
Significance-Driven Logic Compression
for Energy-Efficient Multiplier Design

Issa Qiqieh†, Student Member, IEEE, Rishad Shafik†, Member, IEEE, Ghaith Tarawneh†, Member, IEEE,
Danil Sokolov†, Member, IEEE, Shidhartha Das‡, Member, IEEE, and Alex Yakovlev†, Fellow, IEEE

Abstract—Approximate arithmetic has recently emerged as a
promising paradigm for many imprecision-tolerant applications.
It can offer substantial reductions in circuit complexity, delay and
energy consumption by relaxing accuracy requirements. In this
paper, we propose a novel energy-efficient approximate multiplier
design using a significance-driven logic compression (SDLC)
approach. Fundamental to this approach is an algorithmic and
configurable lossy compression of the partial product rows based
on their progressive bit significance. This is followed by the
commutative remapping of the resulting product terms to reduce
the number of product rows. As such, the complexity of the
multiplier in terms of logic cell counts and lengths of critical
paths is drastically reduced. A number of multipliers with dif-
ferent bit-widths (4-bit to 128-bit) are designed in SystemVerilog
and synthesized using Synopsys Design Compiler. Post-synthesis
experiments showed that up to an order of magnitude energy
savings, and reductions of 65% in critical delay and almost 45%
in silicon area can be achieved for an 128-bit multiplier, compared
to an accurate equivalent. These gains are achieved with low
accuracy losses estimated at less than 0.0028 mean relative
error. Additionally, we demonstrate the performance-energy-
quality (PEQ) trade-offs for different degrees of compression,
achieved through configurable logic clustering. While evaluating
the effectiveness of the proposed approach three case studies
were set up. First, a Gaussian blur filter was designed, which
demonstrated up to 80% energy reduction with a meagre loss
of image quality. Second, we evaluate our approach in machine
learning application using perceptron classifier, showed up to
74% energy reduction with negligible error rate. Third, the
proposed multiplier designs were used in a power-constrained
image processing application. We showed that SDLC can achieve
60x improvement in computation capability, with potential to be
employed in ubiquitous systems.

Index Terms—Parallel multipliers, approximate arithmetic,
adaptive computing, power-constrained computing.

I. INTRODUCTION

THERE is a persistent demand for higher computational
performance at low energy cost for emerging applica-

tions. It is unlikely that improvements from manufacturing
processes alone, such as technology nodes or many-core
system-on-chip, will be able to cope with this challenge.
Thus there is a genuine need to develop disruptive design

†I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov and A. Yakovlev are with
the School of Electrical and Electronic Engineering, Newcastle University,
Newcastle upon Tyne, UK
(e-mail:{i.qiqieh1, rishad.shafik, ghaith.tarawneh,
danil.sokolov, alex.yakovlev}@newcastle.ac.uk).

‡Shidhartha Das is with ARM, Cambridge, UK
(e-mail:{shidhartha.das}@arm.com).

Manuscript received June 4, 2018.

approaches to achieve transformational energy reductions. Ap-
proximate computing systems design is a promising approach
to this end [1]–[3].

The basic premise of approximate computing is to re-
place traditional complex and energy-wasteful data processing
blocks by low-complexity ones with reduced logic counts.
As a result, effective chip area and energy consumption are
decreased at the cost of imprecision introduced to the pro-
cessed data. Research has shown that the majority of modern
applications such as digital signal processing, computer vision,
robotics, multi-media and data analytics have some level of
tolerance to such imprecision [4]. This can be leveraged as
an opportunity for energy-efficient systems design for current
and future generations of application-specific systems.

Approximate arithmetic, such as approximate adders and
multipliers, can be exploited as means of reducing energy re-
quirements, increasing speed, minimizing cost and improving
reliability in many of these applications. It has been largely
present in computing systems using fixed-point and floating
point operations [5], [6]. Multipliers are crucial arithmetic
units in modern applications, for two major reasons. Firstly,
they are characterized by complex logic design, being one
of the most energy-demanding data processing units in mod-
ern microprocessors. Secondly, compute-intensive applications
typically exercise a large number of multiplication operations
to compute outcomes. These factors have prompted close
attention in approximate multiplier design research, since
improvements made in the power/speed of a multiplier are
expected to substantially impact on overall system power/
performance trade-offs [7].

Over the years, a number of approximate computing ap-
proaches have been proposed. These approaches aim to reduce
the complexity of the circuits and systems in terms of their
computation latency and energy consumption [8]. Approxi-
mations can be introduced at all design levels, starting from
the circuit [9] via the logic [10] and the architecture [11],
[12] to programming language [13] and algorithms [14], [15].
The common design techniques in approximate circuit designs
include functional, timing (voltage over-scaling (VOS) and
over-clocking) approximations and systematic design method-
ologies with summary of the related work, are described
further in the next section.

A typical (N×N) accurate multiplier generates N2 product
terms, which are then accumulated as a final product of size
2N . The accuracy of this product depends largely on the
significance of bits; preserving higher-significance bits is likely
to generate an outcome close to the exact product than that of

2

lower-significance bits. This can be exploited to progressively
compress the product terms using bit-significance. The aim is
to achieve substantial energy savings at low loss of accuracy.
Inspired by our previous work [16], we make the following
key contributions:

1) we propose a novel energy-efficient approximate multi-
plier design approach using bit significance-driven logic
compression (SDLC),

2) at the core of our approach is a design-time configurable
logic clustering of product terms appropriately chosen for
a given energy-accuracy trade-off, followed by remapping
using their commutative properties to reduce the resulting
number of product terms,

3) we demonstrate the multiplier prototype design of dif-
ferent sizes (from 4-bit to 128-bit), and their synthesis
using EDA tools to extensively analyze conflicting PEQ
trade-offs, and

4) three real-application case studies demonstrating compar-
ative advantages of the proposed approach.

To the best of our knowledge, this is the first demon-
stration of a systematic logic compression-based approximate
multiplier design approach, implemented in real-application
case studies. The rest of the paper is organized as follows.
Section II surveys relevant research in the area of approx-
imate multiplier design. Section III introduces the proposed
approximate multiplier design. Section IV provides the error
analysis associated with different bit-widths of the proposed
multiplier. The experimental results and design trade-offs are
described in Section V. Three real-application case studies are
discussed in Section VI, Section VII and Section VIII showing
comparative advantages of applying the proposed approach in
Gaussian blur filter, machine learning application and power-
constrained signal processing, receptively. Finally, Section IX
concludes the paper.

II. RELATED WORK

In this section, the related research efforts in the field of
approximate multiplier design are discussed. These efforts can
be largely categorized as modifications of either timing or
functional behaviors. Firstly, timing behavior can be modified
using aggressive supply voltage scaling techniques [17], [18].
Operating below nominal voltage allows for reductions in
energy consumption at the cost of time-induced errors. These
errors cannot be rigorously bounded, and so extra error-
compensation circuits need to be incorporated [19], [20]. Since
timing errors are caused by long carry chains, i.e., impact
the most significant bit of the final product, it is necessary
to quantify the impact of timing violation by modifying the
conventional multiplier to allow for graceful degradation [21].
Secondly, functional modifications deal with logic reduction
techniques and can be performed by relaxing the need for
accurate Boolean equivalence of the specification and imple-
mentation. This can be done, to achieve energy-efficiency,
accelerate computations, minimize the silicon area or optimize
other system parameters.

Table I summarizes the key features and limitations of re-
search efforts to date in the domain of approximate multipliers.

TABLE I
SUMMARY OF APPROXIMATE MULTIPLIER DESIGN APPROACHES.

Approach Methodology Features and Limitations

[17] [18] Aggressive voltage scaling:
lowering the supply voltage
below its nominal value.

Unexpected time-induced er-
rors, which normally impact the
most significant bits.

[22] [23] Truncation: eliminating partial
products from the least signif-
icant columns.

As more columns are elimi-
nated, the resulting errors are
maximised.

[24] [25] Modular re-design: large effi-
cient multipliers using inaccu-
rate small multiplier blocks.

Scalability is not simple and
this method may not signifi-
cantly reduce the critical path.

[26] S/W-based perforation: approx-
imation of the generation of the
partial products.

Decreasing the depth of the ac-
cumulation tree by utilizing a
tool, and also real-time needs.

[27] [28] Automated and evolutionary re-
design: systematically reducing
the complexity of circuits.

Greedy approach depending on
circuit activity profile and out-
put significance.

[29] [30] Manual re-design: manual al-
teration of the functional be-
haviours of the structure.

Different ideas of redesigning
the multiplier extend from ar-
chitecture to transistor level.

For example, truncating multiplier product terms allows for
the elimination of some of the least significant partial product
terms [22], [23], [31], [32]. As more columns are eliminated,
further energy reduction is achieved; however, errors also in-
crease. Modular re-design with low-complexity combinational
logic is another effective technique [24], [25]. This allows
for building larger energy-efficient multipliers using small
approximate ones; however, the hierarchical organization of
small approximate blocks will eventually propagate errors,
which increase with the multiplier size. A software-based
perforation technique has been proposed [26] by obtaining the
optimized set of partial product terms based on power-area-
accuracy trade-offs. A number of power- and area-efficient
multiplier redesign approaches have been proposed by chang-
ing the functional behavior. These changes extend from the
architecture to transistor-level [29], [30].

Automated design approaches [27], [28], [33]–[35] present
design flows for synthesizing approximate circuits using circuit
activity profiles and quality bounds. For example, the system-
atic methodology for automatic logic synthesis of approximate
circuits (SALSA) [27] begins with an RT-level description
of the accurate circuit and an error constraint. The approach
introduces Q-function, which determines whether the quality
constraints are satisfied, when comparing both approximate
and original outputs. The Q-function outputs a single Boolean
value. The main idea of the SALSA method is to iteratively
modify the behavioral description of approximate circuit, i.e.,
to reduce the complexity of approximate circuit, with keeping
the output of the Q-function unchanged.

