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Abstract—Traditional speedup models, such as Amdahls, facilitate
the study of the impact of running parallel workloads on manycore
systems. However, these models are typically based on software
characteristics, assuming ideal hardware behaviors. As such, the
applicability of these models for energy and/or performance-driven
system optimization is limited by two factors. Firstly, speedup cannot
be measured without instrumenting the original software codes, and
secondly, the parallelization factor of an application running on
specific hardware is generally unknown.

In this paper, we propose a novel method, whereby standard
performance counters found in modern many-core platforms can
be used to derive speedup without instrumenting applications for
time measurements. We postulate that speedup can be accurately
estimated as a ratio of instructions per cycle for a parallel manycore
system to the instructions per cycle of a single core system. By
studying the application instructions and system instructions for the
first time, our method leads to the determination of the parallelization
factor and the optimal system configuration for energy and/or
performance. The method is extensively demonstrated through ex-
periments on three different platforms with core numbers ranging
from 4 to 61, running parallel benchmark applications (including
synthetic and PARSEC benchmarks) on Linux operating system.
Speedup and parallelization estimations using our method and their
extensive cross-validations show negligible errors (up to 8%) in
these systems. Additionally, we demonstrate the effectiveness of
our method to explore parallelization-aware energy-efficient system
configurations for many-core systems using energy-delay-product
based formulations.

Index Terms—Many-core processors; speedup; performance
counter, power normalized performance, energy-delay-product.

I. INTRODUCTION

Aggressive technology scaling has facilitated significant reduc-
tions in device geometries and hence circuit delay, leading to per-
formance improvement [1]. According to Moore’s and Koomey’s
laws the trend of scaling has led to doubling of performance per
watt every 1.5 years [2], [3].

Many studies have been undertaken to date realize the trend
of performance growth with many CPU cores. For instance Pol-
lack’s rule suggests that performance is increasing approximately
proportional to the square root of the complexity defined by the
power density per unit area [4]. According to this rule, doubling
the number of processors also doubles the performance [1]. As
such, multi- or many-core systems are expected to deliver further
improvement in throughput and latency for the same die area.
However, such performance growth is also being inhibited by high
performance densities typically seen in modern technology nodes,
leading to the concept of dark silicon [5]. Hence, energy-efficient
resource allocation is of crucial importance for many-core systems
with high-performance requirements [3].

Speedup models are popular methods to reason technology-
independent normalized performance improvements with many-
cores. In 1967 the first speedup model was proposed by Amdahl
[6], which described how the performance of fixed workloads
can be estimated when executed on N processors. Many studies
followed the idea of Amdahl’s model to extend performance
reasoning for parallel workloads executed on multi- or many-cores
systems. In [7] Hill and Marty complemented Amdahl’s model to
define performance expectations of systems with heterogeneous
and dynamic configurations via Pollack rules [4]. In [8] these
performance models were generalized for homogeneous system
configurations. Both of these models were elaborated further
by [9] to investigate the theoretical multi-core scalability and to
determine the optimal multi-core performance.

In [10] performance models were defined as a function of
the system architecture. Detailed account for the additional un-
core theoretical components was proposed, including contribu-
tions from on-chip interconnect, pipeline and cache memory
subsystems. The effect of memory was also highlighted by [11],
which showed how performance speedup can be capped by
shared memories in a homogeneous many-core system. The power
contributions of different architectural components for various
system configurations were elaborated by [12]. The power models
demonstrated the trade-offs between speedup and relevant power
consumptions.

Table I shows summary of the existing studies relevant to
speedup models. As can be seen, these models have the following
limitations. Firstly, the ideal assumptions on both the workload
and the system platform limit the applicability of the models
for real systems. For instance, they do not consider real system
overheads, such as scheduling and hardware synchronizations.
Secondly, they do not use real benchmark applications to estimate
the system performance. Thirdly, they do not highlight determi-
nation of application parallelization factors and their impacts on
the speedup models; instead they consider theoretical limits of
parallelization factors. As such, using speedup and parallelization
models to identify suitable core allocations remains challenging
for energy efficiency considerations. To address these limitations,
this paper makes the following contributions:

• Extend Amdahl’s speedup model considering applications
and system software related overhead separately.

