
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

Speedup and Power Scaling Models
for Heterogeneous Many-Core Systems

Ashur Rafiev, Mohammed A. N. Al-hayanni, Student member, IEEE, Fei Xia,
Rishad Shafik, Member, IEEE, Alexander Romanovsky, Alex Yakovlev, Fellow, IEEE

Abstract—Traditional speedup models, such as Amdahl’s law, Gustafson’s, and Sun and Ni’s, have helped the research community
and industry better understand system performance capabilities and application parallelizability. As they mostly target homogeneous
hardware platforms or limited forms of processor heterogeneity, these models do not cover newly emerging multi-core heterogeneous
architectures. This paper reports on novel speedup and energy consumption models based on a more general representation of
heterogeneity, referred to as the normal form heterogeneity, that supports a wide range of heterogeneous many-core architectures. The
modelling method aims to predict system power efficiency and performance ranges, and facilitates research and development at the
hardware and system software levels. The models were validated through extensive experimentation on the off-the-shelf big.LITTLE
heterogeneous platform and a dual-GPU laptop, with an average error of 1% for speedup and of less than 6.5% for power dissipation.
A quantitative efficiency analysis targeting the system load balancer on the Odroid XU3 platform was used to demonstrate the practical
use of the method.

Index Terms—Heterogeneous systems, speedup modelling, energy-aware systems, load balancing, Amdahl’s law, multi-core
processors

F

1 INTRODUCTION

F ROM the early days of computing systems, persistent
engineering efforts have been made to improve compu-

tation speed by distributing work across multiple devices. A
major focus in this area of research has been on predicting a
gain in system performance, called speedup. Amdahl’s law,
in use since 1967 [1], assumes that a fixed workload is
executed in n processors and compares their performance
with that of a single processor executing the same workload.
The model shows that if the workload requires synchro-
nization the speedup will be quickly saturated with an
increase in n. In 1988, Li and Malek explicitly considered
inter-processor communications in this model [2]. In the
same year, Gustafson introduced the principle of workload
scaling pertaining to the fixed time model [3]. His model ex-
tends the workload proportionally to system scalability with

• A. Rafiev, M. Al-hayanni, F. Xia, R. Shafik, A. Romanovsky, and
A. Yakovlev are with Newcastle University, UK
E-mail: {ashur.rafiev, m.a.n.al-hayanni, fei.xia, rishad.shafik, alexan-
der.romanovsky, alex.yakovlev}@ncl.ac.uk

• M. Al-hayanni is also with University of Technology and HCED, Iraq
• This work is supported by EPSRC/UK as a part of PRiME project

EP/K034448/1.
• Data supporting this publication is openly available under an ’Open Data

Commons Open Database License’. Additional metadata are available at:
http://dx.doi.org/10.17634/123238-4. Please contact Newcastle Research
Data Service at rdm@ncl.ac.uk for access instructions.

• Full version (inc. the Appendix) is published in IEEE Transac-
tions on Multi-Scale Computing Systems, http://dx.doi.org/10.1109/
TMSCS.2018.2791531

• c© 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

the result of having a linear increase in the speedup. In 1990,
Sun and Ni put forward a new model, which calculated the
workload extension by considering memory capability [4].

Over the years, increased operating frequency and
smaller device geometries have led to a significant per-
formance improvement at reduced power consumption [5].
The number of transistors per unit of area has increased sub-
stantially, conforming to Moore’s [6] and Koomey’s laws [7],
and Pollack’s rule suggests that the increase in performance
is approximately proportional to the square root of the
increase in complexity [8].

As a result, almost every modern consumer device or
embedded system uses the computational power of multi-
core processing. The number of cores in a device is con-
stantly growing, hence the speedup scaling models remain
highly important. The convenience of using Amdahl’s law
and the derived models is that they do not require complex
modelling of inter-process communications. These models
are based on the average platform and application charac-
teristics and provide simple analytical solutions that project
system capabilities in a clear and understandable way. They
provide a valuable insight into system scalability and have
become pivotal in multi-scale systems research. This is why
it is important to keep them up to date, to make sure they
remain relevant and correctly represent novel aspects of
platform design.

With increasing system complexity and integration, the
concept of heterogeneous computation has emerged. Ini-
tially, the heterogeneity appeared in a form of specialized ac-
celerators, like GPU and DSP. In recent years, multiple types
of CPU cores in a single device have also been made popu-
lar. For instance, the ARM big.LITTLE processor has found
a wide use in mobile devices [9]. Heterogeneous systems
pose additional engineering and research challenges. In the



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

TABLE 1
Existing speedup models and the proposed model

ho
m

og
en

.

he
te

ro
ge

n.

po
w

er

m
em

or
y

in
te

rc
on

.

A
m

da
hl

G
us

ta
fs

on

Su
n-

N
i

[1] yes no no no no yes no no
[2] yes no no no yes yes no no
[3] yes no no no no yes yes no
[4] yes no no yes no yes yes yes
[12] yes simple no no no yes no no
[13], [14] yes simple no yes no yes yes yes
[15], [16] yes simple yes no no yes no no
proposed yes normal yes no no yes yes yes
models form

area of scheduling and load balancing, the aim is to improve
core utilization for more efficient use of the available perfor-
mance. Operating systems traditionally implement symmet-
ric multi-processor (SMP) scheduling algorithms designed
for homogeneous systems, and ARM have done dedicated
work on modifying the Linux kernel to make load balancing
suitable for their big.LITTLE processor [10].

In addition to performance concerns, power dissipation
management is also a significant issue in scalable systems:
according to Dennard’s CMOS scaling law [11] despite
smaller geometries the power density of devices remains
constant.

Hill and Marty extended Amdahl’s speedup model to
cover simple heterogeneous configurations consisting of
a single big core and many smaller ones of exactly the
same type [12], which relates to the CPU-GPU type of
heterogeneity. The studies in [13], [14] extended Hill-Marty
analysis to all three major speedup models. The problem
of energy efficiency has been addressed in [15], [16] for the
homogeneous and simple heterogeneous Amdahl’s model.
This overview covers only the most relevant publications,
an extensive survey can be found in [17].

1.1 Research Contributions

This paper extends the classical speedup models to a nor-
mal form representation of heterogeneity, which describes
core performances as a vector. This representation can fit a
wider range of systems, including the big.LITTLE processor,
homogeneous processors with multiple dynamic voltage-
frequency scaling (DVFS) islands, and multi-GPU heteroge-
neous systems. The initial work on this topic was published
in [18], which includes the derivation of the speedup models
and a set of power models for this extended representation
of heterogeneity. In the current publication we expand the
work by addressing the effects of workload distribution and
load balancing, and also explore additional modes of work-
load scaling relevant only to heterogeneous systems. We dis-
cover that the presented models inherit certain limitations
from Amdahl’s law. The paper provides a concise discussion
on the matter. In addition, an extensive set of experiments
has been carried out to validate the proposed models on
both heterogeneous CPU and CPU-GPU platforms, and to
explore their practical use.

This paper makes the following contributions:

• extending the classical speedup models to normal
form heterogeneity in order to represent modern
examples of heterogeneous systems;

• extending models to include power estimation;
• clarifying the limitations of the Amdahl-like hetero-

geneous models and outlining further challenges of
heterogeneous speedup and power modelling;

• validating the models on commercial heterogeneous
platforms;

• practically using the models to evaluate the efficiency
of the Linux scheduler’s load balancing while run-
ning realistic workloads in a heterogeneous system.

This work lays the foundation for a new type of hetero-
geneous models. The effects of memory and interconnects
are planned as future model extensions. Table 1 compares
this paper’s contributions to the range of related research
publications.

The experimental work presented in this paper has been
carried out on the Odroid-XU3 [19] development platform
centred around ARM big.LITTLE and on a dual-GPU laptop
(Dell XPS).

The paper is organized as follows. Section 2 gives an
overview of the existing homogeneous and heterogeneous
speedup models. Section 3 discusses the model assumptions
and formally defines the structure of a normal form hetero-
geneous system. Sections 4 and 5 present the new heteroge-
neous speedup and power models respectively. Sections 6
and 7 experimentally validate the models. Section 8 shows
the experiments with real life benchmarks. Section 9 outlines
the future work, and Section 10 concludes the paper.

2 EXISTING SPEEDUP MODELS

In homogeneous systems all cores are identical in terms of
performance, power, and workload execution.