Recently, evolutionary circuit design shows some evolved
implementations of target circuits can be considered as in-
novative. However, the evolutionary design approach fails in
producing useful implementations for approximate complex
circuits. A promising evolutionary design process was im-
plemented within the ABC tool and extensively evaluated on
functional approximation of multipliers [36].

The key principle of the above studies is to achieve reduced
logic complexity, which is also the main aim of our work. In

3

this paper, we target (for the first time) the energy-efficient
multiplier design, using significance-driven logic compression.
The proposed method can be easily applied in any multiplier
architecture without the need for a special design, in contrast
to related works. In addition, the error/energy/performance
imposed by approximation depends on the configuration pa-
rameters, such as the size of the multiplier and depth of logic
compression. Therefore, knowledge of the PEQ trade-offs
permits the selection of the logic compression that maximizes
the power and performance saving.

III. PROPOSED APPROXIMATE MULTIPLIER DESIGN

Without loss of generality, let us consider two N bit
binary inputs for an (N × N) multiplier, the multiplicand
(A = aN−12N−1 + · · · + a0) and the multiplier (B =
bN−12N−1 + · · ·+ b0). The product P can be expressed as:

P = A·B = p2N−122N−1+· · ·+p0 =
N−1∑
i=0

N−1∑
j=0

aibj2
i+j (1)

In parallel multiplication design, computation of P is gener-
ally divided into three consecutive stages: i) partial product
formation, ii) partial product accumulation, and iii) carry
propagation adder. Fig. 1 shows the difference between the
design stages in accurate and the proposed multiplication.
First, N2 AND gates are utilized in parallel to generate
N2 product terms of partial product bit-matrix (PPM). This
matrix is then column-wise summed up by using different
accumulation methods, such as carry-save array, Wallace
[37] and Dadda-tree [38], which followed by carry-propagate
adder to generate the final 2N -bit product. The performance,
hardware complexity and power consumption associated with
multiplier design depend largely on the maximum height of
the accumulation tree. The proposed approach decreased the
number of vertical product terms in the PPM with the aim of
reducing the height of the critical column in the accumulation
tree. This can be achieved by following two major steps
highlighted in Fig. 1 (b). In the first, lossy compression is
carried out through logic clustering. The resulting compressed
terms are then remapped using their commutative properties.
These steps of the proposed design approach together with the
variable compression method, are described below.

(a) (b)

Partial Product Formation.

Partial Product Accumulation.

N-bit Multiplier N-bit Multiplicand

2N-bit Accurate Product

Producing the final product using

a Carry Propagation Adder.

Significant-Driven Logic Compression

and remapping of the resulting

product terms

N-bit Multiplier N-bit Multiplicand

2N-bit Approximate Product

Partial Product Formation.

Partial Product Accumulation.

Producing the final product using

a Carry Propagation Adder.

Fig. 1. Process chart showing the difference between the major stages in: (a)
conventional multiplication, and (b) the proposed approach to multiplication.

A0B0

A7B1

A7B2 A0B2

A7B3 A6B3

A7B4 A6B4 A0B4

A7B5 A6B5 A5B5

A7B6 A6B6 A5B6 A0B6

A7B7 A6B7 A5B7 A4B7

O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0

A6 A7

B1 B0

A5 A6
B1 B0

A4 A5
B1 B0

A3 A4
B1 B0

A2 A3
B1 B0

A1 A2
B1 B0

A0 A1

B1 B0

O6,2 O5,2 O4,2 O3,2 O2,2 O1,2

O5,4 O4,4 O3,4 O2,4 O1,4

O4,6 O3,6 O2,6 O1,6

O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0

Logic Cluster 1
2X7

Logic Cluster 4
2X4

Logic Cluster 3
2X5

Logic Cluster 2
2X6

Logic clusters compress

a group of partial

product terms within two

successive rows based

on their progressive bit-

significance.

Commutative

remapping allows

halving the

critical column of

the PPM.

Step1:

Step2:

r = 1

r = 2

r = 3

r = 4

X A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

A7B0 A6B0 A5B0 A4B0 A3B0 A2B0 A1B0 A0B0

A7B1 A6B1 A5B1 A4B1 A3B1 A2B1 A1B1 A0B1

A7B2 A6B2 A5B2 A4B2 A3B2 A2B2 A1B2 A0B2

A7B3 A6B3 A5B3 A4B3 A3B3 A2B3 A1B3 A0B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4 A1B4 A0B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5 A0B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0B6

A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0B7

A7B7 A7B6 A7B5 A7B4 A7B3 A7B2 A7B1 O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0
A0B0

A6B7 A6B6 A6B5 A6B4 A6B3 O6,2 O5,2 O4,2 O3,2 O2,2 O1,2
A0B2

A5B7 A5B6 A5B5 O5,4 O4,4 O3,4 O2,4 O1,4
A0B4

A4B7 O4,6 O3,6 O2,6 O1,6
A0B6

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Fig. 2. Stylized demonstration of SDLC approach [16]: four different sizes
of logic clusters used to compress partial products based on their progressive
bit-significance in (8× 8) parallel multiplier architecture.

A. Significance-Driven Logic Compression (SDLC) Approach
As can be seen in Fig. 2, this step begins to generate all

partial products using N2 AND gates, similar to conventional
multiplication. Before proceeding to the accumulation stage,
the number of bits in the partial product matrix is reduced by
performing lossy logic compression. The aim is to minimize
the number of rows in the PPM, thereby achieving low-
complexity hardware before proceeding to accumulation. To
achieve lossy compression, we follow three key principles as
follows.

1) Logic Clustering: The proposed multiplier organizes the
partial product terms using different sizes of significant-driven
logic clusters. Each logic cluster targets a group of columns
containing two bits starting from the least significant bits in
successive partial products.

Two adjacent partial product terms belonging to the same
column can be compressed in a single term by using 2-input
OR gate (see Fig. 2). Let us consider two of vertically aligned
bits within two successive partial products aibj and ai−1bj+1

of the (i + j)th column in the PPM. O2−bit
i+j is an output of a

logic cluster, expressed as:

O2−bit
i+j = aibj ∨ ai−1bj+1 . (2)

For purposes of illustration, the logic cluster of size (2× L)
targets a group of consecutive partial product terms of a length
of L columns within 2 rows. Each (2 × L) logic cluster is
responsible for two operations: i) generating 2L partial product
bits within two contiguous rows, i.e., L pairs of vertically
aligned bits, by utilizing 2L AND gates. Then, ii) minimizing
these 2L bits by half using L OR gates. Fig. 2 illustrates the
utilization of four sizes of logic clusters in (8 × 8) parallel
multiplier. The first (2 × 7) logic cluster forms 14 partial
products by utilizing 14 AND logic gates and extracts 7-bit
value by using an array of 7 OR logic gates. The second (2×6)
logic cluster minimizes 12 partial products into 6 bits. In a
similar way the third and fourth logic clusters use (2× 5) and

4

(2 × 4) to minimize 10 and 8 partial products into 5 and 4
bits respectively. By doing so, each logic cluster compresses
a group of vertically aligned bits within two successive partial
products based on their progressive bit significance.

2) Logic Compression: Using an array of OR gates in
each logic cluster compresses the partial product terms by
half (see Fig. 2). A reduced set of pre-processed partial
product matrix is thus ready to be accumulated by apply-
ing any convenient scheme of multiplication. In theory, a
two-input OR gate is sufficient to sum up two bits, i.e.,
‘0’+‘1’ = ‘1’+‘0’ = ‘0’∨‘1’ = ‘1’∨‘0’ = ‘1’ and also
‘0’+‘0’ = ‘0’∨‘0’ = ‘0’. However, the OR gate fails to
give an accurate sum if the two inputs are “ones”, i.e.,
‘1’+‘1’ 6= ‘1’∨‘1’, the difference value is ‘1’ as the adder
returns ‘10’ and OR outputs ‘1’. So, the arithmetic sum of two
successive partial products belonging to the (i+ j)th column,
can be approximated as:

aibj + ai−1bj+1 ' O2−bit
i+j . (3)

By utilizing a parallel OR compressions through logic clusters,
the number of product terms inside the PPM will decreased at
the price of an error when the couple of partial product terms
aibj and ai−1bj+1 are both high, i.e., the error will be when
aibj + ai−1bj+1 6= O2−bit

i+j . Under assumption that the input
bits ai and bj are uniformly and independently distributed, the
probability of having this error is given by: (1/16). However,
the OR compression will not affect the more significant bits
of the final product as demonstrated below, moreover error
analysis is discussed in Section IV.

3) Progressive Cluster Sizing: Since the main goal is to
design a power-efficient multiplier with negligible loss of
accuracy, the length of the logic clusters L is decreased when
going down in the PPM. The more significant bits are treated
with progressively higher precision, while bits with lower
significance are compressed using the SDLC approach. This
permits the most significant product terms to be accumulated
on a carry-propagation basis as in the conventional multiplier.
Thus, the accuracy of the significant bits of the final product
is less affected. In general, the length of logic cluster in 2-bit
compression used to produce L-bit array in the rth row of the
compressed PPM, is given by:

L2−bit(r) = N − r . (4)

Despite using the same number of AND gates as the accu-
rate multiplier, this approach will deterministically reduce the
hardware complexity of partial product accumulation, i.e., the
count of the compressor cells needed in column compression
multiplication for Wallace and Dadda cases, and also the
number of half and full adders in the carry-save array will
be decreased since the number of bits in the accumulation
tree is minimized.