• Propose a new method to model parallelization and speedup
via performance counters to avoid the need for instrumenting
applications. We show that speedup can be accurately esti-
mated as a ratio of instructions retired/executed per cycle of



TABLE I: Existing Speedup Models and the proposed model.
Previous study Amdahl’s Model System overhead Performance counter Real Benchmark Parallelization factor Power

[6]–[11] Yes No No No user control No
[12] Yes No No No user control Yes

[13], [14] No Yes No Yes No No
[15] Yes Yes No No No No
[16] similar principle Yes No Yes No Yes
[17] related Yes No Yes No No
[18] similar principle Yes No Yes estimated No
[19] Yes Yes No Yes estimated Yes

Proposed Model Yes Yes Yes Yes user control and estimated Yes

parallel many-core system to that of a single core system.
• Extensive analysis of synthetic and real (PARSEC) bench-

marks to validate the speedup and parallelization factors
based on our proposed model.

• Demonstrate the effectiveness of our method for identify-
ing parallelization-aware energy-efficient system configura-
tions using power normalized performance and energy-delay-
product metrics.

The rest of the paper is organized as follows. Section II gives
the background on our proposed models. Section III describes
the proposed speedup model, together with power and energy
related metrics. Section IV describes our experimental set up, the
performance counters and the benchmark application used. Sec-
tion V presents the cross-validation of the models with measured
speedups and applicability of our method. Section VI proposes the
new paradigm of parallelization-aware energy-efficient computing.
Finally, Section VII concludes the paper.

II. BACKGROUND

We consider a system consisting of N cores, and a workload
with a parallel part and a sequential part. The fraction of parallel
workload is P ; hence, the sequential part of workload is (1− P ).
The P value known as the parallelization factor varies from
0 to 1; 0 indicates all sequential workload and 1 indicates
fully parallelizable workload. In our study we use a synthetic
benchmark application [20], whereby the parallelization P and
core allocations (from 1 to N ) can be controlled.

Amdahl’s speedup model calculations are based on a compar-
ison of execution time for a fixed workload I0 on a single core
with the execution time for the same workload executed on the
entire N -core system. Time T (1) is needed to execute both the
sequential and parallel parts of workload I0 on a single core, and
T (N) is needed to execute the sequential part of workload I0 on
a single core and the parallel part on N cores [21], [22].

T (1) =
I0

IPSI0

, and (1)

T (N) =
(1− P ) · I0
IPSI0

+
P · I0

N · IPSI0

, (2)

where IPSI0 is the throughput measured in instructions per
second for the workload I0 on a single core. Thus IPS based
Amdahl’s speedup model can be derived as follows [6].

SP (N) =
T (1)

T (N)
=

1

(1− P ) + P
N

. (3)

According to [22], this speedup can also be define as:

SP =
IPSI0(N)

IPSI0

. (4)

In other words, speedup is also the ratio of the throughput
achieved by executing on N cores to the throughput achieved
by executing on a single core [21].

III. PROPOSED SPEEDUP MODELS

Amdahl’s speedup model assumes that the workload has a
single P . In real systems, the overall workload usually consists
of multiple tasks, including system software (e.g. OS), and each
task may exhibit a different parallelizability and therefore dif-
ferent P . One potential method of run-time management is the
parallelizability-aware optimization of performance and/or energy.
For that it is important to treat individual applications and the
system software separately. In this section we develop a new
speedup model that calculates application speedup and consider
realistic system software overhead separately.

In the rest of the paper, we deal with the case of a single appli-
cation running on a real system with system software at the same
time. Expanding to multiple concurrently running applications will
be a future task.

A. Modeling Basics

We consider that the overall workload is the number of total
instructions executed by the system during the execution of any
specific application. The total number of instructions I when a
specific application is executed includes the application instruc-
tions I0 plus the system software instructions and halt cycles
caused due to resource sharing, ∆I , given as:

I = I0 + ∆I . (5)

If the number of instructions I0 in (5) can be obtained, in
order to calculate speedup we need to find out IPS. In other
words, in addition to the number of instructions, we need to
know the time spent on executing these instructions, which usually
implies instrumenting both applications and system software for
time monitoring. On the other hand, instructions per clock IPC
does not need the monitoring of time and only requires counting
the number of clock cycles spent in the execution. In the next
section we will explain how to obtain the relevant clock cycle,
with which the IPC can be calculated as follows:

IPC = IPCI0 + IPC∆I =
I0
C

+
∆I

C
, (6)

where C is the number of clock cycles spent on the execution. In
a many-core system the estimation of effective IPC for a parallel
workload given by (6) can be challenging as the instructions
retired per core against their corresponding execution cycles
cannot be used to estimate an overall average IPC. This is
because some cores execute parallel workloads independent of of
the other cores, while the core that is in charge of spawning threads



executes mostly sequential, but also some parallel workloads. The
execution of a workload therefore causes participating cores to
record different numbers of clock cycles. We hypothesize that
Cmax (recorded from the core with the highest unhalted clock C
value among all cores), generally gives a good indication of the
overlapped parallel execution times, measured by the time-stamp
counter. As such, the effective IPC in (6) can be defined as:

IPC =
I0
CMax

+
∆I

CMax
, (7)

Our experiments in Sections (IV) and (V) will show that (7) can be
used with confidence to model speedup. The resulting throughput
expressed by IPS as follows:

IPSI0 = IPCI0 · F , (8)

where F is the system operating frequency. This supports the
calculations of sequential and parallel execution time in (1) and
(2).

B. Speedup Calculations

For speedup, we can substitute IPC for IPS as the system
frequency is eliminated from the equation in case of the system
running at the same frequency, i.e.

SP =
IPSI0(N)

IPSI0

=
IPCI0(N)

IPCI0

, (9)

where IPCI0 and IPSI0 are the instruction per clock and instruc-
tion per second, respectively in single core with full sequential
workload, and IPCI0(N) and IPSI0(N) are the instruction per
clock and instruction per second, respectively for given P and N
configurations of a parallel application on a many-core system.

C. Estimation of Parallelization Factor

Once the speedup of an application is known through (9) it can
be used to calculate the parallelization factor P from equation (3)
as:

P =
N · (1− SP )

SP · (1−N)
. (10)

This expression is used in Section (V-C) to calculate paralleliza-
tion using performance counters. Note that the calculation for
(N > 1) give negative numerator and denominator, thus it gives
positive parallelization value.

D. Power and Energy Normalized Performance

Power normalized performance is an established metric related
to the power efficiency of systems. It is simple to model the
performance achievable at the same cooling capacity by cal-
culating performance per watt (Perf/Watt) [12], [21]. Power
normalized performance can be calculated from dividing the
system performance from (9) by the total power (Wtotal):

Perf/Watt =
IPSI0(N)

Wtotal
. (11)

Power normalized performance model is the reciprocal of energy
per instruction (EPIN ) because performance is the reciprocal of
execution time [12], [21]. Thus, EPIN can be calculated from
dividing the total power (Wtotal) by the system’s performance (9):

EPIN =
Wtotal

IPSI0(N)
. (12)

As metrics, EPI and power normalized performance can be
limiting. For instance, if an execution progresses extremely slowly
but consumes very little energy, it can result in good EPI and
power normalized performance numbers because it consumes
almost zero power. On the other hand, it may not get anything
useful done. In effect, EPI and power normalized performance
promote the minimization of energy but does not care much about
performance. To capture this concern the metric known as energy-
delay-product (EDP ) [23] puts more emphasis on the completion
of tasks by explicitly incorporating delay. In our method, EDP can
be obtained from (11) and (2) as follows:

EDP = Wtotal · (
(1− P ) · I0
IPSI0

+
P · I0

N · IPSI0

)2. (13)

IV. EXPERIMANTAL STUDIES

The models on speedup, parallelization, power and energy
metrics are demonstrated in this section through experiments.

A. Experimental Platforms

In this work we make use of three different Intel platforms.
Table II explains the general architecture details of all platforms.
All of these systems additionally allow hyper-threading. In all
our experiments we disabled hyper-threading by allocating tasks
to physical (not logical) cores. Although these systems are from
Intel, other platforms such as those from ARM also provide similar
performance counters which supports the generality of this work.
Extending this investigation to other platforms will be part of our
future work.