For a homogeneous system we consider a system con-
sisting of n cores, each core having a performance of
θ = I

t(1) , where I is the given workload and t (1) is the
time needed to execute the workload on the core. This
section describes various existing models for determining
the system’s speedup S (n) in relation to a single core, which
can be used to find the performance Θ (n) of the system:

Θ (n) = θS (n) . (1)

Amdahl-like speedup models are built around the paral-
lelizability factor p, 0 ≤ p ≤ 1. Given a total workload of I ,
the parallel part of a workload is pI and the sequential part
is (1− p) I .

2.1 Amdahl’s Law (Fixed Workload)

This model compares the execution time for some fixed
workload I on a single core with the execution time for the
same workload on the entire n-core system [1].

Time to execute workload I on a single core is t (1),
whereas t (n) adds up the sequential execution time on one
core at the performance θ and the parallel execution time on
all n cores at the performance nθ:

t (1) =
I

θ
, t (n) =

(1− p) I
θ

+
pI

nθ
, (2)



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

thus the speed up can be found as follows:

S (n) =
t (1)

t (n)
=

1

(1− p) + p
n

. (3)

2.2 Gustafson’s Model (Fixed Time)

Gustafson re-evaluated the fixed workload speedup model
to derive a new fixed time model [3]. In this model, the
workload increases with the number of cores, while the
execution time is fixed. An important note is that the work-
load scales asymmetrically: the parallel part is scaled to the
number of cores, whilst the sequential part is not increased.

Let’s denote the initial workload as I and extended
workload as I ′. The time to execute initial workload and
extended workload are t (n) and t′ (n) respectively. The
workload scaling ratio can be found from:

t (1) =
I

θ
, t (n) =

(1− p) I
θ

+
pI ′

nθ
, (4)

and, since t (1) = t (n) , the extended workload can be
found as I ′ = nI. The time that would take to execute I ′

on a single core is:

t′ (1) =
(1− p) I

θ
+
pnI

θ
, (5)

which means that the achieved speedup equals to:

S (n) =
t′ (1)

t (1)
= (1− p) + pn. (6)

The main contribution of Gustafson’s model is to show
that it is possible to build applications that scale to multiple
cores without suffering saturation.

2.3 Sun and Ni’s Model (Memory Bounded)

Sun and Ni took into account the previous two speedup
models by considering the memory bounded constraints [4],
[20]. In this model the parameter g (n) reflects the scaling of
the workload in relation to scaling the memory with the
number of cores:

I ′ = g (n) I. (7)

The model calculates the speedup as follows:

S (n) =
t′ (1)

t′ (n)
=

(1− p) + pg (n)

(1− p) + pg(n)
n

. (8)

One of the important properties of this model is that for
g (n) = 1 Sun and Ni’s model (8) transforms into Amdahl’s
law (3), and for g (n) = n it becomes Gustafson’s law (6).
Further in this paper, we do not specifically relate g (n) to
the memory access or any other property of the system but
consider it as a given or determined parameter pertaining
to a general case of workload scaling.

2.4 Hill and Marty’s Heterogeneous Models
Hill and Marty extended speedup laws to heterogeneous
systems, and mainly focused on a single high performance
core and many smaller cores of the same type [12].

Core performances are related to some base-core equiv-
alent (BCE), which is considered to have θ = 1. Given a
characterization parameter r, this model studies a system
with one big core having Θ (r) relative performance and
(n− r) little cores with BCE performances, as shown in
Figure 1(b). The sequential workload is executed on the
faster core, while the parallel part exercises all cores simul-
taneously. This transforms Amdahl’s law (3) as follows:

S (n, r) =
1

(1−p)
Θ(r) + p

Θ(r)+(n−r)

. (9)

A reconfigurable version of this model can be extended
to cover multi-GPU systems, but still implies only one active
accelerator at a time [21], [16]. In this work we aim to
cover more diverse cases of heterogeneity pertaining to such
modern architectures as ARM big.LITTLE [19] and multi-
GPU platforms with simultaneous heterogeneous execution,
which are not directly covered by Hill and Marty’s models.

3 HETEROGENEOUS SYSTEMS

Homogeneous models are used to compare the speedup be-
tween different numbers of cores. Similarly, heterogeneous
models should compare the speedup between core config-
urations, where each configuration defines the number of
cores in each available core type. This section discusses
the problems of modelling consistency across different core
types and provides the foundation for all heterogeneous
models presented later in this paper.

3.1 The Challenges of Heterogeneous Modelling
Heterogeneous models must capture the performance and
other characteristics across different types of cores in a
comparable way. Such a comparison is not always straight-
forward, and in many ways similar to cross-platform com-
parison. This section discusses the assumptions behind Am-
dahl’s law and similar models under the scope of hetero-
geneous modelling and outlines the limitations they may
cause.

3.1.1 Hardware-dependent parallelizability
In the models presented in Section 2, there is a time-
separation of the sequential and parallel executions of the
entire workload. These models do not explore complex in-
teractions between the processes, hence they do not provide
exact timing predictions and should not be used for time-
critical analyses like real-time systems research. Solving
for process interactions is possible with Petri Net simu-
lations [22] or process algebra [23]. Amdahl-like models,
in contrast, focus on generic analytical solutions that give
approximate envelopes for platform capabilities.

The parameter p is a workload property, assuming that
the workload is running on ideal parallel hardware. Realistic
hardware affects the p value of any workload running on
it. From the standpoint of heterogeneous modelling, the
potential differences in parallelizability between core types



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

(a)
1 1 1 1 1 1 1 1

n cores

(b)
1 1 1 1 1 �(r)

(n – r) small cores 1 large core

n1 type 1 cores

�1�1 �1�1 �1�1 �1�1 �1�1 �1�1

(c)

n2 type 2 cores

�1�2 �1�2 �1�2 �1�2 �1�2

..
.

nX type x cores

�x

1

virtual
BCE

�x �x

Fig. 1. The proposed extended structure of a heterogeneous system (c)
compared to a homogeneous system (a) and the previous assump-
tion [12] on heterogeneity (b). The numbers in the core boxes denote
the equivalent number of BCEs.

or cache islands will cause the overall p to change between
core configurations. In this paper, we do not attempt to
solve this challenge. As demonstrated further in this paper,
it is still possible to build heterogeneous models around a
constant p and use a range of possible values to determine
the system’s minimum and maximum speedup capabilities.

3.1.2 Workload equivalence and performance comparison
Workload is a model parameter that links performance
with the execution time. In many cases, a popular metric
for performance is instructions per second (IPS), where a
workload is characterized by its number of instructions. IPS
is convenient as it is an application-independent property of
the platform.

In heterogeneous models, it is important to have a con-
sistent metric across all core types. For devices of different
architecture types, the same computation may be compiled
into different numbers of instructions. In this case, the
total number of instructions may no longer meaningfully
represent the same workload, and IPS cannot be universally
used for cross-platform performance comparison. This is
particularly clear when comparing CPU and GPU devices.

In order to build a valid cross-platform performance
comparison model, we need to reason about the workload
as a meaningful computation, and two workloads are con-
sidered equivalent as long as they perform the same task.
In this paper we measure workload in so-called “workload
items”, which can be defined on a case by case basis de-
pending on the practical application. Respectively, instead
of energy per instruction, we use energy per workload item.

Hill and Marty’s model, presented in Section 2.4, de-
scribes the performance difference between the core types
as a property of the platform. In real life, this relation is
application dependent, as will be demonstrated in Sections 6
and 7. Differences in hardware, such as pipeline depth
and cache sizes, cause performance differences on a per-
instruction basis even within the same instruction set [24].

3.2 Platform Assumptions
We build our models under the assumptions listed below.
These assumptions put limitations on the models as dis-
cussed earlier in this section. The same assumptions are

TABLE 2
List of performance-related variables

variable description Section
x number of core types 3.3
ni number of cores of type i 3.3
n vector of core numbers 3.3

n,N total number of cores (homo, hetero) 2, 3.3
θ BCE performance 2, 3.3
αi performance factor for the core type i 3.3
α vector of core performance factors 3.3
I unscaled workload size 2
I′ scaled workload size 2.3, 4.3
g (n) parallel workload scaling factor 2.3, 4.3
h (n) proportional workload scaling factor 4.3
t (n) unscaled workload exec. time 2
t′ (n) scaled workload exec. time 2.3

t′p (n) , t′s (n) parallel and sequential exec. time 4.3
S (n) speedup 2
Θ (n) system performance on n cores 2
p parallelization factor 2
Nα performance-equiv. number of BCEs 4.1
s type of core executing seq. workload 4.2
αs performance factor of seq. exec. 4.2

used in the classical Amdahl’s law and similar models,
hence there is no further reduction in generality.