B. Commutative Remapping

In the logic compression step (Section III-A), the number of
partial product terms is reduced. This can be leveraged to min-
imize number of rows in the PMM prior to the accumulation
stage. For this purpose, the partial product terms resulted from

(a) (b) (c)

2
X

4

2
X

5

2
X

6

2
X

7

3
X

8

3
X

7

2
X

5

4
X

9

4
x
8

Partial Product Bit Ai Bi . Compressed Bit Resulted from Logic Clusters.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

2

3

4

1

2

1

2

3

(d) (e) (f)

(g) (h) (i)

Fig. 3. Dot diagram showing the impact of increasing the depth of the logic
clusters in the case of (8×8) multiplier: (a) clustering a group of bits within 2
successive rows in the partial product bit-matrix after bitwise multiplication;
(b) generating a reduced set of product terms after targeting the depth of 2-row
logic compression; (c) ordered matrix after applying commutative remapping
of the bit sequence resulting from the SDLC approach; (d), (e) and (f) the
same process when applying 3-bit logic compression; (g), (h) and (i) the same
process when applying 4-bit logic compression. The dotted rectangles at the
right indicate the heights of the critical columns which are further reduced
compared to the accurate accumulation tree.

the logic compression are remapped based on the commutative
property of the bits, i.e., bits with the same weight are gathered
in the same column.

For example, in the case of (2×L) logic cluster, the height of
the critical column is reduced by half compared to the accurate
accumulation tree. The compressed and remapped bit-matrix
after applying commutative remapping of the bit sequence, is
shown at the bottom of Fig. 2. Due to the reduced number
of rows, the critical path delay is drastically shortened (see
Section V). The height of the critical columns are further
reduced with increased logic compression depth as seen below.

C. Variable Logic Cluster and Scalability Approach

The proposed approach is capable of achieving higher
degrees of compression by increasing logic cluster depth.
Comparing to the work in [16], the space of the product terms
compressed by logic cluster has been modified, when the depth
of logic compression spans over three or more rows in the
PPM. This will provide scalability and improve the accuracy of
the proposed SDLC approach. In this paper, the level of logic
compression obtained from (d×L) logic cluster is denoted by
d-bit logic compression, where d indicates the depth of logic
cluster.

Fig. 3 demonstrates the impact of increasing depth from 2-
to 3- and 4-bit logic cluster in the case of (8×8), showing the
key steps in logic compression and commutative remapping.
As can be seen, with increased depth we can achieve further
reduction in the partial product terms, leading to fewer rows
for final accumulation and therefore more reductions in the
hardware complexity and energy consumption of the multiplier
design (see Section V). However, this can be achieved at a
price of rational error grows when increasing the depth of
logic clusters as will be demonstrated in the next section.

5

d-2d-2 N – d + 2 – r
L = N + d – 2 – r

d123

Fig. 4. Dot diagram showing the general space of targeted partial product
terms compressed by a (d × L) logic cluster to produce array of L bits in
rth row of the reduced partial product matrix for (N ×N) multiplier using
SDLC approach with d-bit logic compression.

Fig. 4 presents a general space for d-bit logic cluster. In
general, (d × L) logic cluster targets a group of consecutive
partial product terms of a length of L columns within d rows in
PPM. A (d×L) logic cluster is utilized to compress the product
terms belonging to the same column into just single term using
d-input OR gate. By following the same concept in (2), let us
consider a depth of d successive product terms belonging to
the (i + j)th column in the PPM aibj , ai−1bj+1, ai−2bj+2,
· · · , ai−(d−1)bj+(d−1). Thus, Od−bit

i+j is an output term of logic
cluster returned from logic compression in (i + j)th column
and can be expressed as:

Od−bit
i+j =

d−1∨
k=0

ai−kbj+k . (5)

The arithmetic sum of d successive partial products belonging
to the (i + j)th column, can be approximated as:

d−1∑
k=0

ai−kbj+k ' Od−bit
i+j . (6)

In general, an N -row PPM resulted from accurate (N ×N)
multiplier can be compressed to dNd e rows, when utilizing
SDLC approach with d-bit logic cluster. Let us consider r as
the row index of the compressed and remapped partial product
bit-matrix, in which r is ranging from 1 (the first row in the
top), to dNd e (the last row at the bottom). The length of logic
cluster L represents the number of columns targeted by logic
compression, and equals to the length of bit array added into
rth row. L can be expressed by:

Ld−bit(r) =

{
(N + d− 2)− r, 1 ≤ r < dNd e
(2N − 3)− (d + 1)(r − 1), r = dNd e

(7)

The length of last row is separated in the second line of
(7) to involve the length of the last logic cluster in case of
N mod d 6= 0, where the depth of the last cluster equals
N mod d. For instance, applying SDLC approach to (8 ×
8) multiplier with 3-bit compression requires d 8

3e = 3 logic
clusters, the first two logic clusters compress group of product
terms within 6 rows, i.e., 3 rows each, leaving only two rows
for the last logic cluster spans over 5 columns, see Fig. 3(d).
Note that, the most significant part of PPM, where the height of
the PPM is already lower or equal to d 8

de, logic compression
is not required. In general, if i is the column index in the
compressed and remapped PPM, (noting that i=1 indicates to
the least significant column), the last column that can have an
OR compression can be obtained as:

ilast = 2N − dN
d
e − 1 . (8)

Algorithm 1 Generating the output bits of the logic cluster of
the rth row for the proposed (N ×N) multiplier using d-bit
logic clusters.

1: procedure LOGICCLUSTER(A,B, r)
2: Output:C[c1, c2, · · · , cL] //Output bits from logic cluster
3: Inputs: A[a1, a2, · · · , aN] //Multiplicand bits
4: B[b1, b2, · · · , bN] //Multiplier bits
5: r //Row index of the compressed and remapped PPM

6: if N
d = dNd e or r 6= dNd e then

//Forming (N+d-r-2)-bit output if (N mod d = 0)
7: ω ← 1 //initialize column index
8: length = N + d− 2− r
9: for x← 1 to d-2 do

10: C[ω]← (A[x+1]∧B[d(r−1)+1])∨(A[x]∧B[d(r−1)+2])
11: for y ← 1 to x− 1 do
12: C[ω]← C[ω] ∨ (A[x− y] ∧ B[d(r − 1) + 2 + y])
13: end for
14: ω ← ω + 1
15: end for
16: for x← 1 to N − d+ 2− r do
17: C[ω] ← (A[x − d + 1] ∧ B[d(r − 1) + 1]) ∨ (A[x + d − 2] ∧

B[d(r − 1) + 2])
18: for y ← 1 to d− 2 do
19: C[ω]← C[ω] ∨ (A[x+ d− 2− y] ∧ B[d(r − 1) + 2 + y])
20: end for
21: ω ← ω + 1
22: end for
23: for x← 1 to d-2 do
24: C[ω]← (A[N − r− 1]∧B[d(r− 1) + 1 + x])∨ (A[N − r]∧

B[d(r − 1) + 2 + x])
25: for y ← 1 to d− 2− x do
26: C[ω]← C[ω] ∨ (A[N − r− y] ∧B[d(r− 1) + 2 + x+ y])
27: end for
28: ω ← ω + 1
29: end for

30: else if N mod d = 1 then
//Forming (2N-(d+1)(r-1)-3)-bit output if (N mod d = 1)
in last row

31: length = 2N − (d+ 1)(r − 1)− 3
32: for x← 1 to length do
33: C[x]← (A[x+ 1] ∧ B[N])
34: end for

35: else
//Forming (2N-(d+1)(r-1)-3)-bit output if (N mod d 6= 1
6= 0) in last row

36: ω ← 1
37: length = 2N − (d+ 1)(r − 1)− 3
38: d́ = N mod d
39: for x← 1 to d́− 2 do
40: C[ω]← (A[x+1]∧B[d(r−1)+1])∨(A[x]∧B[d(r−1)+2])
41: for y ← 1 to x− 1 do
42: C[ω]← C[ω] ∨ (A[x− y] ∧ B[d(r − 1) + 2 + y])
43: end for
44: ω ← ω + 1
45: end for

46: for x← 1 to length− 2(d́− 2) do
47: C[ω] ← (A[x + d́ − 1] ∧ B[d(r − 1) + 1]) ∨ (A[x + d́ − 2] ∧

B[d(r − 1) + 2])
48: for y ← 1 to d́− 2 do
49: C[ω]← C[ω] ∨ (A[x+ d́− 2− y] ∧ B[d(r − 1) + 2 + y])
50: end for
51: ω ← ω + 1
52: end for

53: for x← 1 to d́− 2 do
54: C[ω]← (A[N − r+ 1]∧B[d(r− 1) + 1 + x])∨ (A[N − r]∧

B[d(r − 1) + 2 + x])
55: for y ← 1 to d́− 2− x do
56: C[ω]← C[ω] ∨ (A[N − r− y] ∧B[d(r− 1) + 2 + x+ y])
57: end for
58: ω ← ω + 1
59: end for
60: end if
61: return C
62: end procedure

6

The last column affected by OR approximation in the case
of (8× 8) multiplier is highlighted by dashed-line box in the
Fig. 3 (c), (f) and (i)).

Algorithm 1 explains the process of forming L-bit array
resulted from (d × L) logic cluster for any N -bit multiplier.
According to (7), the length of the logic cluster depends on
the row index of the compressed and remapped PPM. For
all r, except the last one, the algorithm begins to generate
(N + d − 2 − r) bits to each row. To explain, the first
(d− 2) less significant bits as indicated in Line (9 to 15) and
highlighted in area 1 (see Fig. 4). In this area, the logic cluster
compresses two partial product terms in the least significant
column and increases the level of compression to (d − 1)
partial products in the (d − 2)th column. This is followed
by forming (N − d + 2 − r) bits of area 2 in Fig. 4, as
referred in the Lines (16 to 22). Lastly, Lines (23 to 29)
indicate generation of the more significant (d− 2) bits of area
3. However, when (N mod d) 6= 0, the logic cluster returns
(2N − 3)− (d+ 1)(r− 1) bits at the last row. In such a case,
if the value of (N mod d) = 1, i.e., logic compression in
the last row is not required, the product terms generated by
bitwise ANDing as the accurate PPM, see Lines (32 to 34),
otherwise, when (N mod d) = d́, and d́ 6= 1 and d́ 6= 0,
the logic compression is required by using d′-bit logic cluster
using the same steps, see Lines (36 to 62).

