group
of bits targeted by different sizes of logic clusters. As can be
seen, with increased depth of logic clusters further reduction
in the partial product terms is achieved. Moreover, the size of
the logic clusters is decreased when going down in the partial
product matrix. This permits the most significant product terms

(a)

2-b
it

2-b
it

2-b
it

2-b
it

3-b
it

3-b
it

2-b
it

4-b
it

4-b
it

(c)

(b)

Partial Product Bit Ai Bi . Compressed Bit Resulted from Logic Clusters.

Figure 1: Stylized demonstrations of SDLC approach [15] in (8× 8) parallel
multiplication using: (a) 2-bit, (b) 3-bit, (c) 4-bit logic compression levels.

to be accumulated on a carry-propagation basis as in the
conventional multiplier, while bits with lower significance are
compressed using the SDLC approach. Thus, the accuracy of
the significant bits of the final product is less affected.

b. Commutative remapping: The reduction in the number
of product terms, can be leveraged to decrease the number of
rows prior to the accumulation stage. This can be achieved by
remapping the partial product terms based on the commutative
property of the bits, i.e., bits with the same weight are gathered
in the same column. For example, in the case of 2-bit logic
cluster, the height of the critical column is reduced by half
compared to the accurate accumulation tree. Figure 1 (the
dot diagrams at right) shows the ordered bit-matrices after
applying commutative remapping of the bit sequence resulting
from the SDLC approach. The height of the critical columns
are further reduced with increased logic compression depth.

2) Wallace-tree accumulation Method: One of well-known
fast multiplier is the column compression multipliers presented
by Wallace [16]. This multiplier consists of three consecutive
phases: partial product formation, accumulation, and carry
propagating adder (CPA), as follows.

a. Wallace tree with variable logic clusters: In general,
(N × N) traditional Wallace multiplier begins to group N
rows together in sets of three rows each. Any additional rows
that are not a member of a group of three are transferred
to the next level without modification. Within each group of
three rows, (3, 2) counters (full adders) are applied to the
columns containing three bits and (2, 2) counters (half adders)
are applied to the columns containing two bits. Columns
containing only a single bit are transferred to the next level
unchanged. By doing so, the partial product bit-matrix is then
column-wise accumulated to a height of two. These two rows
are combined using a CPA.

Since the hardware complexity of Wallace multiplier de-
pends on the number of partial product rows in accumulation
tree [17], SDLC approach can be employed as an efficient
way to reduce the height of the rows in partial product
matrix. As such, the number of the reduction stages in Wallace

0a)

0b)

0c)W

0d)W

PartialWProductWBitWAi Bi .W
CompressedWBitWResultingWfromWSDLCWwithWDifferentWDepthsWofWLogicWCompression.

CompressedWBitWResultingWfromWWallace-Tree.

StageW4

StageW2

StageW1

StageW1

StageW2

StageW1

StageW3

OR 10-bitWCPA

OR 11-bitWCPA

11-bitWCPA

11-bitWCPA

Figure 2: Reduction stages of an (8× 8) multiplier: (a) Traditional Wallace
tree; (b), (c) and (d) Proposed Wallace tree coupled with SDLC approach for
2-bit, 3-bit and 4-bit logic compression levels.

accumulation method is deterministically reduced.
Figure 2 illustrates the impact of using different degrees of

logic compression on the number of reduction stages needed
by Wallace method in the case of (8 × 8) Multiplier. As can
be seen, four reduction stages are required in the case of
traditional Wallace multiplier. Stage 1 reduces form 8 rows
to 6 rows, then stage 2 from 6 rows to 4 rows, then 4 to 3
and finally, 3 to 2 in stage 4. This can be achieved by utilizing
total of 38 (3, 2) counters, 15 (2, 2) counters, and a 10-bit CPA
with 1 OR gate used to form the 16-bit product. The number
of reduction stages required by Wallace accumulation method
is reduced when applying the SDLC approach with different
logic compression levels, thereby the hardware complexity in
terms of (3, 2) and (2, 2) counters is substantially decreased.
For instance, with 2-bit logic clusters, two reduction stages
with matrix heights of 3 and 2, this requires total number of
15 (3, 2) counters and 9 (2, 2) counters. These numbers are
further reduced to only 6 (3, 2) counters and 5 (2, 2) counters
for 3-bit logic clusters. No reduction stages needed with 4-bit
logic compression.