• The models and model parameters are both applica-
tion and hardware specific.

• The relation between performances of cores of dif-
ferent types can be approximated to a constant ratio,
and the ratio can be determined.

• The parallelizability factor p can be approximated
by a constant and is known or can be determined
(exactly or within a range).

• Environmental factors, such as temperature, are not
considered.

Memory and communication-related effects are not explic-
itly considered in this paper and are the subject of future
work outlined in Section 9.

3.3 Normal Form Representation of Heterogeneity
Performance-wise, the models presented in subsequent sec-
tions describe heterogeneity using the following normal
form representation.

The normal form of heterogeneous system configuration
considered in this paper consists of x clusters (types) of
homogeneous cores with the numbers of cores defined as
a vector n = (n1, . . . , nx). The total number of cores in the
system is denoted as N =

∑x
i=1 ni. Vector α = (α1, . . . , αx)

defines the performance of each core by cluster (type) in
relation to some base core equivalent (BCE), such that for
all 1 ≤ i ≤ x we have θi = αiθ. As discussed earlier, the
parameter α is application- and platform-dependent. The
structure is shown in Figure 1(c).

The full list of performance-related variables used in the
paper can be found in Table 2.

4 PROPOSED SPEEDUP MODELS

This section extends homogeneous speedup models for
determining the speedup S (n) of a heterogeneous system
in relation to a single BCE, which can then be used to find
the performance of the system, by applying (1).



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(a)

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(b)

13

13

1310

10

12

9

18

ts tp

ts tp

Fig. 2. Workload distribution examples following (a) equal-share model
and (b) balanced model.

4.1 Workload Distribution

Homogeneous models distinguish two states of perfor-
mance: the parallel execution exercises all cores, and the
sequential execution exercises only one core while others are
idle and do not contribute to overall system performance.
The cores in such systems are considered identical, hence
they all execute equal shares of the parallelizable part of
the workload and finish at the same time. As the result, the
combined performance of the cores working in parallel is
θn. In heterogeneous systems this is not as straightforward:
each type of cores works at a different performance rate,
hence the execution time depends greatly on the work-
load distribution between the cores. Imperfect distribution
causes some cores to finish early and become idle, even
when the parallelizable part of the workload has not been
completed.

In real systems, the scheduler is assisted by a load
balancer, whose task is to redistribute the workload during
run-time from busy cores to idle cores, however its efficiency
is not guaranteed to be optimal [25]. The actual algorithm
behind the load balancer may vary between different op-
erating systems, and the load balancer typically has access
to run-time only information like CPU time of individual
processes and the sizes of waiting queues. Hence it is
virtually impossible to accurately describe the behaviour of
the load balancer as an analytical formula. In this section
we address the problem by studying two boundary cases,
which may provide a range of minimum and maximum
parallel performances.

By definition, the total execution time for the workload I’
is a sum of sequential and parallel execution times, t′s (n)
and t′p (n), and it represents the time interval between
the first instruction in I ′ starting and the last instruction
in I ′ finishing. During a parallel execution, only the longest
running core has an effect on the total execution time.

To be analogous to the homogeneous models and to
simplify our equations, we also define the system’s parallel
performance via the performance-equivalent number of BCEs
denoted as Nα.

4.1.1 Equal-share workload distribution

In homogeneous systems, the parallelizable workload is
equally split between all cores. As a result, many legacy
applications, developed with the homogeneous system ar-
chitecture in mind, would also equally split the workload
by the total number of cores (threads), which leads to a
very inefficient execution in heterogeneous systems, where
everyone has to wait for the slowest core (thread), as illus-
trated in Figure 2(a). In this case, Nα is calculated from the
minimum of α:

Nα = N ·
x

min
i=1

αi. (10)

The above equation implies that the workload cannot
be moved between the cores. If the system load balancer
is allowed to re-distribute the work, then the real Nα may
be greater than (10). This equation can be used to define a
lower performance bound corresponding to naïve schedul-
ing policy with no balancing.

4.1.2 Balanced workload distribution

Figure 2(b) shows the ideal case of workload balancing,
which implies zero waiting time, hence all cores should the-
oretically finish at the same time. Nα for optimal workload
distribution is as follows:

Nα =

x∑
i=1

αini. (11)

Nαθ represents the system’s performance during the
parallel execution, hence Nα values from (10) and (11)
define the range for heterogeneous system parallel perfor-
mances. A load balancer that violates the lower bound (10)
is deemed to be worse than naïve. The upper bound (11)
represents the theoretical maximum, which cannot be ex-
ceeded.

4.2 Heterogeneous Amdahl’s Law

We assume that the sequential part is executed on a single
core in the cluster s, hence the system’s performance during
sequential execution is αsθ. In Section 4.1 we defined paral-
lel performance as Nαθ. Hence, the time to execute the fixed
workload I on the given heterogeneous system is:

t (n) =
(1− p) I
αsθ

+
pI

Nαθ
. (12)

The speedup in relation to a single BCE is:

S (n) =
t (1)

t (n)
=

1
(1−p)
αs

+ p
Nα

. (13)

Hill-Marty’s model (9) is a special case of (13), in which
case n = (n− r, 1), α = (1,Θ (r)), αs = Θ (r), and Nα is
calculated for the balanced workload distribution (11).

4.3 Workload Scaling

Like in the homogeneous case, Amdahl’s law works with a
fixed workload, while Gustafson and Sun-Ni allow chang-
ing the workload with respect to the system’s capabilities.



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

In this section we consider a general assumption on work-
load scaling, which defines the extended workload using
characteristic functions g (n) and h (n) as follows:

I ′ = h (n) · ((1− p) I + pg (n) I) , (14)

where h (n) represents the symmetric scaling of the entire
workload, and g (n) represents the scaling of the paralleliz-
able part only.

The sequential and parallel execution times are respec-
tively:

t′s (n) =
(1− p) I
αsθ

, t′p (n) =
pg (n) I

Nαθ
. (15)

Hence, in the general case, for given workload scaling
functions g (n) and h (n), the speedup is calculated as
follows:

S (n) =
(1− p) + pg (n)

(1−p)
αs

+ pg(n)
Nα

. (16)

The speedup does not depend on the symmetric scaling
h (n). Indeed, the execution time proportionally increases
with the workload, and the performance ratio (i.e. the
speedup) remains constant. However, changing the execu-
tion time is important for the fixed-time Gustafson’s model.

4.4 Heterogeneous Gustafson’s Model

In the Gustafson model, the workload is extended to achieve
equal time execution: t′ (n) = t (1). For homogeneous
Gustafson’s model: g (n) = n and h (n) = 1. For a het-
erogeneous system, there is more than one way to achieve
equal time execution.

4.4.1 Purely parallel scaling mode

The maximum speedup for equal time execution is achieved
by scaling only the parallel part, i.e. h (n) = 1. We know
that Gustafson’s model requires equal execution time, and
we can find that:

g (n) =

(
1− (1− p)

αs

)
Nα
p
, (17)

however, this equation puts a number of restrictions on the
system. Firstly, it doesn’t work for p = 0, because it is
not possible to achieve equal time execution for a purely
sequential program if αs 6= 1 and only parallel workload
scaling is allowed. Secondly, a negative g (n) does not make
sense, hence the relation αs > (1− p) must hold true. This
means that the sequential core performance must be high
enough to overcome the lack of parallelization. Another
drawback of this mode is that it requires the knowledge
of p in order to properly scale the workload.