However, for purposes of illustration, each row in the
compressed and remapped partial product bit-matrix can be
subdivided into four parts (for instance, each row illustrated
in the Fig. 3 (c), (f) and (i))

(i) the less-significant zero bits that represent the number of
consecutive shifts at the beginning of each row, given by:

lzeros(r) = d(r − 1) . (9)

Then,
(ii) the first product term which is unaffected by the logic

compression which can be formed as:

A(1) ∧B(d(r − 1) + 1) , (10)

followed by,
(iii) the array of L bits returned from logic cluster given by

(7) and demonstrated in Algorithm 1. Lastly,
(iv) the most significant part of the rth, which is unaffected

by the logic compression, the length of bits that compose
the unaffected most significant part in the rth is obtained
as:

lMSB(r) =

{
N − dr + 1, 1 ≤ r < dNd e.
1, r = dNd e.

(11)

The SDLC proposed approach using d-bit compression is
scalable for any (N×N) multiplier, as shown in Algorithm 2.
This algorithm generates a compressed and remapped partial
product bit-matrix M Line (21), which can then be treated as
an accumulation tree by any scheme of multiplication, such as
carry-save, Wallace and Dadda accumulation methods. The
main loop Lines (5 to 20) is responsible for forming and
remapping product terms in dNd e-row approximated matrix,
as demonstrated in Fig. 3. Lines (7 to 10) indicate forming

Algorithm 2 Generating a reduced partial product matrix M
for (N ×N) multiplier using SDLC approach with d-bit logic
clusters,∀{ d ∈ {2, 3, ..., N}.

1: procedure RPPM(M,A,B)

2: Output:M =

m1,1 · · · m1,2N

...
...

...
m⌈

N
d

⌉
,1

· · · m⌈
N
d

⌉
,2N

//Compressed Matrix

3: Inputs: A[a1, a2, · · · , aN] //Multiplicand bits
4: B[b1, b2, · · · , bN] //Multiplier bits

//Forming rows of M
5: for r ← 1 to dNd e do
6: ρ← 1 //initialize column index

//Shifting by zeros at the beginning of row r
7: for z ← 1 to d(r − 1) do
8: M [r][ρ]← ”0”
9: ρ← ρ+ 1

10: end for
//Forming unaffected first bit in row r

11: M [r][ρ]← A[1] ∧ B[d(r − 1) + 1]
12: ρ← ρ+ 1

//Forming outputs of logic cluster r
13: M[r][ρ:ρ+length]←LOGICCLUSTER(A,B, r)
14: ρ← ρ+ length + 1

//Forming unaffected MSBs in row r
15: for k ← 1 to N-dr do
16: M[r][ρ]← A[N-r+1]∧B[rd+k-1]
17: ρ← ρ+ 1
18: end for
19: M[r][ρ]← A[N-r+1]∧B[N]
20: end for

//M is then treated as a reduced accumulation tree
21: return M
22: end procedure

of the less-significant zero bits that represent the number of
consecutive shifts at the beginning of row r, managed by (9).
The first product term unaffected by the logic compression
is formed in Line (11). This followed by generating L bits
from the logic cluster using (7), this is shown in Line (13)
by retrieving Algorithm 1. Lines (15 to 20) refer to forming
the most significant part of r, which is unaffected by the logic
compression, described by (11).

IV. ERROR ANALYSIS

In the the previous sections, for (N×N) multiplier, generat-
ing compressed and remapped PPM using (d×L) logic clusters
has been discussed. In this section, the impact of the error
derived from the proposed SDLC approach, for different sizes
of multipliers, is examined. Several error metrics have been
discussed in [39] and [40] for evaluating the effectiveness and
quantifying errors of approximate adders and multipliers. For
any (N ×N) approximate multiplier, the error distance (ED)
is defined as the arithmetic difference between the accurate
product (P) and erroneous product (P ′), i.e., ED = |P − P ′|.
Since the output of the SDLC approach is under-approximated,
i.e., the final product derived from the proposed approach is
always lower than or equal to the product produced by accurate
multiplier, ED can be expressed as, P −P ′. The Mean Error
Distance (MED) is defined as the average of the ED values
and obtained as:

MED =

∑22N−1
i=0 ED

22N
. (12)

Also, the mean squared error (MSE) is defined as the
average of the squared ED values, which given by:

MSE =

∑22N−1
i=0 ED2

22N
. (13)

7

TABLE II
ERROR METRICS FOR VARYING SIZES OF PROPOSED MULTIPLIER USING

2-BIT LOGIC CLUSTER.

Bit-Width EP(%) MRED NMED NMSE Max(RED)
4-bit 19.5 0.0277 0.0106 8.35E-04 0.31111111
6-bit 35 0.0266 0.0064 2.25E-04 0.32804233
8-bit 49.1 0.0199 0.0035 5.95E-05 0.33202614

12-bit 70.7 0.0082 0.001 3.92E-06 0.33325193
16-bit 83.9 0.0028 0.0002 2.48E-07 0.3332519

The relative error distance (RED) is another useful error
metric defined as the ratio of ED over the accurate output, i.e.,
RED = ED

P = P−P ′

P . The error probability (EP) is defined
as the ratio of incorrect outputs with respect to the total number
of outputs. For any (N×N) approximate multiplier, the mean
RED (MRED) is defined as [39]:

MRED =

∑22N−1
i=0 RED

22N
. (14)

For comparing multipliers of different sizes, the normalized
MED (NMED) can be expressed, using (12), as [39]:

NMED =
MED

Pmax
, (15)

where Pmax is the maximum product that can be obtained
from an (N ×N) accurate multiplier, i.e., Pmax = (2N −1)2.
In this paper, we add normalized MSE (NMSE), defined,
using (13), as:

NMSE =
MSE

P 2
max

. (16)

Using NMSE metric for analyzing error derived from ap-
proximate multipliers has the following advantages: i) avoids
bias towards different approximate multipliers that under-
approximate and over-approximate, and ii) helps to explain
the impact of using approximate multipliers for a set of
applications, when the user-experience metrics depends on
MSE, such as the peak signal-to-noise ratio (PSNR) (see
Section VI).

The simulations are performed in Matlab by implementing
a functional model of the SDLC approach. The response
of all approximate multipliers are evaluated for all possible
combinations of operands if N < 16. Monte Carlo approach
is used to simulate the functional model of the proposed SDLC
if the size of operands are 16-bit or more, where the simulation
is running very slow. Using Monte Carlo approach provides

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
-1

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0

1
0

-1
1

1
1

-1
2

1
2

-1
3

1
3

-1
4

1
4

-1
5

1
5

-1
6

1
6

-1
7

1
7

-1
8

1
8

-1
9

1
9

-2
0

2
0

-2
1

2
1

-2
2

2
2

-2
3

2
3

-2
4

2
4

-2
5

2
5

-2
6

2
6
-2

7

2
7

-2
8

2
8

-2
9

2
9

-3
0

3
0

-3
1

3
1

-3
2

3
2

-3
3

3
3

-3
4

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

rs

RED (%)

8 X 8

12 X 12

16 X 16

The Majority of outputs are either

exact or close to exact outputs.

The probability of errors

is drastically decreased.

Rare occurrence for higher errors and the mass

of the distribution is gradually concentrated to

the leftmost in higher bit-widths.

Fig. 5. Error percentage distribution for 8-bit, 12-bit and 16-bit proposed
multiplier after applying 2-bit depth compression.

TABLE III
ERROR METRICS FOR DIFFERENT DEPTHS OF LOGIC COMPRESSION IN THE

PROPOSED (16× 16) MULTIPLIER.

Cluster-Depth EP(%) MRED NMED NMSE Max(RED)
2-bit 83.9 2.89E-03 0.0002 2.48E-07 0.333
3-bit 94.4 1.21E-02 0.0012 5.81E-06 0.428
4-bit 97.8 3.47E-02 0.0055 1.09E-04 0.466
5-bit 98.6 4.12E-02 0.0058 1.17E-04 0.484
6-bit 99.1 5.83E-02 0.0111 4.39E-04 0.490
7-bit 99.3 5.79E-02 0.0100 3.44E-04 0.495
8-bit 99.6 1.08E-01 0.0247 2.00E-03 0.497

different distribution functions to represent all input variables,
i.e., multiplicand and multiplier combinations involved in the
simulations. For simplicity, the inputs for the multiplier dis-
cussed in Algorithm 2 are obtained as follows. First, the size of
the multiplier N and the depth of logic cluster d are selected,
then both operands of multiplicand and multiplier are both
assumed to be a random variables with uniform distributions
for the all values between 0 and 2N − 1. The simulations are
repeated for 220 input vectors in the case of N ≥ 16. Note
that, the equations (12) to (14) are applicable when evaluating
the proposed SDLC approach for all possible combinations of
operands. However, for Monte Carlo simulation, the term 22N

in the denominator is replaced by the number of multiplication
times performed by each simulation, which is equivalent to 220

in this work.
Table II shows four error metrics using varying sizes of the

proposed multiplier in the case of 2-bit logic compression. It
can be seen that MRED and NMED fall drastically as the size
of the multiplier is increased from 4 to 16-bit. The increasing
trend in the error probability (EP) is expected due to the
increased bit-width of the multiplier. This is because the error
occurrence increases as well due to the growing likelihood
of finding a pair of vertically aligned “ones” through two
successive rows. In such cases, the corresponding OR gate
will return an error, as detailed in Section III-A2.