For an (N × N) Wallace-tree multiplier, the height of the
matrix in the kth reduction stage, αk is given by the following
recursive equations:

α0 =

{
N, for traditional Wallace-tree multiplier⌈
N
d

⌉
, for SDLC with d-bit compression level

αk+1 = 2 ·
⌊αk

3

⌋
+ αk mod 3 . (1)

The reduction in hardware complexity achieved by SDLC
leads to low switching capacitance and leakage reading as
well as shortened critical paths (see Section V). Furthermore,
different depths of logic compression can support the Wallace-
tree multiplier with different energy-accuracy trade-offs (see
Section IV).

b. Scalability of the proposed Wallace multiplier design:
The proposed approach is scalable for any (N×N) multiplier,
as shown in Algorithm 1. This algorithm forms all partial

product terms and apply SDLC approach to generate reduced
and ordered partial product bit-matrix M as indicated in
Lines (7), which can then be treated as an accumulation tree
by Wallace method as indicated in Line (8). The two rows
resulting from Wallace reduction stages are combined using
carry propagating adder Line (9). The algorithm associated
with the SDLC approach for any (N×N) multiplier is detailed
in [15].
Algorithm 1 (N × N) Wallace-tree multiplier using SDLC
approach with d-bit logic clusters.

1: procedure APPROXIMATE-WALLACE(P,A,B)
2: Output: P [1, 2, ..., 2N] . Final Product bits
3: Inputs: A[1, 2, ..., N] . Multiplicand bits
4: B[1, 2, ..., N] . Multiplier bits
5: Initialize:M [1, 2, ...,

⌈
N
2

⌉
][1, 2, ..., 2N − 1] . Reduced Matrix by SDLC

6: R[1, 2][1, 2, ..., 2N − 1] . Two rows combined by CPA

7: M ← SDLC(A,B, d) . SDLC [15] with d-bit logic compression
8: R← WallaceReduction(M) . Reducing M to a height of two
9: P ← CarryPropagatingAdder(R) . Final product is generated

10: end procedure

III. ERROR COMPENSATION METHOD

The lossy compressions exercised by the logic clusters
introduce errors in the final product. These errors are orig-
inated from using an array of OR gates to compress the
partial product terms instead of adding them by exact adders.
In theory, a two-input OR gate is sufficient to add two
bits, i.e., ‘0’+‘1’=‘1’+‘0’=‘0’OR‘1’=‘1’OR‘0’=‘1’ and also
‘0’+‘0’=‘0’OR‘0’=‘0’. However, the OR gate fails to give an
accurate sum if the two inputs are “ones”, i.e., ‘1’+‘1’ 6=‘1’
OR ‘1’, in such cases the error distance is ‘1’ as the adder
returns ‘10’ and OR outputs ‘1’. When increasing the level
of compression using 3- and 4- logic clusters, 3- and 4-input
OR gate are also sufficient to add three and four bits together
but with an increased probability of errors comparing to 2-bit
depth of logic compression.

The proposed multiplier design adopts a systematic error
compensation method to reduce the impact of error issued by
the logic clusters. Figure 3 illustrates various logic structures
used to detect such errors for 2-, 3- and 4-bit depths of logic
compression. These logic structures have been designed to
run in parallel with the logic clusters to generate the error
signals. In the case of 2-bit logic clusters, AND gate is able
to generate an error signal only when the OR gate fails to
give an accurate sum, i.e., both of its inputs are “ones”. Based
on this situation, each error signal can be used as an error
compensation bit to modify the final result. In the case of 3-
and 4-bit logic clusters, 2-input OR followed by a pair of 2-
input AND gates are responsible to detect the errors. Parallel

Error
Signal

Sum
bit

.
.

.
.

.
(a) (b) (c)

Error
Signal

Sum
bit

Error
Signal

Sum
bit

Figure 3: The error-detection logic circuit parallel with the logic clusters
required by ECM method in: (a) 2-bit; (b) 3-bit; (c) 4-bit logic clusters.

ErrorxCompensation7Row
ErrorxCompensation7Row

ErrorxCompensation7Row

Error7Signal

Sum7bit7.
.