In this scenario, the speedup is calculated from (16)
and (17) as:

S (n) = (1− p) +

(
1− (1− p)

αs

)
Nα. (18)

TABLE 3
List of power-related variables

variable description Section
w0 idle power of a core 5
w effective power of BCE 5
W0 total background power 5
W (n) total effective power 5
Wtotal total power of the system 5
βi power factors of core type i 5.1
β vector of core power factors 5.1
ws sequential execution power 5.1
wp parallel execution power 5.1
Nβ power-equivalent number of BCEs 5.1

Dw (n) power distribution function 5.2

4.4.2 Classical scaling mode

In order to remove the restrictions of the purely parallel
scaling mode, and to provide a model generalizable to
p = 0, we need to allow scaling of the sequential execution.
However, since this mode potentially increases the sequen-
tial execution time, it exercises the cores less efficiently than
the previous mode and leads to lower speedup.

g (n) =
Nα
αs

, h (n) = αs. (19)

This scaling mode relates to the classical homogeneous
Gustafson’s model, which requires g (n) to be proportional
to the ratio between the system performances of the parallel
and sequential executions. In the homogeneous case, if the
sequential performance is θ, the parallel performance would
be nθ, leading to g (n) = n.

For the heterogeneous Gustafson’s model in classi-
cal scaling mode, the speedup is calculated from (16)
and (19) as:

S (n) = αs (1− p) + pNα. (20)

5 PROPOSED POWER MODELS

We base our power models on the concept of power state
modelling, in which a device has a number of distinct
power states, and the average power over an execution is
calculated from the time the system spend in each state.

For each core in the system we consider two power
states: active and idle. Lower power states like sleeping and
shutting down the cores may be catered to in straightfor-
ward extensions of these models. Active power of a core can
also be expressed as a sum of idle power w0 and effective
power w that is spent on workload computation. In this
view, the idle component is no longer dependent on the
system’s activity and can be expressed as a system-wide
constant term W0, called background power. The total power
dissipation of the system is:

Wtotal = W0 +W (n) , (21)

W (n) is the total effective power of active cores – this is
the focus of our models. The constant term of background
power W0 can be studied separately.



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

5.1 Power Modelling Basics
In the normal form representation of a heterogeneous sys-
tem (Section 3), the power dissipations of core types is
expressed with the coefficient vector β = (β1, . . . , βx),
which defines the effective power in relation to a BCE’s
effective power, w, such that for all 1 ≤ i ≤ x we have
effective power wi = βiw. This system characteristic is both
hardware and application dependent.

The effective power model can be found as a time-
weighted average of the sequential effective power ws and
parallel effective power wp of the system:

W (n) =
wst
′
s (n) + wpt

′
p (n)

t′s (n) + t′p (n)
, (22)

where t′s (n) and t′p (n) are the speedup-dependent times
required to execute sequential and parallel parts of the
extended workload respectively.

In a homogeneous system: ws = w, wp = nw. In a
heterogeneous system with the core type s executing the
sequential code: ws = βsw and wp = Nβw, which gives for
the balanced case of parallel execution (11):

Nβ =

x∑
i=1

βini (23)

For equal-share execution (10), Nβ is calculated as follows:

Nβ = minα ·
x∑
i=1

βini
αi

. (24)

Nβ is the power-equivalent number of BCEs. Heterogeneous
power models will transform into homogeneous if αs =
βs = 1 and Nα = Nβ = n.

The full list of power-related variables used in the paper
can be found in Table 3.

5.2 Power Distribution and Scaling Models
We express the scaling of effective power in the system via
the speedup and the power distribution characteristic function
Dw (n):

W (n) = wDw (n)S (n) . (25)

Dw (n) represents the relation between the power and
performance in a heterogeneous configuration. Since the
speedup models are known from Section 4, this section fo-
cuses on finding the matching power distribution functions.

From (22), we can find that in the general case:

Dw (n) =
(
βst
′
s (n) +Nβt

′
p (n)

)
· θ
I ′
, (26)

thus substituting the workload scaling definition (14) and
execution times (15) will give us:

Dw (n) =

βs
αs

(1− p) + pg (n)
Nβ
Nα

(1− p) + pg (n)
. (27)

It is worth noting that for homogeneous systems,
Dw (n) = 1 in all cases, and the effective power equation
will transform into:

W (n) = wS (n) , (28)

i.e. in homogeneous systems the power scales in proportion
to the speedup.

Power distribution for Amdahl’s workload: For Am-
dahl’s workload, g (n) = 1, hence the power distribution
function becomes:

Dw (n) =
βs
αs

(1− p) + p · Nβ
Nα

(29)

Power distribution for Gustafson’s workload: Fol-
lowing the same general form (27) for the effective power
equation, we can find power distribution functions Dw (n)
for two cases of workload scaling described in Section 4.4.

For the classical scaling mode:

Dw (n) =
βs (1− p) + pNβ
αs (1− p) + pNα

. (30)

For the purely parallel scaling mode:

Dw (n) =
βs (1− p) + (αs − (1− p))Nβ
αs (1− p) + (αs − (1− p))Nα

. (31)

6 CPU-ONLY EXPERIMENTAL VALIDATIONS

This section validates the models presented in Sec-
tions 4 and 5 against a set of experiments on a real het-
erogeneous platform. In these experiments, the goal is to
determine the accuracy of the models when all model pa-
rameters, such as parallelization factor p, are under control.

6.1 Platform Description
This study is based on a multi-core mobile platform, the
Odroid-XU3 board [19]. The board centres around the 28nm
application processor Exynos 5422. It is an SoC hosting
an ARM big.LITTLE heterogeneous processor consisting
of four low power Cortex A7 cores (C0 to C3) with the
maximum frequency of 1.4GHz and four high performance
Cortex A15 cores (C4 to C7) with the maximum frequency of
2.0GHz. There are compatible Linux and Android distribu-
tions available for Odroid-XU3; in our experiments we used
Ubuntu 14.04. This SoC also has four power domains: A7,
A15, GPU, and memory power domains. The Odroid-XU3
board allows per-domain DVFS using predefined voltage-
frequency pairs.

The previous assumption by Hill and Marty for hetero-
geneous architectures, shown in Figure 1(b), cannot describe
systems such as big.LITTLE. Our models do not suffer from
these restrictions and can be applied to big.LITTLE and
similar structures.

6.2 Benchmark and Model Characterization
The models operate on application- and platform-
dependent parameters, which are typically unknown and
imply high efforts in characterization. However, in order
to prove that the proposed models work, it is sufficient
to show that, if α, β and p are defined, the performance
and power behaviour of the system follows the models’
prediction. These parameters can be fixed by a synthetic
benchmark. This benchmark does not represent realistic
application behaviour and was designed only for validation
purposes. Experiments with realistic examples are presented
in Section 8.

The model characterization is derived from single core
experiments. These characterized models are used to predict



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

TABLE 4
Characterization experiments: single core execution

benchmark sqrt int log
base workload 40000 40000 40000

core type i A7 A15 A7 A15 A7 A15
measured execution time, ms 49969 53206 52844 42665 41820 23506

measured active power, W 0.2655 0.8361 0.2760 0.8305 0.3036 0.9496
power measurement std dev 0.82% 0.18% 0.96% 0.87% 0.93% 0.42%
calculated effective power, W 0.1158 0.4887 0.1264 0.4830 0.1540 0.6022

αi 1 0.9392 1 1.2386 1 1.7791
βi 1 4.2183 1 3.8221 1 3.9094

START

END

Pin to Core s

Execute
(1–p)·I cycles

... Pin to Core cN

Execute
p·g(n)·I/N cycles

Create N threads

Join threads

s
e
q
u
e
n
ti
a

l
p
a
ra

lle
l Pin to Core c1

Execute
p·g(n)·I/N cycles

Fig. 3. Synthetic application with controllable parallelization factor and
equal-share workload distribution. Parameter p, workload size I and
scaling g (n), the number of threads (cores) N , and the core allocation
s, c = (c1, . . . , cN ) are specified as the program arguments.

multi-core execution in different core configurations. The
predictions are then cross-validated against experimental
results.

6.2.1 Controlled parameters
The benchmark has been developed specifically for these
experiments in order to provide control over the paralleliza-
tion parameter p. Hence, p is not a measured parameter,
but a control parameter that tells the application the ratio
between the parallel (multi-threaded) and sequential (single
thread) execution.