The error Probabilities in Table II can be misleading, as
the eventual impact of error is reflected in error distance
metrics, such as MRED and NMED [41], [42]. Also, the
readings of MAX(RED) would not denote severe degradation
of the final output because the occurrence of these errors
is rare. This can be seen in Fig. 5, which demonstrates the
probability distribution for all relative errors resulting from
three different sizes of multipliers using the SDLC approach.
The probability distribution shows that the proposed approach
tends to produce exact or close to exact results. This is seen
in the sharp decline of the probability of errors with higher
REDs, e.g., the MAX(RED) listed in Table II. Furthermore,
as the bit-width of the multiplier is increased, the mass of the
distribution is gradually concentrated at a lower error distance.
This is because the proposed approach does not sacrifice the
precision of the more significant bits when using significance-
driven logic compression.

Table III depicts the error trade-off with increased degree of
compression achieved through higher depths of logic clusters
in (16× 16) multiplier. As expected, increased depth leads to
higher error rates (up to 99.6%) when clustering with 8-row
logic compression. However, results for the MRED metric are

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
-1

2
-3

4
-5

6
-7

8
-9

1
0
-1

1

1
2
-1

3

1
4
-1

5

1
6
-1

7

1
8
-1

9

2
0
-2

1

2
2
-2

3

2
4
-2

5

2
6
-2

7

2
8
-2

9

3
0
-3

1

3
2
-3

3

3
4
-3

5

3
6
-3

7

3
8
-3

9

4
0
-4

1

4
2
-4

3

4
4
-4

5

4
6
-4

7

4
8
-4

9

C
o

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

RED (%)

2-bit SDLC

3-bit SDLC

4-bit SDLC

5-bit SDLC

6-bit SDLC

7-bit SDLC

8-bit SDLC

The SDLC approach

lowers the probability of

occurrence of higher RED.

Logic clusters with lower

depths leads to higher

probability of trivial RED.

Fig. 6. Cumulative probability distribution for the error induced by different
logic compression levels of the proposed SDLC approach in the case of (16×
16) multiplier.

only marginally higher when compared with logic compression
with 2- to 5-bit logic clusters. Similar observations can be
made in the case of the NMED metric.

The majority of these errors would not denote severe
degradation of the final output because the occurrence of
the higher errors is regarded as very rare. Fig. 6 shows the
cumulative probability distribution for all possible relative
errors resulting from (16 × 16) multiplier for different sizes
of logic clusters. The proposed multiplier does not sacrifice
the precision of the more significant bits. This is observed
in the sharp rise of cumulative probability of errors towards
1, especially for lower depth of logic compression, such as
2-, 3- or 4-bit SDLC. The SDLC approach tends to produce
results that are closer to the exact outputs when using lower
depth of logic clusters. This is because the error occurrence
increases as well due to the growing of likelihood of errors
returned by higher depth logic cluster. According to (6), the
probability of having inequality between the output of logic
cluster and the accurate arithmetic addition is increased with
higher depth logic clusters. This can be observed when the
cumulative probability distributions reach to 1 faster than
SDLC approach with higher depth of logic clusters, such as
6- to 8-bit SDLC. For example, in the cases of 2-, 3- and 4-
bit SDLC, the probability of having errors with less than 1%
RED, i.e., RED of 0%-1%, is 0.95, 0.76 to 0.49 respectively.
The cumulative probability exceeds 0.9 when the RED is lower
than 16% for all logic cluster depths, except the case of 8-bit
SDLC, where the likelihood of same RED range is just 75%.
Furthermore, the cumulative probability in the cases of 6- and

0

10

20

30

40

50

60

70

80

90

4-bit 6-bit 8-bit 12-bit 16-bit 32-bit 64-bit 128-bit

R
e

d
u

c
ti
o

n
s
 (

%
)

Bit-Width

Dynamic Leakage Area Delay PDP

Fig. 7. Dynamic/leakage power, area, delay and PDP trade-offs for different
bit-widths of the (2-bit SDLC) proposed multiplier.

7-bit logic clusters are almost identical. This can be explained
using (8), as the number of the last column that can have an
OR compression is the same in both cases, leading to have
the same number of more significant bits unaffected by logic
compression. The impact of increased degree of compression
in the SDLC approach is further investigated in the application
case-studies in Sections VI-VIII.

V. EXPERIMENTAL RESULTS AND DESIGN TRADE-OFFS

To demonstrate the proposed approach, we applied it on
eight different sizes of widely known multipliers ranging from
4-bit to 128-bit. Accurate ripple adders were used in both
accurate and approximate multipliers to accumulate the partial
product rows within the accumulation stage (see Fig. 2). A
generic SystemVerilog code was used to generate synthesiz-
able modules for all accurate and approximate versions. These
modules have been parametrized and configured differently
at design time according to the bit-width of multiplier. Run-
time reconfigurability of logic cluster using cost vs. degree
of approximation (i.e. logic compression depth) trade-off is
being considered for future work. The generated codes were
implemented and synthesized using two different off-the-shelf
tools: Mentor Graphics Questa Sim was used to compile the
SystemVerilog codes and run the associated test benches; and
Synopsys Design Compiler was utilized for synthesizing all
sizes of accurate and proposed multipliers when mapping the
circuits to the Faraday’s 90nm technology library [43] and
evaluating for power, area, delay and energy in terms of power-
delay-product (PDP). For the synthesis process, 1-V was set
as nominal supply voltage for the given technology library. All
designs are synthesized as combinational logic blocks with no
clock constraints. This is done to allow the synthesis tool to
optimize power and area freely in favor of delay. Note that
introducing clock constraints can skew the synthesis tools’
optimization algorithm (e.g. produce more delay savings at
the cost of power/area optimization). However, this does not
introduce overall changes between the proposed approximate
multipliers and baseline designs.

Fig. 7 depicts a comparison of dynamic/leakage power,
area, delay and energy trade-offs for all eight sizes of 2-bit
SDLC multipliers, when compared with conventional accurate
multiplier. As seen, there are significant improvements in all
design trade-offs. This is basically because SDLC approach
reduces the complexity of multiplier implementation by min-
imizing the number of rows in the accumulation tree (see

TABLE IV
DESIGN TRADE-OFFS FOR DIFFERENT BIT-WIDTHS OF THE ACCURATE

MULTIPLIER USED TO OBTAIN COMPARATIVE ANALYSIS IN FIG. 7.

Bit-Width Power Area
(um2)

Delay
(ns)

Energy
(pJ)Dynamic

(uW)
Leakage

(uW)
4-bit 6.4 0.7 292 0.96 0.007
6-bit 21.1 1.7 740 1.57 0.036
8-bit 47 3.2 1388 2.18 0.109
12-bit 140.7 7.5 3287 3.4 0.504
16-bit 300 13.8 5989 4.63 1.453
32-bit 1843 58 25856 9.9 18.82
64-bit 17563.6 566.9 194194 18.6 337.228

128-bit 146159 2684.9 832734 62.35 9280.417

9

TABLE V
NUMBER OF LIBRARY CELLS INSTANTIATED TO FORM DIFFERENT

BIT-WIDTHS OF THE (2-BIT SDLC) PROPOSED MULTIPLIER.

No. of
cells

4-
bit

6-
bit

8-
bit

12-
bit

16-
bit

32-
bit

64-
bit

128-
bit

Accurate 56 132 240 552 992 4.2K 27.2K 102.2K
Proposed 30 76 142 342 626 2.6K 10.7K 76.9K

Section III-B). This reduction in hardware complexity leads
to low switching capacitance and leakage readings, as well as
shortened critical paths.

The experiments show noteworthy reductions in terms of
power consumption, run-time and also silicon area used. For
dynamic and leakage power, the reductions obtained from ap-
plying the SDLC approach range from 37.5%-67.4% and 34%-
72.1% respectively, when the bit-width ranges from a 4-bit to
128-bit multiplier. The range of savings in the operating delay
for the same sizes of the proposed multiplier is from 38.5%-
65.6%. The reduction in complexity also leads to silicon area
to be minimized to 33.4%-62.9%, and energy consumed is
substantially reduced in terms of PDP by 65.5%-88.7%. For
all bit-widths of the proposed multiplier, the absolute readings
of the synthesized designs can be obtained by combining the
reduction percentages in Fig. 7 with the absolute readings
of the accurate multiplier in Table IV. For instance, in the
case of 32-bit proposed multiplier, the PDP readings of 5.9
pJ is derived using (dynamic/leakage) power consumptions
of (1093.2 uW/38.3 uW), respectively and propagation delay
of 5.19 ns, while the silicon area is 16949.3 um2. The non-
linear trend of the bars in some cases is attributed to the
inconsistency of the ratio of the array of additions in the
accumulation tree between the approximate and the accurate
multiplier. Table V lists the number of the logic cells utilized
to build all sizes of the conventional and proposed multiplier
designs. As expected, the SDLC approach can be employed
to minimize number of cells required to implement all sizes
of the proposed multiplier.

The proposed multiplier utilizes different sizes of logic

A1B0

P14

A1 B1A2 B0

A1B2A3B0 A2B1 A2B2A3B1
A4B0 A1B3

P14

P14P14

(a) (b)

(c) (d)

Fig. 8. Dot diagram highlights the impact of increasing depth of logic clusters
on the critical path of (8× 8) multiplier: (a) partial product bit-matrix of the
conventional multiplier; (b) after 2-bit SDLC; (c) 3-bit SDLC; and (d) 4-
bit SDLC. The dotted polygons indicate the maximum propagation path for
summing up the accumulation tree. Higher degrees of compression minimize
the propagation delay associated with accumulation tree (such as (b) and (c)),
while a further reduction in (d), since a carry propagation adder is just needed
to generate the product (no extra delay required for accumulation tree). The
curved lines identify the critical paths for each multiplier (from A1 to P14).