TABLE II: Experimental platforms used in this work.
Parameters Intel CPU Type

Processor Name Core i7 Xeon Xeon Phi
Processor No. i7-4820k E5-2630V2 7120X
Lithography 22 nm 22 nm 22 nm
No. of Sockets 1 2 1
Cores per Socket 4 6 61
No. of Cores 4 12 61
L1D Unified Cache 32 KB 32 KB 32 KB
L1I Unified Cache 32 KB 32 KB 32 KB
L2 Unified Cache 256 KB 256 KB 512 KB
L3 Shared Cache 10 MB 15 MB -
Base Frequency 3.7 MHz 2.60 MHz 1.24 MHz

B. Performance Counters

Hardware performance counters are a set of special purpose
regisers built into CPUs to store the counts of hardware activites
in a specific system. Users depend on those counters to collect
low-level performance analysis. This performance data varies
depending on the performance monitoring hardware and system
software configuration. An interface to access model specific
registers from user space is provided via the Linux Model-Specific
Register (MSR) module. This allows the user to extract hardware
performance counter events with an unmodified Linux kernel.
Likwid, used in this paper, is a lightweight performance oriented
tool suite for x86 multi-core processors [24], [25].

The following performance counters are used in this work.
INSTR RETIRED ANY counts the instruction retired

which leave the retirement unit. Such instructions have been
executed and their results are correct [26].
CPU CLK UNHALTED CORE counts the number of

unhalted clocks while the core is not in a halt state. This



performance counter is obtained through clock cycle recording.
If the clock frequency changes the number of cycles will not be
proportional to time. And halted states also affect the accuracy of
using this performance counter to represent time [27].

CPU CLK UNHALTED REF counts the number of ref-
erence clocks at the Time Step Counter (TSC) rate, while the core
is not in a halt state. This event is not affected by core frequency
changes. It counts at the same frequency as the TSC [27].

In our model, we need both the number of instructions and the
number of clock cycles for calculating IPC. For the number of
instructions, we use INSTR RETIRED ANY as application
workload I0 in equation (5). For the number of clock cycles we
use CPU CLK UNHALTED CORE as IPCI0 in equation
(7) which represent the accurate perfromance counter to calculate
IPC [27].

In Section (III) we showed that the number of cycles represents
time. CPU CLK UNHALTED REF shows the number of
cycles which includes halted cycles, hence is closer to representing
real execution time. In the real world, halted cycles occur when
the system has nothing to run. This occurs when threads waite for
interrupt thus the counting includes halted cycles in real execution
time [28], [29]. However it is not always available in Intel, as
Intel focuses on unhalted clock for IPC calculations [27]. In our
experiments we explore the use of unhalted clock to calculate
speedup, and the outcome is presented in Section (V).

In addition, hardware performance counters exist that
provide power and energy information. For instance,
PWR PKG ENERGY counts the CPU energy consumption
[27]. In previous work, it has been shown that this performance
counter produces reliable results validated through direct
measurements such as DC instrumntation [30]. It is used in
conjunction with the execution time information inferred from
unhalted clock performance counters in Section (VI-A) to derive
all power and energy information. In this paper we focus on
CPU energy which changes with the number of utilized cores
and the parallelization factor P and disregard other energy
consumption which have weak correlations with these factors
(e.g. memory energy).

From (3), it is possible to calculate speedup if T(1) and T(N)
can be obtained. However, this requires running a workload at
least twice, with different core configurations. To avoid having
to run a workload more than once, time-based calculations of
P require the knowledge of sequential and parallel time, which
requires instrumenting the code of a workload. By using the
performance counters listed above, however, it may be possible
to obtain the same functionality as instrumenting separate parallel
and sequential time monitoring, whilst only needing to monitor
the start and end of a workload. This means that there is no need
to modify workloads in any way.

Even though we motivate our work to avoid time measurements,
in our experiments we use time-instrumented workload code when
possible as well as make pairs of runs with different numbers
of cores. This helps demonstrate the validity of our approach of
avoiding direct time measurements through comparisons.

START

END

Pin to Core0

Execute
(1–P)·X cycles

Pin to Core0

Execute
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Fig. 1: Flowchart of the benchmark application with pro-
grammable P , considering a total workload of X cycles.

C. Benchmark Application

1) Synthetic Benchmark: The synthetic benchmark is executed
in all three platforms as shown in Table II at the base frequencies.

The calculation of the theoretical speedup models heavily relies
on the knowledge of the parallelization factor P . However, a
typical application has an unknown and variable P . Hence, we
developed a synthetic benchmark, which allows the control of its
P value. The benchmark is available for free usage and research
from [20].