The application is based on POSIX threads, and its flow
is shown in Figure 3. Core configurations, including homo-
geneous and heterogeneous, can be specified per application
run as the sequential execution core s and the set of core
allocations c = (c1, . . . , cN ), where N is the number of
parallel threads; s, cj ∈ {C1, . . . ,C7} for 1 ≤ j ≤ N .
These variables define n used in the models. We do not
shut down the cores and use per-thread core pinning via
pthread_attr_setaffinity_np to avoid unexpected
task migration. To improve experimental setup and reduce
the interference, we reserve one A7 core (C0) for OS and
power monitors, hence it is not used to run the experimental
workloads, and the following results show up to 3 A7 cores.
The source code for the benchmark is available online [26].

The workload size I and the workload scaling g (n) are
also given parameters, which are used to test Gustafson’s
models against the Amdahl’s law. The application imple-
ments three workload functions: square root calculation
(sqrt), integer arithmetic (int), and logarithm calculation

(log) repeated in a loop. These computation-heavy tasks use
minimal memory access to reduce the impact of hardware
on the controlled p. A fixed number of loop iterations repre-
sents one workload item. The functions are expected to give
different performance characteristics, hence the characteri-
zation and cross-validation experiments are done separately
for each function.

Figure 3 shows equal-share workload distribution,
where each parallel thread receives equal number of
pg (n) I

N workload items. This execution gives Nα and Nβ
that correspond to naïve load balancing according to (10)
and (24). Additionally, after collecting the characterization
data for α, we implemented a version that uses α to do op-
timal (balanced) workload distribution by giving each core
cj ∈ c a performance-adjusted workload of pg (n) I

N ·
αj
A ,

where A =
∑N
j=1 αj . This execution follows different Nα

and Nβ , which can be calculated from (11) and (23).

6.2.2 Relative performances of cores

All experiments in this section are run with both A7 and A15
cores at 1.4GHz. Running both cores at the same frequency
exposes the effects of architectural differences on the per-
formance. In this study, we set BCE to A7, hence αA7 = 1;
and αA15 can be found as a ratio of single core execution
times αA15 = tA7 (1) /tA15 (1), as shown in Table 4. The
three different functions provide different αA15 values.

It can be seen that A15 is unsurprisingly faster than A7
for integer arithmetic and logarithm calculation, however
the square root calculation is faster on A7. This is confirmed
multiple times in many experiments. We did not fully
investigate the reason of this behaviour since the board’s
production and support have been discontinued, and this
is in any case outside the scope of this paper. A newer
version of the board, Odroid-XU4, which is also built around
Exynos 5422, does not have this issue. It is important to note
that we compiled all our benchmarks using the same gcc
settings. We include this case of non-standard behaviour in
our experiments to explore possible negative impacts on the
performance modelling and optimization.

6.2.3 Core idle and active powers

The Odroid-XU3 board provides power readings per power
domain, i.e. one combined reading per core type, from
which it is possible to derive single core characteristic values
w0 and w.

Idle powers are determined by averaging over 1min
of measurements while the platform is running only the
operating system and the power logging software. The idle



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.37%

-0.64%

-0.87%

0.00%

-0.48%

-0.64%

-0.77%

-0.86%

0.06%

-0.67%

-0.81%

-0.90%

-1.03%

0.10%

-0.82%

-0.94%

-1.07%

-1.13%

Speedup: log, p=0.9
theory measured

Fig. 4. Speedup validation results for the heterogeneous Amdahl’s law
showing percentage error of the theoretical model in relation to the
measured speedup.

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.30%

-1.01%

-2.68%

-0.60%

1.27%

2.05%

3.10%

3.67%

1.14%

-0.48%

1.76%

1.68%

3.36%

0.33%

-1.18%

-0.42%

1.69%

3.05%

3.27%

Power, W: log, p=0.9
theory measured

Fig. 5. Total power dissipation results for the heterogeneous Amdahl’s
law showing percentage error of the theoretical model in relation to the
measured power.

power values are w0,A7 = 0.1496W and w0,A15 = 0.3474W,
which are used across all benchmarks. The standard devia-
tion of the idle power measurements is 1.22% of the mean
value.

Effective powers wA7, wA15 are calculated from the mea-
sured active powers by subtracting idle power according
to (21). The power ratios are then found as βA7 = 1 and
βA15 = wA15/wA7; the values are presented in Table 4.

6.3 Amdahl’s Workload Outcomes

A large number of experiments have been carried out
covering all functions (sqrt, int, log) in all core configura-
tions, and repeated for p = 0.3 and p = 0.9. This set of
runs use a fixed workload of 40000 items with equal-share
workload distribution between threads. Model predictions
and experimental measurements for a single example are
shown in Figures 4 and 5; the full data set can be found
in the Appendix (Figures 13–16). The measured speedup
is calculated as the measured time for a single A7 core
execution tA7 (1), shown in Table 4, over the benchmark’s
measured execution time t (n).

The observations validate the model (13) by showing
that the differences between the model predictions and the
experimental measurements are very small. The speedup
error is 0.2% on average across all core combinations with
the worst case of 1.13%, and the power error never exceeds
5.6%, which is comparable to the standard deviation of the
characterization measurements. A possible explanation for
the low error values may be that our synthetic benchmark
produces very stable α and β, and accurately emulates p.
However, these small errors also prove that the model can be
used with high confidence if it is possible to track these pa-
rameters. The model can also be confidently used in reverse
to derive parallelization and performance properties of the
system from the speedup measurements, as demonstrated
in Section 8.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

22%

36%

46%

0%

2%

16%

26%

34%

0%

16%

26%

34%

40%

0%

26%

34%

40%

45%

Speedup: log, p=0.3
classical scaling purely parallel scaling

Fig. 6. Gustafson’s model outcomes showing the measured speedup
gain from using the purely parallel workload scaling compared to the
classical scaling.

The counter intuitive result for 7-core (three A7 cores and
four A15 cores) execution having lower power dissipation
than four A15 cores and no A7 cores can be explained by
the equal-share workload distribution. Because the parallel
workload is equally split between these cores, the A15 cores
finish early and wait for A7 cores. This idling reduces the
average total power dissipation, however it implies that in-
telligent workload distribution can improve core utilization
by scheduling more tasks to A15 cores than to A7 ones so
that they finish at the same time. This is investigated in
Section 6.5.

6.4 Gustafson’s Workload Outcomes

Two sets of experiments have been carried out to validate
heterogeneous Gustafson’s models in both purely parallel
and classical workload scaling modes described in Sec-
tion 4.4. The initial workload I is set to 40000, and the scaled
workload I ′ is defined by (14). These experiments also use
equal-share workload distribution and s is fixed to A15.

The measured speedup is calculated as the ratio of per-
formances according to (1), or as the time ratio multiplied
by the workload size ratio: S (n) = (tA7 (1) /t (n)) · (I ′/I).
The observed errors are similar to the Amdahl’s model with
the speedup estimated within 3.21% error (0.54% average)
and the power dissipation estimated within 6.23% difference
between the theory and the measurements. A complete set
of data can be found in the Appendix (Figures 17–20).

Figure 6 compares the speedup between two workload
scaling modes for p = 0.3. The purely parallel scaling has
more effect for less parallelizable applications as it focuses
on reducing the sequential part of the execution, hence
the experiments with p = 0.9 show insignificant gain in
the speedup and are not presented here. Even though the
purely parallel scaling is harder to achieve in practice as it
requires the knowledge of p, it provides a highly significant
speedup gain, especially if the difference between the core
performances is high, which, in the case of log, gives almost
50% better speedup.

6.5 Balanced Execution

Previously described experiments use equal-share workload
distribution, which is simpler to implement, but results in
faster cores being idle while waiting for slower cores. The
balanced distribution, defined in (11), gives the optimal
speedup for a given workload. This section implements
balanced distribution of a fixed workload and compares it
to the equal-share distribution outcomes of Amdahl’s law.



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%

0%

0%

-0%

0%

33%

40%

41%

41%

0%

21%

29%

32%

33%

0%

15%

22%

25%

24%

Speedup: log, p=0.9
equal-share balanced

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%

-1%

-1%

-0%

24%

36%

34%

31%

0%

20%

28%

29%

36%

-0%

16%

25%

35%
27%

Power, W: log, p=0.9
equal-share balanced

0

200

400

600

800

1000

1200

1400

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%
-1%

-1%

-0%

-29%

-31%
-33% -34%

0%

-18%
-23% -26% -23%

-0%
-12% -16% -14% -18%

Energy-delay product, Js: log, p=0.9
equal-share balanced

Fig. 7. Comparison of the measured speedup, power, and energy be-
tween equal-share and balanced execution.