0

10

20

30

40

50

60

70

80

90

Dynamic Leakage Area Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

BW

2-bit SDLC 3-bit SDLC 4-bit SDLC

Fig. 9. Dynamic power, leakage power, delay, area and energy trade-offs for
different degrees of logic compression of (8× 8) multiplier.

clusters. Each logic cluster contains an array of OR gates used
to compress a set of product terms. The logic clusters have
no carry propagation and can also work in parallel. Hence,
the delay required to generate the compressed partial product
matrix is: 2-input AND gate delay (for parallel forming N2

product terms) + d-input OR gate delay (for parallel logic
compression). Then, the compressed partial product matrix is
ready to be accumulated by applying any convenient scheme
of multiplication, as shown in 8. Generally, the critical
delay of the proposed approach depends on: (i) the size
of multiplier (i.e. higher bit-widths increase the number of
product terms and therefore the propagation delay associated
with accumulation tree is also increased), and (ii) the level of
logic compression (i.e. increased depth of the logic clusters
leads to lower number of rows in accumulation tree and also
lower height of the critical column). Note that, the critical path
of the entire design depends also on the method of summing up
the accumulation tree returned from the SDLC approach, such
as carry-save array or Wallace method [10], etc. According
to the experimental work described at the beginning of this
section, the critical delay of (N × N) proposed multiplier is
identified when any change in the input A(1) resulting in a
change in the output of P(2N − 2) of the final product. See
Fig. 8 as an example illustration of critical path in the case of
(8× 8) multiplier.

Fig. 9 illustrates the dynamic/leakage power, delay, area and
energy trade-offs with increased degree of logic compression.
Higher depth of clustering achieves considerable savings in all
design trade-offs since by increasing the depth of logic clus-
ters, the hardware complexity associated with lower numbers
of product rows is also decreased (see Section III-C).

Fig. 10 shows comparative area, power, delay and energy
advantages of our approach (with 2-bit SDLC) for different
bit-widths. The comparisons are carried out with the following
two existing approaches: Kulkarni [24] and ETM [44], chosen
for their direct relevance to our work. In the Kulkarni ap-
proach, a large multiplier is produced using small approximate
units as building blocks. The design approach of (N × N)
ETM follows truncation principles by dividing the multiplier
into accurate and approximate parts. Similar to N -bit fixed-
width multiplier, only the most significant N bits of the final
product are generated using accurate multiplications, whereas
in the approximate part, a probabilistic bit manipulation is used
to generate the least significant N bits of the product terms.

10

0

10

20

30

40

50

60

70

4-bit 8-bit 16-bit 32-bit 4-bit 8-bit 16-bit 32-bit 4-bit 8-bit 16-bit 32-bit 4-bit 8-bit 16-bit 32-bit

Area Power Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

ETM [44] Kulkarni [24] Proposed

Fig. 10. Area, power, delay and PDP trade-offs for various scalable approximate multipliers (for absolute readings, combine with Table IV).

Our approach produces better results as the bit-width of
the multiplier is increased. This is seen with the 16- and 32-
bit multiplier. For example, in the case of 32-bit approximate
multiplier, the (area and power) savings obtained from both
ETM and Kulkarni are (27.2% and 30.1%) and (17.1% and
25.2%), respectively, the area and power trade-offs of the
proposed multiplier is (34.5% and 40.5%), while the (delay
and PDP) savings are (41.6% and 59.2%), (21.2% and 41.1%)
and (47.6% and 68.8%) for ETM, Kulkarni and proposed,
respectively. In such a case, the proposed approach outper-
forms both approaches in terms of power, area, delay and PDP
savings. This is expected as the number of product rows is
halved (with 2-bit clustering) and commutative remapping is
used to reduce the parallel accumulation complexity. Noting
that, applying higher depths of logic cluster will further
increase the design gains of the propose multiplier, thereby
making the proposed multiplier outperform even for lower bit-
widths, such as (8× 8) multiplier (see Fig. 9).

The corresponding error comparisons of these approaches
are shown Fig. 11, demonstrating comparative errors (in terms
of MRED, NMED and also ER) using the proposed (8 × 8)
multiplier (with 2-bit SDLC). As expected, our approach
outperforms both approaches in terms of MRED, NMED due
to its bit significance-driven logic compression. For example,
the MRED equals 0.252 and 0.139 for the cases of the
(8 × 8) multiplier proposed by ETM [44] and Kulkarni [24],
respectively, whereas, the MRED of the proposed multiplier is
just 0.0199. As the proposed approach progressively preserves
the high-order bits, it is expected to exhibit significantly lower

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

ETM [44] Kulkarni [24] Proposed

E
ro

rr
 R

a
te

 (
%

)

N
M

E
D

 (
%

),
 M

R
E

D
 (

%
)

NMED (%) MRED (%) ER (%)

Fig. 11. Comparative errors in terms of MRED, NMED and also ER for
various scalable (8× 8) approximate multipliers.

errors for multipliers with higher bit-widths.
For 2’s complement multiplication, the SDLC approach is

feasible for the case of signed operands. First, a reorganized
partial-product array is created as in Baugh-Wooley multi-
plication [45]. Fig. 12 shows the partial product matrix in
the case of (8 × 8) signed multiplier. Some of the product
terms indicated as qi,j (highlighted in blue), are obtained as
the NAND of the operands bits Ai and Bj . The proposed
SDLC approach is then applied to minimize the height of
the accumulation tree as discussed in Section III. The use
of the signed multiplication does not reveal any significant
degradation of the results obtained in the previous sections.
An example of leveraging the proposed SDLC approach into
signed multiplication is discussed in [12].

X A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

1 A7B0 A6B0 A5B0 A4B0 A3B0 A2B0 A1B0 A0B0

A7B1 A6B1 A5B1 A4B1 A3B1 A2B1 A1B1 A0B1

A7B2 A6B2 A5B2 A4B2 A3B2 A2B2 A1B2 A0B2

A7B3 A6B3 A5B3 A4B3 A3B3 A2B3 A1B3 A0B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4 A1B4 A0B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5 A0B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0B6

1 A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0B7

Fig. 12. Partial product matrix of (8 × 8) signed multiplier as in Baugh-
Wooley method.

Note that combining Booth-encoding along with the pro-
posed SDLC approach may not be as feasible. This is due to
two reasons; the first is due to variable number of add/subtract
operations and the second is because of long delays with
isolated 1s, e.g. bits 001010101(0) recoded as 011111111,
requiring 8 instead of 4 partial products. Also, the advantage
of implementing higher radix Booth encoders to generate a
reduced number of partial products comes at the expense
of increased hardware complexity. However, the proposed
multiplier can do the same task (i.e. reducing the number of
partial products at low loss of accuracy) without using Booth
schemes.

VI. CASE STUDY 1: GAUSSIAN BLUR FILTER

We evaluate the efficiency of the proposed technique on
a Gaussian blur filter application. The application consists of
additions and multiplications using key multipliers as building

11

blocks. Our analysis considers the Gaussian blur filter [46]
since it is widely used in graphics software, typically to reduce
image noise and detail by acting as a low-pass filter. This filter
involves the convolution of a ‘kernel’, described by a Gaussian
function, with the pixels of the image. The values of a given
pixel in the output image are calculated by multiplying each
kernel value by the corresponding input image pixel values;
then all the obtained values are added and the result will be
the value for the current pixel that overlaps with the centre of
the kernel.

To illustrate the effect of variable logic clusters in the
proposed approach, different versions of 8-bit and 16-bit of the
proposed multiplier together with the Gaussian blur algorithm.
All modules are implemented in Matlab covering 2-, 3- and
4-bit depth clustering in the case of (8 × 8) multiplication
and from 2- to 8-bit depth clustering for (16 × 16) multipli-
cation. The Gaussian kernel is (3 × 3) with a 1.5 standard
deviation value and it uses 8-bit fixed point arithmetic and is
applied to 8-bit and 16-bit gray-scale input images of size of
(500×500) pixels. We approximate Gaussian blur by replacing
the standard multiplication in the Gaussian filter with the
aforementioned approximate multipliers. The peak signal-to-
noise ratio (PSNR) is a fidelity metric used to measure the
quality of the output images. PSNR is expressed as:

PSNR = 10 log10

(
2552

MSE

)
, (17)

where MSE is the mean squared-error measured with respect
to the reference pixel. To calculate the consumed energy in the
multiplier unit required to process the input image, we follow
this equation:

energy = Power ∗Delay ∗N , (18)

where Power and Delay are obtained for one multiplier design
from the synthesis tool. N is the number of multiplications
necessary to treat the input image by Gaussian filter. The en-
ergy savings are then calculated compared to the conventional
accurate multiplier. Fig. 13 and Fig. 14 demonstrate the impact
of different bit-depth clustering on the image quality after
applying the Gaussian blur filter. The standard multiplier and
number of different levels of approximation for the proposed
(8× 8) and (16× 16) multipliers are used.

As can be seen, the use of the SDLC approach can yield
fruitful results. The PSNR for the case of 2-, 3- and 4-bit
logic clustering for (8 × 8) SDLC are 50.2dB, 39dB, 30dB
respectively, whereas the PSNR values are 70.2dB, 61.3dB,
51.4dB, 42.8dB, 39.3dB, 83.2dB, 30.2dB, when treating the
images using 2- to 8-bit logic clustering for (16× 16) SDLC.
The values of PSNR are computed compared to the image
resulting after applying Gaussian blur filtering with the case
of accurate multiplication. Thus, the proposed approach can
provide a significant dynamic energy saving up to 80.1% with
acceptable quality of output image, especially when utilizing
smaller bit depth clusters such as 2- and 3-bit for (8×8) SDLC
and 2- to 6-bit for (16× 16) SDLC. As can be observed from
Fig. 14, the proposed (16 × 16) multiplier allows for more
levels of energy/quality trade-offs ,comparing to the output
quality of (8× 8) multiplier in Fig. 13.

Exact Multiplier 2-bit SDLC 3-bit SDLC 4-bit SDLC

Energy Saving/Image 34.8 % 50.1% 62.6%

Reference Image PSNR = 50.2 PSNR = 39 PSNR = 30

Fig. 13. Output quality after applying Gaussian blur filtering for different
degrees of logic compression of the proposed (8× 8) multiplier.