The benchmark has distinct sequential and parallel sections, as
shown in Fig. 1. Inside, it performs a looped arithmetic calculation
(square root), which ensures a CPU-heavy workload with minimal
memory access. The number of cycles in parallel and sequential
parts is determined by the requested P value. The sequential part
is pinned to Core 0, and the parallel code is evenly distributed
between cores using core-affinities.

It is important to note that the benchmark can accept P=1 and
run only the parallel section. However, the actual parallelization
achieved by the platform may not meet the requirement. This will
be carefully considered when analyzing experimental results.

2) PARSEC Benchmarks: PARSEC benchmarks are executed
at base frequency on the Core-i7 platform only.

PARSEC [31], [32] is a reference application suite used in many
fields including industry and academia, for studying concurrent
applications on parallel hardware. Some of them parallelized with
OpenMP, while the others parallelized with gcc-pthreads.

PARSEC consists of 12 applications representing a diverse set
of commercial and emerging workloads [31].

In our study we choose 9 PARSEC benchmarks having different
parralelizabilties and memory usage intensities, [31]–[33]. The
input set used is ”native” and the benchmarks chosen are body-
track, blackscholes, facesim, fluidanimate, freqmine, swaptions,
streamcluster, canneal and dedup.

V. RESULTS AND VALIDATION

This section describes the model calculations and experimental
outcomes. We classify the calculations into fixed workload part
and extra workload, demonstrate the validations of execution time
and speedup and the estimation of parallelization factor P .

A. ∆I Calculation

In the first stage of our experiments, we use the Core i7 platform
to find ∆I and I0. The synthetic benchmark application was run



 

Fig. 2: Application instructions per clock for synthetic benchmark
using variable N and P .

 

Fig. 3: Performance counter based speedup for synthetic bench-
mark using variable N and P .
on all core configurations (from N=1 to N=4) and programmed
P ranging from (0 to 1). The first observation was that for
all N=1 experiments Core 0 showed exactly the same number
of instructions retired with no random variation, which is an
indication that all system workloads have been scheduled on idle
cores (cores that do not have applications running), and Core 0
has been exclusively running the application workload I0, which
is 5.6E+09.

Knowing I0, we were able to calculate IPCI0 from (6) and
the speedup based on IPCI0 from (9). The results are presented
in Figures 2 and 3. Fig. 2 shows the throughput, in IPS, that
is achieved with the application’s programmed P value ranging
from 0 to 1 and the number of cores ranging from 1 to 4. The
maximum throughput is clearly achieved with P=1 and N=4.
It is important to note that with a programmed P of 0 (i.e.
non-parallelizable code) increasing the number of cores does not
affect the throughput, and with a single core, no matter what the
programmed P is the throughput is also constant. Fig. 3 shows
the speedup as a function of N and P . It can be seen that the
maximum speedup achievable with N=4 and P=1 is close to 4,
which shows that the synthetic benchmark dose not have hidden
synchronizations and other effects limiting parallelizability, and
the hardware platform’s impact on IPC-based speedup is small.

The second finding is that ∆I reduces with N and P increasing.
We tested the hypothesis that system workload ∆I is proportional
to time, and confirmed that ∆I/T (N) approximates to a constant
with the average of 6.58E+04 and the standard deviation of
9.53E+03.

Also the system software workload is very small i.e. 1-2%.
However, these extra instructions can cause resource constraints
and result in halt cycle. In our experiments we have observed a
1.55% increase of halt cycles for P=0 and N=1.

In the second stage, we run PARSEC benchmarks; the ap-

plications run in all core configurations (from N = 1 to N
= 4), in PARSEC we do not have programmed P . The first
observation is that the total instruction retired have fixed values for
each application, with small changes (<6%), the total instructions
reduced with N increasing and execution time decreasing. Thus,
we use linear regression to calculate fixed I0 and variable ∆I ,
where ∆I is a function of number of cores N and execution
time.

∆I = αt+ βN (14)

TABLE III: System software workloads ∆I/T (N) for different
PARSEC applications.