The results are presented for p = 0.9, as it provides larger
differences for this scenario.

In terms of model validation, the results are also very
accurate, giving up to 4.63% error in power estimation and
within 1.3% error for the speedup. Figure 7 explores the
differences between the equal-share and optimal (balanced)
cases of workload distribution in terms of performance and
energy properties of the system. The balanced distribution
gives up to 41% increase in the speedup. The average
power dissipation is also increased up to 36% as the cores
are exercised with as little idling as possible. Energy-delay
product (EDP) is an optimization metric that improves
energy and performance at the same time and is calculated
as Wtotal · (t′ (n))

2. The results are showing up to 34%
improvement in EDP for balanced execution.

7 CPU-GPU EXPERIMENTAL VALIDATIONS

The previous section explores the heterogeneity within the
devices having the same instruction set. However, many
modern platforms also include specialized accelerators such
as general purpose GPUs.

OpenCL programming model [27] enables cross-
platform development for parallelization by introducing the
notion of a kernel. A kernel is a small task written in a cross-
platform language that can be compiled and executed in
parallel on any OpenCL device. It also provides a hardware
abstraction level. GPU devices often have a complex hier-
archy of parallel computation units: a few general purpose
units can have access to a multitude of shader ALUs, which
in turn implement vector instructions that may also be used
to parallelize scalar computation. As the result, behind the
OpenCL abstraction, we consider ni not as the number of

TABLE 5
OpenCL device capabilities

core type i CPU IntGPU Nvidia

device name Intel Core Intel HD GeForce
i7-3520M Graphics 4000 GT 640M

max core freq 2.9GHz 350MHz 708MHz
compute units 4 (2+hyper) 16 2

(384 shaders)
max workgroup 1024 512 1024

max ni 1 256 1024 (log: 64)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.
0E

+
0

workload size

pe
rf

or
m

an
ce

 (
no

rm
)

1.
0E

+
1

1.
0E

+
2

1.
0E

+
3

1.
0E

+
4

1.
0E

+
5

1.
0E

+
6

1.
0E

+
7

1.
0E

+
8

IntGPU

CPU

Nvidia

Fig. 8. The effect of OpenCL overheads on performance, can be ignored
for sufficiently large workload sizes.

device cores but as a degree of parallelism – the number of
kernels that can be executed in parallel.

This section presents the experimental validation using
the synthetic benchmark shown in Figure 3, but reimple-
mented in OpenCL with kernels replacing POSIX threads.
The kernels implement the same looped computation (sqrt,
int, and log). The source code for OpenCL version is also
available [26].

7.1 Platform Description and Characterization

The experiments presented in this section have been carried
out on 2012 Dell XPS 15 laptop with Intel Core-i7 CPU
(denoted as CPU further in this section) and two GPUs:
integrated GPU (IntGPU) and a dedicated Nvidia card
(Nvidia). Table 5 shows device specifications as reported
by OpenCL. The platform runs Windows 7 SP1 and uses
OpenCL v1.2 as a part of Nvidia CUDA framework. The
platform has no facility to measure power to the granularity
required for the power model validation, hence this section
is focused only on the speedup. Time measurement is done
using the combination of the system time (for long intervals)
and OpenCL profiling (for short intervals).

An important feature of the platform is that both GPU
devices can execute the workload at the same time. This is
done by individually calling clEnqueueNDRangeKernel
on separate OpenCL device contexts. This paper’s models
cover this type of heterogeneity, while the reconfigurable
Hill-Marty model [12] can model only one active type of
parallel cores at a time. This has been the primary criterion
for selecting a CPU-GPU platform for this section.

OpenCL adds overheads when scheduling the kernel
code and copying data. However, we use computation-
heavy benchmarks that do not scale the memory require-
ment with the workload, hence the overhead is constant,
and becomes negligible if the primary computation is large
enough. A series of experiments has been carried out to



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

Speedup

1024.0

512.0

256.0

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

0.5

Degree of parallelism
1 2 4 8 16 32 64 128 256 512 1024

Core scaling

Nvidia (sqrt, int) Nvidia (log)IntGPUCPU

Fig. 9. Investigating the scalability potential for the requested p = 1.

TABLE 6
OpenCL characterization experiments

bench core type i workload exec time, ms αi

sqrt

CPU 8.0 · 107 3335 24.351
IntGPU

4.0 · 106
4060 1

IntGPU16+ 5281 0.769
Nvidia 8.0 · 107 5421 14.980

int

CPU 8.0 · 107 953 44.819
IntGPU

8.0 · 106
4273 1

IntGPU16+ 5553 0.769
Nvidia 8.0 · 107 5421 7.881

log

CPU 8.0 · 107 2158 42.194
IntGPU

8.0 · 106
4554 1

IntGPU16+ 5318 0.856
Nvidia 1.0 · 106 4613 0.247

find out the smallest required computation for OpenCL
overheads to be negligible: 106 work items, as demonstrated
in Figure 8.

Table 5 reports the max workgroup size, which repre-
sents the maximum number of “parallel” kernels, although
OpenCL does automatic sequentialization if there are not
enough real computation units. We experimentally find the
real maximal degree of parallelism ni for each benchmark
by attempting to execute p = 1 workload and increasing the
number of cores until the scaling is no longer linear. Figure 9
shows the outcome. The first observation is that CPU does
not scale well in OpenCL, hence it has been decided to limit
CPU to a single core used only for sequential execution.
Nvidia scales perfectly for sqrt and int to its maximum
allowed workgroup, but with log its performance starts to
drop after 64 and completely flattens at 256. An interesting
behaviour is observed with IntGPU: starting from 16 cores
its performance drops by 25% (15% with log), but otherwise
the scaling continues to be perfectly linear up to 256 and
slightly dips at 512. We model this by representing IntGPU
as two devices, as shown in Table 6. IntGPU is used as BCE,
and the performance ratios α are calculated as the ratio of
execution times from single core experiments (except for
IntGPU16+, which uses 64-core execution time).

7.2 Speedup Validation Outcomes

Due to the sheer amount of work, it is not practical to test
all possible core combinations. Instead, we select configu-
rations evenly distributed across the range. The following
models have been experimentally validated: equal-share
Amdahl’s law and balanced Amdahl’s law. Every core type

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

3.65%

1.84%1.07%0.44%

0.07%

0.03%

0.48%

1.51%
4.09%

-0.01%0.44%
0.59%

0.43%
5.69%

0.75%1.29%1.04%
1.81%

3.66%

sqrt, p=0.9, s=CPU
theory measured

Fig. 10. Speedup validation results for the heterogeneous Amdahl’s law
in the OpenCL platform.

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0%

-1% 0% -0%

0%

419%

212% 68% 22%

0%

108%

154% 70% 29%

-1% 18%
52% 43% 24%

Speedup: sqrt, p=0.9, s=CPU
equal-share balanced

Fig. 11. Comparison of the measured speedups between equal-share
and balanced execution in the OpenCL platform.

is tested in the role of sequential executor s in the case of
p = 0.9. For p = 0.3, CPU is always used for s as the
fastest of the devices. The speedup is calculated against the
single core IntGPU experiment. Since the other devices are
generally much faster, and Nvidia is capable of executing
1024 parallel kernels, the observed maximum speedup is
395.7 for Amdahl’s workload, p = 0.9.

Figure 10 shows a typical result for Amdahl’s law; the
full set of results can be found in the Appendix (Fig-
ures 23–25). On average, the experiments with Amdahl’s
law show 1% error across the tested core combinations,
but going up to 6-8% in a few points. The performance
difference between the balanced and equal-share workload
distributions is presented in Figure 11. Given the core per-
formances of IntGPU and Nvidia are very different, load
balancing plays a crucial role, and can provide over 400%
performance boost in some cases.

8 REALISTIC APPLICATION WORKLOADS

This section is focused on experiments with realistic work-
loads based on the Parsec benchmark suite [28]. Parsec
benchmarks are designed for parallel multi-threaded com-
putation and include diverse workloads that are not ex-
clusively focused on high performance computing. Each
application is supplied with a set of pre-defined input data,
ranging from small sizes (test) to large (simlarge) and very
large (native) sizes. Each input is assumed to generate
a fixed workload on a given system. To our knowledge,
Parsec benchmarks do not implement workload scaling
to Gustafson’s or Sun-Ni’s models, hence this section is
focused on Amdahl’s law only.