ErrorxCompensation7Vector
Parallel7with7Stage71

12345679G1 8

Error7Compensation7Bit7Resulted7from7ErrorxDetection7LogicA

S
tag

e71
S

tag
e72

11

The7Fourth7Row7in7the7Partial7Product7Matrix7
after7Applying7SDLCA7

Partial7Product7Bit7Ai Bi A7 Compressed7Bit7Resulted7from7Logic7ClustersA

Generation7of

5679G1 811

Figure 4: The proposed ECM method in 2-bit logic compression.

with logic clusters, the suggested implementations of error-
detection logic can discover most of the cases that lead to
error without causing any additional cost of delay.

After that, the array of error compensation bits associated
with a logic cluster can be defined as error compensation row.
Thus, 4, 3 and 2 error compensation rows can be generated by
2-, 3- and 4-bit logic clusters respectively. Adding any of these
rows to the reduced partial product bit-matrix can mitigate the
influence of the errors caused by SDLC approach. However,
increasing the number of rows in Wallace accumulation tree
leads to increase the hardware complexity and also the delay
time for generating the final product. To this end, an efficient
error compensation method (ECM) is adopted by the proposed
design and described as follows.

In the case of 2-bit logic clusters, as shown in Figure 4, four
rows of product terms are generated by the SDLC approach
in parallel with four error compensation rows produced by the
error-detection logic. Applying Wallace method to accumulate
the four rows of product terms requires two reduction stages
(see Section II-2). Within reduction stage 1, first three rows
of product terms are accumulated and the fourth row is trans-
ferred to the second reduction stage without any modification.
It is possible to exploit the time taken by the first reduction
stage of Wallace tree to form one error compensation vector.
This can be done by ORing all bits with the same weight
through the first three error compensation rows with the
existing fourth row of product terms. Then, instead of adding
this vector as an additional row in Wallace tree, it is used to
replace the fourth existing row within the second reduction
stage, so this will not increase the number of reduction stages
in Wallace tree. Also, to keep the critical delay of multiplier
design less affected by the proposed ECM, just last seven
most significant bits of the error compensation vector are
accumulated in Wallace tree.

For the cases of 3- and 4-bit logic clusters, the last eight
and nine of the most significant bits of the error compensation
vector are included as additional row in the Wallace tree
respectively. Compared to 2-bit logic cluster, this will rise the
number of reduction stages in Wallace tree by one leads to
increase the critical delay of the proposed multiplier design.
However, the impact of the proposed ECM on the probability
and mean of the errors introduced by different logic compres-
sion levels have remarkably decreased (see Section IV).

IV. ERROR ANALYSIS

A number of simulations are carried out to examine the
impact of error on the proposed approach for different degrees
of logic compression when applying Wallace-tree scheme.
Several error metrics have been discussed in [14] and [18] for
evaluating the effectiveness and quantifying errors of approx-
imate adders and multipliers. For any (N × N) approximate
multiplier, the error distance (ED) is defined as the arithmetic
difference between the accurate product (P) and erroneous
product (P ′), i.e., ED = |P − P ′|. The relative error distance
(RED) is the ratio of ED over the accurate output, i.e.,

RED = ED
P =

|P−P ′|
P . The error probability (EP) is defined

as the ratio of incorrect outputs with respect to the total number
of outputs. For any (N×N) approximate multiplier, the mean
RED (MRED) is defined as [18]:

MRED =

∑22N−1
i=0 RED

22N
. (2)

The Mean Error Distance (MED) is another useful error
metric defined as the average of the ED values, i.e., MED =∑

ED
22N

. Also, the mean squared error (MSE) is defined as the
average of the squared ED values, i.e., MSE =

∑
ED2

22N
. For

comparing multipliers of different sizes, the normalized MED
(NMED) is defined as [18]:

NMED =
MED

Pmax
=

∑22N−1
i=0 ED

22N

Pmax
, (3)

where Pmax is the maximum product that can be obtained
from an (N ×N) accurate multiplier, i.e., Pmax = (2N −1)2.