Name Average Standard Deviation
bodytrack 1.37E+09 4.15E+08

blackscholes 3.92E+08 1.47E+07
facesim 6.78E+08 2.33E+08

fluidanimate 6.66E+08 4.16E+08
freqmine 3.09E+08 4.36E+07
sweptions 3.12E+08 5.86E+07

streamcluster 4.88E+09 1.89E+09
canneal 3.44E+08 1.83E+07
dedup 4.79E+08 1.21E+08

It confirmed that ∆I/T (N) approximates to a constant in most
cases as shown in Table III, Where the standard deviations tend
to be much smaller than the averages. The benchmarks bodytrack,
facesim, streamcluster, canneal and dedup have a small changes in
∆I rather than blacksholes, freqmine, sweptions and fluidanimate.

B. Time and Speedup Validation

Table IV shows the validation results of synthetic benchmark
of the speedup estimated with performance counters using (9),
against the traditionally used time measurements. From Table IV,
two observations can be made. Firstly we validate the use of
performance counters by comparing the measured execution time
with the time calculated from (2) and (8) by using the programmed
P and the measured IPC and I .
TABLE IV: Cross-validation results for fixed workload I0 using
synthetic benchmark [20].

Time, ms Speedup
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Core-i7

0.1 2 3492 3492 0.01 1.05 1.052 0.05
0.1 3 3430 3430 0.03 1.07 1.071 0.03
0.1 4 3400 3400 0.01 1.08 1.081 0.02
0.9 1 3675 3676 0.03 1 0.999 0.02
0.9 3 1470 1570 0.03 2.5 2.501 0.09
0.9 4 1205 1194 0.86 3.05 3.074 0.84

Xeon

0.1 1 521 534.171 2.47 1 1.000 0.00
0.1 4 483 494.108 2.25 1.078 1.080 0.36
0.1 12 474 485.205 2.31 1.099 1.100 0.01
0.9 2 294 293.794 0.07 1.772 1.666 2.62
0.9 8 115 113.511 1.31 4.530 3.331 3.83
0.9 12 95 93.4799 1.63 5.484 3.747 4.11

Xeon Phi

0.1 8 29939 30540.26 1.97 1.118 1.118 2.06
0.1 16 29744 30331.08 1.94 1.126 1.126 2.09
0.1 61 30182 30176.76 0.02 1.109 1.108 0.05
0.9 1 32853 33468.78 1.84 1.019 1.019 1.91
0.9 4 10655 10877.35 2.04 3.143 3.145 2.23
0.9 32 4372 4288.18 1.95 7.660 7.848 0.55

We then validate the use of performance counters for speedup
estimation by comparing the measured speedup, as the execution



time ratio T (1)/T (N), to the IPC-based speedup calculated from
the performance counters according to (9).

In these experiments, the errors are generally small; however
they increase to nearly 8% when P=1. This is expected as the
programmed P value does not correspond to the real paralleliza-
tion factor in the platforms. The observation is that real platforms
cannot keep up with the programmed parallelization, presumably
due to extra interactions between components.

However, the speedup based on unhalted clock calculation of
IPC matches the theoretical speedup from Amdahl’s Law (3) with
virtually no error (<0.5%). This result can be found in the full
set of data and calculations [20]. It indicates that the discrepancy
between the measured speedup and the unhalted clock-based
speedup is due to halting of the cores. Additionally, this property
can be exploited to estimate the application software P value as
discussed in Section (V-C).

For PARSEC benchmarks, we run the nine PARSEC applica-
tions on the Intel Core-i7 platform at base frequency (3.7 GHz).
We collect the appropriate hardware performance counters in
Section (IV-B), thus the speedup can be calculated by (9). Fig. 4
shows the speedup calculations for these benchmarks, the per-
formance counter based speedup calculations show a good cross-
validation with general execution time based speedup calculations.
The error ratio does not exceed 6.5%. Finally, The parallelization
factor P can be calculated as explained in Section (V-C).