Exact Multiplier 2-bit SDLC 3-bit SDLC 4-bit SDLC

Energy Saving/Image 38.8 % 42.6% 51%

Reference Image PSNR = 70.2 PSNR = 61.3 PSNR = 51.4

PSNR = 42.8 PSNR = 39.3 PSNR = 38.2 PSNR = 30.2

58.3 % 70.3% 72.8% 80.1%

5-bit SDLC 6-bit SDLC 7-bit SDLC 8-bit SDLC

Fig. 14. Output quality after applying Gaussian blur filtering for different
degrees of logic compression of of the proposed (16× 16) multiplier.

VII. CASE STUDY 2: PERCEPTRON CLASSIFIER

We evaluate the proposed multiplier against a perceptron
classifier. Perceptron classifiers are widely used in machine
learning applications. We exploited perceptron for learning
a binary classifier, i.e. a function which takes the inputs
x1, x2, ..., xm and produces an output value y. The output y
is a single binary value, expressed as:

y =

{
+1, w · x + b > 0,

−1, otherwise,
(19)

where w is a vector of real-valued weights, which vary over
runtime depending on the number of training input samples
and the training rate, w ·x is the dot product, i.e.

∑m
i=1 wi ·xi,

m is the number of inputs to the perceptron and b is the bias
(0 used in our example). We used (19) to classify patterns that
are linearly separable [47].

For perceptron learning algorithm, a training set is used
to train the perceptron to classify inputs correctly. This is
accomplished by adjusting the connecting weights and the
bias to properly handle linearly separable sets. All input sets
are randomly generated and independently distributed from
0 to 65535 to allow for using 16-bit multiplication. Then, we
evaluate the classifier against test set of 1000 two-dimensional
points that belong to two classes [-1,+1], see (19). The
approximate multipliers are used to multiply the perceptron
inputs by the weights vectors. The error rate (ER) is the ratio
of mismatch between classified class and the actual output.
Fig. 15 demonstrates the comparison of the classification
problem with accurate (16 × 16) multiplier and the proposed

12

(a) (b)

Fig. 15. The test set perceptron classification using; (a) accurate multiplier;
(b) 2-bit SDLC proposed multiplier. (blue and red points represent two classes
-1 and +1, black dots for mismatch classification points.)

TABLE VI
ERROR RATE RESULTS AND ENERGY SAVINGS FOR PERCEPTRON

CLASSIFIER

16-bit Multiplier ER% Energy savings%
Accurate 0.3 –

Proposed (2-bit SDLC) 0.6 40.2
Proposed (3-bit SDLC) 2.2 68.7
Proposed (4-bit SDLC) 12.7 74.2

ETM [44] 12.1 38.2
Kulkarni [24] 6.7 27.4

2-bit SDLC design. Compared to the accurate multiplier, the
proposed SDLC multiplier classifies six points, from the 1000
points in the testing set, as class 1 by mistake. Note that, even
the design that uses the accurate multiplier cannot classify all
points correctly (three mismatched points). Table VI shows
the comparative error rates and energy advantages of our
approach and various (16×16) multipliers. The energy savings
is calculated by (18). The proposed approach outperforms the
other designs and can provide energy saving of up to 74.2%
with acceptable error rates, especially when utilizing lower
bit depth clusters such as 2- and 3-bit SDLC. However, for
4-bit SDLC, the increased ER in Table VI, is expected. This
is because higher depth of logic clusters affects the accuracy
when multiplying the inputs with their associated weights.
When compared with existing approaches, such as ETM [44]
and Kulkarni et al. [24], the 4-bit SDLC produces a solution
with comparable ER.

VIII. CASE STUDY 3: POWER-CONSTRAINED SIGNAL
PROCESSING

This case study serves as an exemplar of how the PEQ
trade-offs of different approximate multiplier configurations
(Section V) can be leveraged to extract maximal data pro-
cessing capability in power-constrained applications. The main
idea is to design multiple data processing units with different
power and quality elasticity, provided by configurable logic
compression feature of our proposed SDLC approach. When
more power is available, accurate processing units can be
used; however, when the power is limited data processing
units with progressively higher approximation can be suitably
selected. The aim is to deliver the best possible data processing
capability, mitigating low-power situations where traditional
accurate logic circuits cannot operate.

Fig. 16 shows the simplified block diagram using signal
convolution as an example. As shown, the application is
power-constrained as no direct energy storage is available, i.e.,
the incoming harvested power is fed into the target logic circuit

Fig. 16. Power-constrained image convolution circuitry

through a voltage protection and conditioning unit. The logic
block consists of power measurement subsystem using shunt
resistance network (not shown for simplicity), followed by
three different DC-DC converters to enable variable voltage-
current supply into the main logic circuit. Based on the
incoming power, one of the four convolution logic blocks with
suitable approximation is chosen such that incoming power
budget is not violated, while also maximizing the quality of
data processing functionality.

The circuit in Fig. 16 was designed with simulated power
scavenging with the assumption that the incoming power
does not vary faster than the period of synchronous logic
clock. Since multipliers constitute the bulk proportion of the
convolution logic blocks, they were designed with 16-bit mul-
tipliers of four different approximations: accurate multiplier,
approximate multiplier with 2-, 3- and 4-bit logic clusters (see
Section III-C). All four convolution configurations used pre-
cise carry-propagation adders organized in array of multiply-
accumulate (MAC) units.

Table VII shows the synthesized power, delay, area and
PDP comparisons of the different MAC units including the
four convolution circuits in our proposed approach. As can
be seen, the accurate MAC (row 2) has significantly higher
power consumption and delay compared with the approximate
MAC implementations (rows 3-5). As the logic compression
level is increased using 2-bit to 3-bit and 4-bit logic clusters,
the critical path is incrementally cut down in favor of reduced
dynamic and leakage power, coupled with latency. As a result,
up to 5.5x energy efficiency expressed in terms of PDP, can
be achieved in the case of 4-bit SDLC MAC. Note that the
energy reductions are achieved at the cost of reduced quality
(see Section IV) and 140% increased overall area.

TABLE VII
POWER, DELAY AND AREA COMPARISONS OF DIFFERENT LOGIC

COMPONENTS

Circuit Pdyn

(uW)
Pleak

(uW)
Delay
(ns)

Area
(um2)

PDP
(fJ)

Accurate 58.19 4.23 2.63 1417.47 174.27
2-bit SDLC 36.24 2.97 2.11 904.56 76.86
3-bit SDLC 28.90 2.40 1.73 672.31 49.66
4-bit SDLC 23.41 2.01 1.35 501.37 32.32
Proposed – – – 3495.71 –

13

Fig. 17 presents the simulation results of the application
(Fig. 16). In a power-constrained scenario, the system requires
the signal convolution tasks to be completed in units of 2700
MACs (300-sample packets being convoluted by a signal with
9 samples). No deadline is imposed for the number of packets
to be processed over a given time in this example. Fig. 17(a)
depicts the input power (Pin) scavenged using a simulated
source, together with the effective logic power (Plogic) for
consecutive time intervals of 50ms each. The logic selection
and management subsystem (Fig. 16) estimates Pbudget for the
convolution circuit discounting the losses in power delivery.
The Plogic determines which logic mode can be operated
to ensure each signal packet is processed with the available
power. The excess power (Ploss) is bypassed through an RC
network parallel to the logic block (not shown). As can be
seen, when higher power is available initially, the accurate
MACs are selected for the convolution task, allowing up
to 2 packets to be processed (Fig. 17(b)). However, when
scavenged power is low, logic modes (such as 2-bit, 3-bit or
4-bit SDLC MACs) are selected. As the power becomes lower
than that required for processing a packet, the computation is

Fig. 17. (a) Input power (Pin) and effective logic power (Plogic), together
with the logic bypass losses (Ploss), (b) logic mode selection [0: none
selected, 1: 4-bit logic cluster MACs, 2: 3-bit logic cluster MACs, 3: 2-
bit logic cluster MACs, and 4: accurate MACs] and the total number
of MAC operations performed for the power budget for logic subsystem
determined from (a), and (c) valid signal-to-noise (SNR) points for the selected
convolution tasks.

skipped to the next interval. The selection of logic modes has
a direct impact on the quality of the outcomes as shown in
Fig. 17(c). Processing convolution using 4-bit SDLC MACs
causes the SNR to degrade to as low as 19 dB. Note that
the effective SNR for a given packet can still vary despite
having the similar logic mode selection. This is because the
error introduced by the approximate logic block is dependent
on the signal values. Signals with higher numeric values (i.e.
higher ’1’s in the significant parts of the logic) can incur more
errors than those with less numeric values (see Section IV).

The PEQ elasticity offered by SDLC multipliers substan-
tially improves the data processing capability. For example,
the accurate MAC (mode 4) can only be used to complement
up to 2.7k MACs as opposed to 150k MACs (about 60x)
produced by the combination of circuits (mode 0-4), including
our SDLC multipliers. This is a major advantage of systems
design with approximate circuits of variable precision.

IX. CONCLUSIONS

In this paper, a novel approximate multiplier design is
proposed using significance-driven logic compression (SDLC).
This design approach utilizes an algorithmic and configurable
lossy compression based on bit significance to form a reduced
set of partial product terms. This is then reorganized and
accumulated using various schemes of parallel multiplication.
On a statistical basis, the results of NMED and MRED metrics
show how the impact of error is reduced when the size of
the multiplier is increased. Additionally, the error distributions
show high right-skewness for error probabilities, indicating
that the proposed multiplier gives close to exact products for
most inputs. The results obtained after synthesis have shown
a substantial decrease in run-time, power consumption and
even in silicon area. We demonstrate energy-accuracy trade-
offs for different levels of approximations achieved through
configurable logic clustering. Three case studies were set up.
The first case study shows the performance-energy-quality
(PEQ) trade-offs of SDLC multiplier applied in an image pro-
cessing application. The second case study evaluates the SDLC
approach in machine learning application using perceptron
classifier. The third case study takes advantage of PEQ elastic-
ity of approximate multiplier configurations. It was shown that,
such elasticity can substantially improve the data processing
capability when operating with real-world power budgets in
ubiquitous systems. We believe that the proposed approach
can be used with already existing low-power compute units to
extract manifold benefits with a minimal loss in output quality.
Run-time configurable approximate multiplier design is being
considered for future research.