In our experiments we run a subset of Parsec bench-
marks (ferret, fluidanimate, and bodytrack) and use sim-
large input. The selected benchmarks are representative
of CPU intensive, memory intensive, and combined CPU-
memory applications respectively, hence cover a wide range
of workload types.The number of threads in each run is



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 12

TABLE 7
Characterization of Parsec benchmark parallelizability from homogeneous system setup

A7 A15
app S (2) S (3) S (4) pA7 S (2) S (3) S (4) pA15 α15

bodytrack 1.8787 2.6484 3.3211 0.9336 ±0.0018 1.7980 2.4447 3.0090 0.8881 ±0.0021 1.9946
ferret 1.8833 2.6716 3.3706 0.9381 ±0.0004 1.9111 2.7576 3.4400 0.9518 ±0.0060 1.8830

fluidanimate 1.5749 — 2.2288 0.7326 ±0.0025 1.4531 — 1.9443 0.6356 ±0.0120 1.8186

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

1
2

2
2

3
2

1
3

2
3

3
3

1
4

2
4

3
4

A7
A15

0.15 -0.35 -0.60

0.49 0.22 0.03

0.55 0.39 0.25

0.64
0.58 0.53

bodytrack
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

1
2

2
2

3
2

1
3

2
3

3
3

1
4

2
4

3
4

A7
A15

0.89

0.77
0.46

0.91
0.78

0.65
0.94

0.86
0.72

0.94
0.86

0.79

ferret
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

3
1

2
2

1
3

4
4

A7
A15

0.15 -0.05

0.25
0.36

0.27

fluidanimate
low measured high

Fig. 12. Parsec speedup range results from heterogeneous system setup determining q – the quality of the system load balancer

set to match the number of active cores; fluidanimate can
only run a power-of-two number of threads. Core pinning is
done at the application level using the taskset command
in Linux. The command takes a set of cores as an argument
and ensures that every thread of the application is scheduled
onto one of these cores. However, the threads are still
allowed to move between the cores within this set due to the
influence of the system load balancer [25]. This is different
from the synthetic benchmark described in Section 6, which
performed pinning of individual threads, one thread per
core.

In this work, we do not study the actual algorithm of
the load balancing or the internal structure of Parsec bench-
marks, hence the workload distribution between the cores is
considered a black box function: Nα is unknown. Section 4.1
addressed this issue by providing the range of values for
Nα. The minimum value corresponds to equal-share work-
load distribution and gives the lower speedup limit Slow (n);
the maximum value is defined by the balanced workload
and gives the higher speedup limit Shigh (n).

The goal of the following experiments is to calculate
these limits and to find how the real measured speedup fits
in the range. The relation provides a quality metric q for the
load balancing algorithm, where q = 1 corresponds to the
theoretically optimal load balancer, and q = 0 is equivalent
to a naïve approach (equal-share). Negative values may also
be possible and show that the balancing algorithm is not
working properly and creates an obstacle to the workload
execution. The metric q is calculated as follows:

q =
S (n)− Slow (n)

Shigh (n)− Slow (n)
. (32)

The motivation for load balancing is to improve speedup
by approaching the balanced workload behaviour. Hill-
Marty [12] and related existing work [13], [14] covering
core heterogeneity all assume that the workload is already
balanced in their models, implying q = 1. This work
makes no such assumption and studies real load balancer
behaviours for different benchmarks, using novel models
facilitating quantitative comparisons.

8.1 Model Characterization

The Parsec experiments are executed on the Odroid XU3
platform described in Section 6. The model characterization
is obtained from the homogeneous configuration experi-
ments, and then the models are used to predict system
behaviour in heterogeneous configurations. Each bench-
mark is studied independently. Table 7 shows the obtained
parameter values.

A7 is once again used as BCE, αA7 = 1; αA15 values
are derived from single core executions as the time ratio
tA7 (1) /tA15 (1). Core frequencies of both A7 and A15 are
set to 1.4GHz.

Parameter αs is not known because it is not guaranteed
that the sequential part of the workload will be executed on
the fastest core, and it is also possible for the sequential ex-
ecution to be re-scheduled to different core types, however
αs must stay within the range of [αA7, αA15].

Parallelization factor p is determined from the measured
speedup S (n) for n > 1 solving (3) for p. For different
values of n, the equation gives different p, however the
differences are insignificant within the same type of core.
On the other hand, the differences in p for different core
types are substantial and cannot be ignored.

The lowest values of the model parameters p and αs
are used to calculate the lower limit of the heterogeneous
speedup Slow (n), and the highest values are used to calcu-
late Shigh (n).

8.2 Load Balancer Quality

Figure 12 presents the outcomes of the experiments for the
selected heterogeneous core configurations; full data set can
be found in Appendix (Figure 26). Time measurements have
been collected from 4 runs in each configuration to avoid
any random flukes, however the results were consistent
within 0.2% variability. This indicates that the system sched-
uler and load balancer behave deterministically in given
conditions.

The graphs display the calculated speedup ranges
[Slow (n) , Shigh (n)] and the measured speedup S (n). The
numbers represent the load balancer quality q, calculated
from (32).



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 13

The first interesting observation is that the ferret bench-
mark is executed with very high scheduling efficiency
despite the system’s heterogeneity. The average value of
q is 0.71 and the maximum goes to 0.94. According to
the benchmark’s description, its data parallelism employs
a pipeline, i.e. the application implements a producer-
consumer paradigm. In this case, the workload distribution
is managed by the application. Consequently, the cores are
always given work items to execute and the longest possible
idling time is less than the execution of one item.

The observed q values never exceed 1, which validates
the hypothesis that (11) refers to the optimal workload
distribution and can be used to predict the system’s per-
formance capacity. The lower bound of q = 0 is also mostly
respected. This is not a hard limit, but a guideline that sep-
arates appropriate workload distributions. This boundary is
significantly violated only in one case, as described below.

Bodytrack and fluidanimate show much less efficient
workload distribution, compared to ferret, and their effi-
ciency seems to decrease when the core configuration in-
cludes more little than big cores. This effect is exceptionally
impactful in the case of multiple A7 cores and one A15
core executing bodytrack, where the value of q lies far in
the negative range and can serve as an evidence of load
balancer malfunction. Indeed, the speedup of this four-
thread execution is only slightly higher than two-threaded
runs on one A7 and one A15. The execution time is close to
a single thread executed on one A15 core, showing almost
zero benefit from bringing in three more cores, and the result
is consistent across multiple runs of the experiment. This
issue requires a substantial investigation and lies beyond
the scope of this paper, however it demonstrates how the
presented method may help analyse the system behaviour
and detect problems in the scheduler and load balancer.

9 FUTURE WORK

This work lays the foundation for extending speedup,
power and energy models to cover architectural heterogene-
ity. In order to achieve the level of model sophistication
of the existing homogeneous models, more work needs to
be completed. This should include the effects of memory,
and inter-core dependencies. Modelling of the background
power W0 can be extended to include leakage power, which
may indirectly represent the effects of temperature varia-
tions.

On-going research indicates that α and β may not be
constant across different phases of individual applications.
Within this paper, these coefficients pertain to entire ap-
plications or algorithms and are hence average values.
This is being investigated in more detail. How such more
complex relations between the relative performances and
power characteristics of different types of cores can be best
incorporated in future models is being explored.

One important motivation for such more precise mod-
elling into parts of applications is using the models in
run-time management towards the optimization of goals
related to performance and/or power dissipation. It is more
typical for run-time control decisions to be made on regular
intervals of time, unrelated to the start and completion of
whole applications, hence the importance of phases within

each application. On-going research shows promising direc-
tions with parallelizability-aware RTMs on homogeneous
systems [29]. We will work towards generalizing this line
of work into heterogeneous systems.

10 CONCLUSIONS

The models presented in the paper enhance our under-
standing of scalability in heterogeneous many-core systems
and will be useful for platform designers and electronic
engineers, as well as for system level software developers.

This paper extends three classical speedup models –
Amdahl’s law, Gustafson’s model and Sun Ni’s model – to
the range of heterogeneous system configurations that can
be described as a normal form heterogeneity. The provided
discussion shows that the proposed models are not reducing
applicability in comparison to the original models and may
serve as a foundation for multiple research directions in
the future. Important aspects, such as workload distribu-
tion between heterogeneous cores and various modes of
workload scaling, are included in the model derivation. In
addition to performance, this paper addresses the issue of
power modelling by by calculating power dissipation for
the respective heterogeneous speedup models.