 

Fig. 4: Performance counter based speedup for PARSEC bench-
mark applications.
C. Estimating Parallelization Factor P

The effectiveness of scaling to more cores in order to obtain
more speedup is related to the value of the parallelization factor
P (Section II). In general, from equation (3), scaling to more
cores may not improve speedup for a smaller P as much as for a
larger P . If it is possible to determine the P value of running any
task on any platform, this knowledge may be useful for run-time
task to core scheduling. This may be called P -aware run-time
management.
P can be estimated if the speedup is known. This can be done

for any known N through equation (10). It is also possible to
determine P using data from experiments based on multiple N
configurations through the method of regression, based on such
criteria as least squares [19]. Regression has been used for run-
time optimization based on learning for multi-core systems [34]
where the models are unknown. Given equation (10), the moti-
vation of using potentially expensive regression during run-time

TABLE V: Parallelization (P ) calculations for synthetic bench-
mark [20].

SoC PSW PLST
PEQT

(10) PLSC
PEQC

(10)
Core-i7 0.1 0.0994 0.0993 0.0999 0.0998
Core-i7 0.4 0.3990 0.3996 0.3990 0.3999
Core-i7 0.7 0.6840 0.6834 0.6990 0.6999
Core-i7 0.9 0.8970 0.8985 0.8820 0.8999
Xeon 0.1 0.0900 0.0892 0.1002 0.1002
Xeon 0.3 0.2940 0.2912 0.3002 0.3001
Xeon 0.7 0.7000 0.6852 0.7001 0.6999
Xeon 0.9 0.8905 0.8849 0.9000 0.9001

Xeon Phi 0.1 0.1008 0.1086 0.1007 0.1087
Xeon Phi 0.4 0.4003 0.4007 0.4012 0.4015
Xeon Phi 0.5 0.5037 0.5038 0.5038 0.5036
Xeon Phi 0.9 0.8892 0.9020 0.9008 0.9029

TABLE VI: Parallelization factor (P ) calculations of PARSEC
benchmarks.

Benchmark PLST
PEQT

(10) PLSC
PEQC

(10)
bodytrack 0.981 0.925 0.937 0.965

blackscholes 0.841 0.852 0.868 0.872
facesim 0.900 0.920 0.941 0.948

fluidanimate 0.895 0.902 0.927 0.926
freqmine 0.985 0.984 0.985 0.986
swaptions 0.990 0.993 0.994 0.995

streamcluster 0.859 0.858 0.884 0.873
canneal 0.757 0.762 0.774 0.776
dedup 0.940 0.927 0.953 0.938

is weaker here. However, we first need to establish that equation
(10) provides the same quality as regression-based methods.

The other question we must consider is the avoidance of instru-
menting applications for time. Can we replace time measurements
with clock-related performance counter data for P estimation? In
this section we attempt to estimate P from speedup derived from
both clock performance counters and from direct time measure-
ments, using both regression and equation (10) calculations, and
compare the results. These again cover both the synthetic as well
as PARSEC benchmarks.

Table V shows the results for the synthetic benchmark. Here it
is regarded as desirable if the estimated PLS values are obtained
with least squares regression and PEQ values obtained with
equation (10) are closer to the software-programmed PSW set
within the benchmark. It can be observed that the differences
between regression and equation (10) is small with PEQ tracking
PSL closely in both time measurement and clock derived cases.
It can also be observed that PLSC values are very close to PLST

values and PEQC values are very close to PEQT values, meaning
that using clock performance counters is valid. And finally, all
the estimated P values are very close to the programmed P
values set in the benchmark. In other words, this shows that 1)
estimating P from speedup is a valid approach and 2) using clock
performance counter data to replace time instrumentation is a valid
approach. Table VI shows the results for PARSEC benchmarks,
whose intrinsic P values are unknown and not explicitly set
within the programs. They also have more memory access which
might introduce unpredictable waiting and synchronization effects
making their P values potentially different from run to run. As
a result, it is not possible to compare estimated P values to a
reference value, and the comparison tries to answer two questions:



Is it a valid approach to use equation (10) to avoid regression and
is it a valid approach to make use of clock performance counter
data to avoid instrumenting applications for time monitoring.
The results show that the answer is yes for both questions with
differences between the approaches generally being very small.

As a result, we propose to make use of equation (10) directly
to estimate P from speedup estimated from clock performance
counters in run-time P-aware scaling management, which is our
immediate future work.

VI. PARALLELIZATION-AWARE ENERGY EFFICIENT
COMPUTING

As mentioned in Section V-C, if the P value of an application
running on a platform is known, run-time decisions may be
made based on this knowledge to improve speedup. Beyond just
speedup, Shafique etal have shown that in dark silicon operations,
the P values of workloads need to be considered to arrive at
optimal resource allocations through such techniques as dark
silicon patterning [35]–[37].