The simulations are performed in Matlab by incorporating a
functional model of the SDLC approach with (8×8) Wallace-
tree accumulation. The response of all approximate multipliers
are evaluated for all possible combinations of operands. Table
I shows five error metrics using different depths of logic
compression with (8×8) Wallace accumulation. It can be seen
that the proposed ECM improves the accuracy for all depths
of logic compression. The MRED is improved more than 45%
for 2-and 4-bit logic clusters and (up to 75%) for 3-bit logic
clusters. Similar observation for NMED improvements (up
to 76%) for 3-bit logic clusters. The increasing trend in the
error rate is expected due to the increased bit-depth of logic
cluster of the multiplier. This is because the growing likelihood
of finding a pair of vertically aligned “ones” through two
successive rows. In such cases, the corresponding OR gate
will return an error (as detailed in Section III). However, such

TABLE I: ECM drastically reduces the errors across all metrics.

(8x8) Wallace
Multiplier

EP
(%) MED MSE

MRED
(%)

NMED
(%)

2-bit SDLC [15] 49.11 229.38 251733.8 1.9883 0.3527
2-bit SDLC

Modified ECM 36.75 167.18 204883.93 1.0762 0.2571

Improvements(%) 25.17 27.12 18.61 45.87 27.11
3-bit SDLC [15] 65.73 654.94 1590278.5 4.6847 1.0072
3-bit SDLC ECM 43.19 162.52 187754.3 1.1725 0.2499
Improvements(%) 34.29 75.19 88.19 74.97 75.19
4-bit SDLC [15] 77.57 2127.78 15309286 10.5835 3.2723
4-bit SDLC ECM 69.45 1111.45 4743255 5.5382 1.7093
Improvements(%) 10.47 47.76 69.02 47.67 47.76

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33

C
um

ul
at

iv
e%

P
ro

ba
b

ili
ty

%

RED%(M)

2-bit_SDLC

2-bit_SDLC_ECM

3-bit_SDLC

3-bit_SDLC_ECM

4-bit_SDLC

4-bit_SDLC_ECM

Figure 5: Cumulative probability distribution for the error induced by different
logic compression levels coupled with the proposed ECM.

probability of error can be misleading, as the eventual impact
of error is reflected in error distance metrics, i.e., MRED and
NMED [19].

The majority of these errors would not denote severe
degradation of the final output because the occurrence of
the higher errors is regarded as very rare. This can be seen
in Figures 5 which demonstrates the cumulative probability
distribution for the relative errors resulting from Wallace-tree
multiplier for different sizes of logic clusters coupled with
ECM. The proposed multiplier does not sacrifice the precision
of the more significant bits when using SDLC approach.
This can be observed in the sharp rise of the cumulative
probability of errors towards 1, especially for lower depth of
logic compression, such as 2- or 3-bit SDLC. Furthermore,
incorporating ECM together with SDLC approach tends to
produce results that are closer to the exact outputs. This is
seen when the cumulative probability distributions reach to 1
faster than SDLC approach without ECM. The proposed ECM
increases the probability of trivial errors; however, it lowers
the probability of occurrence of higher RED. For example, in
the case of 2-bit SDLC, the probability of having errors with
less than 1% RED, i.e., RED of 0%-1%, is increased from 0.68
to 0.81 when applying ECM, while the likelihood of RED of
the range 9%-10% is decreased form 0.02 to 0.002 for the
same case. Similar observations can be made in the case of
3 and 4-bit logic clusters. The impact of increased degree of
compression coupled with ECM is further investigated in the
application case-study in Section V.

V. EXPERIMENTAL RESULTS AND DESIGN TRADE-OFFS

To demonstrate the proposed approach, we applied it on
different (8× 8) parallel multiplier designs. A SystemVerilog
code was used to generate synthesizable modules for Wallace-
tree accumulation structure coupled with 2-bit, 3-bit and 4-
bit logic clusters. Accurate ripple adders were used in the
last phase for adding the resulting two rows after Wallace
accumulation phase. The generated codes were implemented
and synthesised using two different off-the-shelf tools: Mentor
Graphics Questa Sim was used to compile the SystemVerilog
codes and run the associated test benches; and Synopsys
Design Compiler was utilized for synthesising all sizes of
accurate and proposed multipliers when mapping the circuits
to the Faraday’s 90nm technology library and evaluating for
power, delay and area.