ACKNOWLEDGMENT
The authors would like to thank MOHE (Jordan), Al-

Balqa Applied University (Jordan) and EPSRC PRiME project
EP/K034448/1 (UK) for their funding and support.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[2] V. De, “Energy-efficient computing in nanoscale cmos,” IEEE Design
Test, vol. 33, no. 2, pp. 68–75, 2016.

[3] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel,
“Cross-layer approximate computing: From logic to architectures,” in
DAC, 2016, pp. 1–6.

14

[4] L. Sekanina, “Introduction to approximate computing: Embedded tuto-
rial,” in DDECS, 2016, pp. 1–6.

[5] M. D. Ercegovac, “On approximate arithmetic,” in Asilomar Conference
on Signals, Systems and Computers, 2013, pp. 126–130.

[6] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,”
in DATE, 2018, pp. 1051–1056.

[7] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A compara-
tive evaluation of approximate multipliers,” in International Symposium
on NANOARCH, 2016, pp. 191–196.

[8] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.

[9] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,” in
ISLPED, 2011, pp. 409–414.

[10] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das, and A. Yakovlev,
“Energy-efficient approximate wallace-tree multiplier using significance-
driven logic compression,” in IEEE International Workshop on Signal
Processing Systems (SiPS), 2017, pp. 1–6.

[11] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and A. Yakovlev,
“Approximate adder segmentation technique and significance-driven
error correction,” in PATMOS, 2017, pp. 1–6.

[12] D. Esposito, A. G. M. Strollo, and M. Alioto, “Low-power approximate
MAC unit,” in PRIME, 2017, pp. 81–84.

[13] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in PLDI, 2011, pp. 164–174.

[14] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
Lagrangian relaxation,” JACM, vol. 48, no. 2, pp. 274–296, 2001.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGPLAN Not.,
vol. 47, no. 4, pp. 301–312, 2012.

[16] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev,
“Energy-efficient approximate multiplier design using bit significance-
driven logic compression,” in DATE, 2017, pp. 7–12.

[17] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in DATE,
2011, pp. 1–6.

[18] Y. Liu, T. Zhang, and K. K. Parhi, “Computation error analysis in
digital signal processing systems with overscaled supply voltage,” IEEE
Transactions on VLSI Systems, vol. 18, no. 4, pp. 517–526, 2010.

[19] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[20] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for low-
power, variation-tolerant, and adaptive circuit synthesis using critical
path isolation,” IEEE TCAD/ICAS, vol. 26, no. 11, pp. 1947–1956, 2007.

[21] K. Shi, D. Boland, E. Stott, S. Bayliss, and G. A. Constantinides,
“Datapath synthesis for overclocking: Online arithmetic for latency-
accuracy trade-offs,” in DAC, 2014, pp. 1–6.

[22] N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,
“Truncated binary multipliers with variable correction and minimum
mean square error,” IEEE TCAS-I: Regular Papers, vol. 57, no. 6, pp.
1312–1325, 2010.

[23] J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,”
in DSD, 2003, pp. 112–119.

[24] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Internatioal Confer-
ence on VLSI Design, 2011, pp. 346–351.

[25] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier with
error correction,” in ICCD, 2013, pp. 33–38.

[26] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,
“Design-efficient approximate multiplication circuits through partial
product perforation,” IEEE Transactions VLSI Systems, vol. 24, no. 10,
pp. 3105–3117, 2016.

[27] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: Systematic logic synthesis of approximate circuits,”
in DAC, 2012, pp. 796–801.

[28] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in
ICCAD, 2011, pp. 667–673.

[29] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient ap-
proximate wallace tree multiplier for error-resilient systems,” in ISQED,
2014, pp. 263–269.

[30] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE TCAD/ICAS,
vol. 32, pp. 124–137, 2013.

[31] E. E. Swartzlander, “Truncated multiplication with approximate round-
ing,” in Proc. of 33rd Asilomar Conference on Signals, Systems, and
Computers, vol. 2, 1999, pp. 1480–1483.

[32] J. M. Jou, S. R. Kuang, and R. D. Chen, “Design of low-error fixed-width
multipliers for DSP applications,” IEEE TCAS-II: Analog and Digital
Signal Processing, vol. 46, no. 6, pp. 836–842, 1999.

[33] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,” in
DATE, 2014, pp. 361:1–361:6.

[34] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in DATE, 2013, pp. 1367–1372.

[35] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“ASLAN: Synthesis of approximate sequential circuits,” in DATE, 2014,
pp. 1–6.

[36] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Approximating complex arithmetic circuits with formal error guaran-
tees: 32-bit multipliers accomplished,” in ICCAD, 2017, pp. 416–423.

[37] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[38] L. Dadda, “Some schemes for parallel multipliers,” Alta frequenza,
vol. 34, no. 5, pp. 349–356, 1965.

[39] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-
proximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, no. 9, pp. 1760–1771, 2013.

[40] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in
DATE, 2014, pp. 1–4.

[41] I. Chong, H.-Y. Cheong, and A. Ortega, “New quality metric for
multimedia compression using faulty hardware,” in VPQM for Consumer
Electronics, 2006, pp. 267–272.

[42] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in DAC, 2013, p. 113.

[43] “Faraday technology corporation,” http://www.faraday-tech.com, ac-
cessed: 2017-12-12.

[44] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed
multiplier for error-tolerant application,” in EDSSC, 2010, pp. 1–4.

[45] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Transactions on Computers, vol. C-22,
no. 12, pp. 1045–1047, 1973.

[46] C. Solomon and T. Breckon, “Fundamentals of digital image processing
: a practical approach with examples in matlab.” Wiley-Blackwell,
2011, ch. 4, pp. 95–96.

[47] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Machine learning, vol. 37, no. 3, pp. 277–296,
1999.

Issa Qiqieh received the B.S. degree and M.Sc. de-
gree from Hijjawi Faculty for Engineering Technol-
ogy, Yarmouk University, Irbid, Jordan, in 2005 and
2007 respectively. He is currently pursuing Ph.D.
degree from the School of Engineering, Newcastle
University, Newcastle upon Tyne, UK. He was a
full-time lecturer in the School of Engineering, Al-
Balqa‘ Applied University, Al-Salt, Jordan, from
2007 to 2014. His current research interests include
approximate circuits, power-adaptive computing and
energy-efficient arithmetic designs.

Rishad Shafik (MIET, MIEEE) is a Lecturer in
Electronic Systems within the School of Engineer-
ing, Newcastle University, UK. Dr. Rishad received
his Ph.D., and M.Sc. (with distinction) degrees from
Southampton in 2010, and 2005; and B.Sc. (with
distinction) from the IUT, Bangladesh in 2001. He
is one of the editors of the book ”Energy-efficient
Fault-tolerant Systems,” published by Springer USA.
He is also author/co-author of 85+ IEEE/ACM jour-
nal and conference articles, with three best pa-
per nominations. He has recently co-chaired 30th

DFT2017 (www.dfts.org) at Cambridge, UK. His research interests include
energy-efficiency and adaptability aspects of embedded computing systems.

15

Ghaith Tarawneh is a Research Associate at New-
castle University. He finished his PhD in 2013,
specializing in metastability, synchronization and
clock domain crossing. Since then, he has worked
in various digital design areas including on-chip
parameter sensing, network on chip, neuromorphic
computing, formal verification and EDA tool devel-
opment. He is currently a member of the Partially
Ordered Event Triggered Systems (POETS) project
that is developing a novel architecture for massively
parallel computing.

Danil Sokolov is a Senior Research Associate in
the School of Engineering, Newcastle University,
UK. He received PhD from Newcastle University
in 2006. In the period 2007-2010 he has been
employed as a consultant by an EDA start-up Elastix
Corp to lead R&D in the area of ultra low power
synthesis. Dr. Sokolov is the author of 14 journal
articles, over 40 pair-reviewed conference papers
and a chapter in a textbook System On Chip: Next
Generation Electronics. His research expertise is
in modelling of self-timed heterogeneous systems,

synthesis methods for energy-efficient circuits, development of CAD tools
and their integration into industry-level design flows. He is the lead architect
and developer of Workcraft – a toolset for capture, simulation, synthesis and
verification of interpreted graph models.

Shidhartha Das (MIET, MIEEE) is currently the
Principal R&D Engineer at ARM, and the recipient
of the ARM Inventor of the Year award in 2016. He
received the B.Tech degree from the IIT, Bombay
in 2002 and the M.S and Ph.D degrees from the
University of Michigan, Ann Arbor in 2005 and
2009. His research interests include emerging non-
volatile memory technologies, micro-architectural
circuit and systems design. He is the recipient of
multiple best paper awards; his research also fea-
tured in popular IEEE magazines. Dr. Das serves on

the technical program committee of several leading international conferences.

Alex Yakovlev (FIET, FIEEE) is a Professor
of Computer Engineering, who founded and leads
the MicroSystems Research Group, and co-founded
the Asynchronous Systems Laboratory at Newcas-
tle University. He was awarded an EPSRC Dream
Fellowship in 2011–13. He has published 8 edited
and co-authored monographs and more than 300
papers in IEEE/ACM journals and conferences, in
the area of concurrent and asynchronous systems,
with several best paper awards and nominations.
He has chaired organizational committees of major

international conferences. He has been principal investigator on more than 30
research grants and supervised 40 PhD students. Most recently, he has been
elected to the fellowship of Royal Academy of Engineering in the UK.