In this section, we investigate whether it is possible to optimize
energy efficiency with a knowledge of P . For this purpose
experiments are carried out to relate metrics of energy efficiency
to P . We don’t make dark silicon assumptions in this study.
Parallelization in dark silicon will be a future topic of research.

A. Energy and Power Data

Energy consumption data is collected from experiments
described in the preceding sections using the method de-
scribed in Section IV-B. The energy performance counter
PWR PKG ENERGY gives total energy consumed by all
cores. We calculate the total power consumption Wtotal by
dividing energy by the realistic execution time obtained by
CPU CLK UNHALTED REF . Fig. 5 shows the energy
consumption in Intel Core-i7 quad core processor for the synthetic
benchmark. Applications that have high parallelization factors
consume less energy in high frequency scaling and maximum
core allocations as shown in Fig. 5(a) for the P factor equal to
0.9, whereas applications with low parallelization factors consume
higher energy as shown in Fig. 5(b) for the P factor equal to 0.1.
We observe that for low parallelization factors the best energy
consumption is obtained with three cores and highest frequency
scaling.
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Fig. 5: Energy consumption for synthetic application: a) high
parallelization factor P=0.9, b) low parallelization factor P=0.1.

B. Power Normalized Performance and Energy-Delay-Product
Both power normalized performance and EDP are metrics

on energy efficiency, with different emphasises, as discussed in
Section III-D. Here we calculate power normalized performance
from (11) and EDP from (13). Fig. 6 shows power normalized
performance of the synthetic benchmark, in high parallelization
factor the best performance is obtained from maximum number
of cores and maximum frequency as shown in Fig. 6(a), in low
parallelization factor the best performance is obtained from high
frequency scaling in 3 or 4 cores as shown in Figure 6(b).
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Fig. 6: Power normalized performance for synthetic application:
a) high parallelization factor P=0.9, b) low parallelization factor
P=0.1.

Fig. 7 shows the calculation of energy-delay-product of syn-
thetic benchmark, in high parallelization factor the best outcome
is obtained from high frequency scaling and 3 or 4 number of
cores as shown in Fig. 7(a), in low parallelization factor the best
outcome is obtained from high frequency scaling in 3 and 4 cores
as shown in Fig. 7(b).

The data presented in this section shows that optimal energy
efficiency, as measured in either metric, is a function of P . As a
result, the idea of parallelization-aware energy efficient computing
is valid and we propose to study more examples and develop
optimization methods that may be used at run-time as part of our
immediate future work.
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Fig. 7: Energy-delay-product for synthetic application: a) high
parallelization factor P=0.9, b) low parallelization factor P=0.1.

VII. CONCLUSIONS AND DISCUSSIONS

This paper is the first attempt to address the problem of making
use of Amdahl speedup model without knowing the parallelization
factor P and without instrumenting applications for time moni-
toring. Performance counters are proposed as a solution to this
problem. Speedup can be indicated by IPS data from before and
after parallelization rather than directly from time delays. And by
using IPC in place of IPS we make it possible to use instruction
and clock performance counters for calculating speedup.



In this paper, we also solve the problem of differentiating
application instructions from system software instructions and
discover the behavior of typical system software instructions.

Extensive cross-validations have been performed by comparing
model-calculated speedup with speedup derived from measured
time, with small errors shown. The maximum error, which rarely
occurs, is 8%. We followed performance counter speedup model
to calculate PARSEC benchmark speedup, the outcomes show a
sound error ratio related to outcomes derived from measured time
(less than 6.5%).

We also propose a method of determining P once speedup
is known, and this is cross-validated by comparing with the
programmed P values in our experimental benchmark with very
small errors (less than 3.26%). Furthermore, the parallelization
factor of PARSEC benchmarks are calculated via the same model.

Based on these parallelization and speedup models we devel-
oped models for power, energy, power normalized performance
and energy-delay-product explored the energy efficiency of core
scaling.

We believe that the speedup, parallelization, and EDP models
developed in this paper will give rise to a new method of run-
time system control optimizing speedup and/or energy efficiency.
This may be called parallelization-aware run-time management for
performance and/or efficiency. We will focus on this direction in
our future work.
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