Figure 6 illustrates the impact of proposed ECM in terms
of dynamic/leakage power, delay, area and PDP savings with
increased degree of logic compression. As seen, there are sig-
nificant improvements in all design trade-offs. This is basically
because SDLC approach decreases the number of reduction
stages in Wallace accumulation phase (see Section II-2).
Furthermore, this reduction in hardware complexity leads to
low switching capacitance and leakage reading as well as
shortened critical paths. In the case of 2-bit logic clusters,
slight decreasing of critical delay and power consumption
comparing to 3-bit and 4-bit logic compressions. This is
because the error compensation vector is utilized by replacing
the fourth existing row without increasing the number of
reduction stages (see Section III).

The extra cost induced by the ECM method translates in
cost in area, delay and power. For example, while the area was
divided by 2 with the 3-bit SDLC compared to the traditional
Wallace multiplier, it is only reduced by 30% with the 3-
bit SDLC-ECM (first item of Figure 6-b). This is due to
increasing the number of reduction stages when including
the error compensation vector to the accumulation tree as
additional row for the cases 3- and 4-bit SDLC approach (see
Section III). For dynamic and leakage power, the reductions
obtained from applying error compensation method range from
25.3%-40.8% and 34.5%-51.5% respectively. Furthermore, the
range of savings in the operating delay for the proposed
multiplier is from 8.9%-17.1%. The reduction in complexity
also leads to silicon area to be reduced by 29.7%-42.7%, and
energy is reduced as a PDP by 32.4%-51.4%.

We evaluate the efficiency of the proposed technique on
a real life image-processing application. Such an application
consists of additions and multiplications using key multipliers
as building blocks. Our analysis considers the Gaussian blur
filter since it is widely used in graphics software, typically to

0

10

20

30

40

50

60

70

Area Dynamic%Power Leakage%Power Delay PDP

R
ed

uc
tio

n%
EC

M 3-bit%SDLC_Wallace 3-bit%SDLC_Wallace_ECM

0

10

20

30

40

50

60

70

80

Area Dynamic%Power Leakage%Power Delay PDP

R
ed

uc
tio

n%
EC

M

4-bit%SDLC_Wallace 4-bit%SDLC_Wallace_ECM

EaM

EbM

EcM

0

10

20

30

40

50

Area Dynamic%Power Leakage%Power Delay PDP

R
ed

uc
tio

n%
EC

M

2-bit%SDLC_Wallace 2-bit%SDLC_Wallace_ECM

Figure 6: The impact of the proposed ECM on the (8×8) approximate Wallace
multiplier with: (a) 2-bit, (b) 3-bit and (c) 4-bit logic compression levels.

Figure 7: Evaluating the impact of proposed error compensation method on the output quality after applying Gaussian blur filtering.

reduce image noise and detail by acting as a low-pass filter.
This filter involves the convolution of a ‘kernel’, described
by a Gaussian function, with the pixels of the image. The
values of a given pixel in the output image are calculated
by multiplying each kernel value by the corresponding input
image pixel values; then all the obtained values are added and
the result will be the value for the current pixel that overlaps
with the centre of the kernel.

To illustrate the effect of the proposed error compensation
method on different logic compression levels, different ver-
sions of an 8-bit approximate Wallace-tree multiplier together
with the Gaussian blur algorithm are implemented in Matlab
covering 2-, 3- and 4-bit depth clustering. The Gaussian kernel
is (3×3) with a 1.5 standard deviation value and it uses 8-bit
fixed point arithmetic and is applied to 8-bit grayscale input
image size (512×512) pixels. We approximate Gaussian blur
by replacing the standard multiplication in the Gaussian filter
with the aforementioned approximate (8× 8) multipliers. The
peak signal-to-noise ratio (PSNR) is a fidelity metric used to
measure the quality of the output images, expressed as:

PSNR = 10 log10

(
2552

MSE

)
, (4)

where MSE is the mean squared error measured with respect
to the reference pixel. Figure 7 demonstrates the impact of
the proposed error compensation method on the image quality
after applying the Gaussian blur filter. As seen, the PSNR
in the case of 2-, 3- and 4-bit depth clustering are 50.2
dB, 39 dB, 30 dB respectively. By employing the proposed
error compensation method, the PSNR values are increased
to 56.4 dB, 51.5 dB, 35.8 dB respectively. This is because
the error compensation vector capable to decrease the mean
and probability of the majority of the errors introduced by the
lossy compression. Thus, the proposed approach can provide a
significant dynamic energy saving up to 68.3% with acceptable
quality of output image, especially when utilizing smaller bit
depth clusters with the proposed error compensation method.

VI. CONCLUSIONS

In this paper, a novel approximate Wallace multiplier de-
sign is proposed using significance-driven logic compression
(SDLC) approach. This design approach utilizes an algorith-
mic and configurable lossy compression based on bit signif-
icance to form a reduced number of partial product rows.
This is then accumulated using Wallace-tree scheme. Different
(8 × 8) multiplier designs in SystemVerilog and their post
synthesis results demonstrate the following key advantages.
Firstly, The Wallace-tree modification with reduced length

of carry propagating adder improve the power efficiency for
2-bit logic cluster in SDLC. Secondly, the proposed error
compensation method significantly reduce the impact of errors
resulted from variable sizes of logic clusters at low power and
area overheads. These trade-offs are further substantiated by
a case study of convolution filter used in image processing.

ACKNOWLEDGMENT

The authors would like to thank MOHE (Jordan), BAU
(Jordan) and EPSRC PRiME project EP/K034448/1(UK) for
their funding and support.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[2] L. Sekanina, “Introduction to approximate computing: Embedded tuto-
rial,” in IEEE DDECS, pp. 1–6, 2016.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS, pp. 1–6, 2013.

[4] M. D. Ercegovac, “On approximate arithmetic,” in 2013 Asilomar
Conference on Signals, Systems and Computers, pp. 126–130, 2013.

[5] S. H. Nawab et al., “Approximate signal processing,” The Journal of
VLSI Signal Processing, vol. 15, no. 1, pp. 177–200, 1997.

[6] H. Jiang et al., “A comparative evaluation of approximate multipliers,”
in NANOARCH, IEEE/ACM, pp. 191–196, 2016.

[7] Y. Liu et al., “Computation error analysis in digital signal processing
systems with overscaled supply voltage,” IEEE on VLSI systems, vol. 18,
no. 4, pp. 517–526, 2010.

[8] K. Shi et al., “Datapath synthesis for overclocking: Online arithmetic
for latency-accuracy trade-offs,” in DAC, pp. 1–6, ACM, 2014.

[9] T. A. Drane et al., “On the systematic creation of faithfully rounded
truncated multipliers and arrays,” IEEE Transactions on Computers,
vol. 63, no. 10, pp. 2513–2525, 2014.

[10] P. Kulkarni et al., “Trading accuracy for power with an underdesigned
multiplier architecture,” in 2011 24th Internatioal Conference on VLSI
Design, pp. 346–351, 2011.

[11] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier with
error correction,” in ICCD, pp. 33–38, 2013.

[12] S. Venkataramani et al., “Salsa: Systematic logic synthesis of approxi-
mate circuits,” in DAC, pp. 796–801, 2012.

[13] R. Venkatesan et al., “Macaco: Modeling and analysis of circuits for
approximate computing,” in Conf. on CAD, pp. 667–673, IEEE, 2011.

[14] V. Mrazek et al., “Evoapproxsb: Library of approximate adders and mul-
tipliers for circuit design and benchmarking of approximation methods,”
in DATE, pp. 258–261, 2017.

[15] I. Qiqieh et al., “Energy-efficient approximate multiplier design using
bit significance-driven logic compression,” in DATE, pp. 7–12, 2017.

[16] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on electronic Computers, no. 1, pp. 14–17, 1964.

[17] W. J. Townsend et al., “A comparison of dadda and wallace multiplier
delays,” in Optical Science and Technology, SPIE, pp. 552–560, Inter-
national Society for Optics and Photonics, 2003.

[18] J. Liang et al., “New metrics for the reliability of approximate and prob-
abilistic adders,” IEEE Transactions on Computers, vol. 62, pp. 1760–
1771, Sept 2013.

[19] I. S. Chong et al., “New quality metrics for multimedia compression
using faulty hardware,” in International Workshop on Video Processing
and Quality Metrics for Consumer Electronics, pp. 267–272, 2006.