The practical part of this work includes experiments
on multi-type CPU and CPU-GPU systems pertaining to
model validation and real-life application. The models have
been validated against a synthetic benchmark in a controlled
environment. The experiments confirm the accuracy of the
models and show that the models provide deeper insights
and clearly demonstrate the effects of various system pa-
rameters on performance and energy scaling in different
heterogeneous configurations.

The modelling method enables the study of the quality of
load balancing, used for improving speedup. A quantitative
metric for load balancing quality is proposed and a series of
experiments involving Parsec benchmarks are conducted.
The modelling method provides quantitative guidelines of
load balancing quality against which experimental results
can be compared. The Linux load balancer is shown to not
always provide high quality results. In certain situations,
it may even produce worse results than the naïve equal-
share approach. The study also showed that application-
specific load balancing using pipelines can produce results
of much higher quality, approaching the theoretical opti-
mum obtained from the models.

ACKNOWLEDGEMENT

This work is supported by EPSRC/UK as a part of PRiME
project EP/K034448/1. M. A. N. Al-hayanni thanks the
Iraqi Government for PhD studentship funding. The authors
thank Ali M. Aalsaud for useful discussions.

REFERENCES

[1] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of the
Spring Joint Computer Conference, ser. AFIPS ’67 (Spring). ACM,
1967, pp. 483–485.

[2] X. Li and M. Malek, “Analysis of speedup and communica-
tion/computation ratio in multiprocessor systems,” in Proceedings.
Real-Time Systems Symposium, Dec 1988, pp. 282–288.



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 14

[3] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of
the ACM, vol. 31, no. 5, pp. 532–533, 1988.

[4] X.-H. Sun and L. M. Ni, “Another view on parallel speedup,” in
Supercomputing’90., Proceedings of. IEEE, 1990, pp. 324–333.

[5] S. Borkar, “Thousand core chips: A technology perspective,” in
Proceedings of the 44th Annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 746–749.

[6] G. E. Moore et al., “Cramming more components onto integrated
circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[7] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications
of historical trends in the electrical efficiency of computing,”
Annals of the History of Computing, IEEE, vol. 33, no. 3, pp. 46–54,
2011.

[8] F. J. Pollack, “New microarchitecture challenges in the coming
generations of cmos process technologies (keynote address),” in
Proceedings of the 32nd annual ACM/IEEE international symposium
on Microarchitecture. IEEE Computer Society, 1999, p. 2.

[9] P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7 – Improving Energy Efficiency in High-Performance Mobile
Platforms, ARM, 2011, white Paper.

[10] “Juno ARM development platform SoC technical overview,”
ARM, Tech. Rep., 2014.

[11] R. H. Dennard, V. Rideout, E. Bassous, and A. Leblanc, “Design
of ion-implanted mosfet’s with very small physical dimensions,”
Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, 1974.

[12] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, no. 7, pp. 33–38, 2008.

[13] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the mul-
ticore era,” Journal of Parallel and Distributed Computing, vol. 70,
no. 2, pp. 183–188, 2010.

[14] N. Ye, Z. Hao, and X. Xie, “The speedup model for manycore
processor,” in Information Science and Cloud Computing Companion
(ISCC-C), 2013 International Conference on. IEEE, 2013, pp. 469–474.

[15] D. H. Woo and H.-H. S. Lee, “Extending amdahl’s law for energy-
efficient computing in the many-core era,” Computer, no. 12, pp.
24–31, 2008.

[16] U. Gupta, S. Korrapati, N. Matturu, and U. Y. Ogras, “A generic
energy optimization framework for heterogeneous platforms us-
ing scaling models,” Microprocess. Microsyst., vol. 40, no. C, pp.
74–87, Feb. 2016.

[17] B. M. Al-Babtain, F. J. Al-Kanderi, M. F. Al-Fahad, and I. Ahmad,
“A survey on amdahl’s law extension in multicore architectures,”
vol. 3, pp. 30–46, 01 2013.

[18] M. A. N. Al-Hayanni, A. Rafiev, R. Shafik, and F. Xia, “Power
and energy normalized speedup models for heterogeneous many
core computing,” in 16th International Conference on Application of
Concurrency to System Design (ACSD), June 2016, pp. 84–93.

[19] “Odroid XU3,” http://www.hardkernel.com/main/products.
[20] X.-H. Sun and L. M. Ni, “Scalable problems and memory-bounded

speedup,” Journal of Parallel and Distributed Computing, vol. 19,
no. 1, pp. 27–37, 1993.

[21] A. Morad, T. Y. Morad, Y. Leonid, R. Ginosar, and U. Weiser,
“Generalized multiamdahl: Optimization of heterogeneous multi-
accelerator soc,” IEEE Computer Architecture Letters, vol. 13, no. 1,
pp. 37–40, Jan 2014.

[22] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[23] J. Baeten, C. A. Middelburg, and E. T. Netherlands, “Process
algebra with timing: Real time and discrete time,” in Handbook
of Process Algebra. Elsevier, 2000, pp. 627–684.

[24] K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder, “Energy
transparency for deeply embedded programs,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 14, no. 1, pp.
1–26, 4 2017.

[25] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fe-
dorova, “The linux scheduler: A decade of wasted cores,” in
Proceedings of the Eleventh European Conference on Computer Systems,
ser. EuroSys ’16. New York, NY, USA: ACM, 2016, pp. 1:1–1:16.

[26] “PThreads benchmark,” https://github.com/ashurrafiev/PThreads.
[27] “OpenCL overview,” https://www.khronos.org/opencl.
[28] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for

chip-multiprocessors,” in Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation, June 2009.

[29] M. A. N. Al-hayanni, R. Shafik, A. Rafiev, F. Xia, and A. Yakovlev,
“Speedup and parallelization models for energy-efficient many-
core systems using performance counters,” in 2017 International

Conference on High Performance Computing Simulation (HPCS), July
2017, pp. 410–417.

Ashur Rafiev has received his PhD in 2011 in
the School of Electrical, Electronic and Com-
puter Engineering, Newcaste University. At the
moment, he works in the School of Computing
Science, Newcastle University, as a Research
Associate. His research interest is focused on
power modelling and hardware-software co-
simulation of many-core systems.

Mohammed Al-hayanni (Student Member,
IEEE and IET) is an experienced electronics,
computer and software engineer. He is currently
studying for his PhD with the School of Electrical
and Electronic Engineering, Newcastle Univer-
sity. His research interests include developing
practically validated robust performance adapta-
tion models for energy-efficient many-core com-
puting systems.

Fei Xia is a Senior Research Associate with the
School of Electrical and Electronic Engineering,
Newcastle University. His research interests are
in asynchronous and concurrent systems with
an emphasis on power and energy. He holds a
PhD from King’s College, London, an MSc from
the University of Alberta, Edmonton, and a BEng
from Tsinghua University, Beijing.

Rishad Shafik (MIEE’06-to-date) is a Lecturer
in Electronic Systems at Newcastle University.
His research interests include design of intel-
ligent and energy-efficient embedded systems.
He holds a PhD and an MSc from Southampton
Uni., and a BEng from IUT, Bangladesh. He
has authored 80+ research articles published
by IEEE/ACM, and is the co-editor of "Energy-
efficient Fault-Tolerant Systems". He is chairing
DFT’17 (http://www.dfts.org), to be held in Cam-
bridge, UK.

Alexander Romanovsky is a Professor at New-
castle University, UK and the leader of the Se-
cure and Resilient Systems group at the School
of Computing. His main research interests are
system dependability, fault tolerance, software
architectures, system verification for safety, sys-
tem structuring and verification of fault tolerance.
He is a member of the editorial boards of Com-
puter Journal, IEEE Transactions on Reliability,
Journal of System Architecture and International
Journal of Critical Computer-Based Systems.

Alex Yakovlev is a professor in the School
of Electrical and Electronic Engineering, New-
castle University. His research interests include
asynchronous circuits and systems, concurrency
models, energy-modulated computing. Yakovlev
received a DSc in Engineering at Newcastle Uni-
versity. He is a Fellow of IEEE, Fellow of IET, and
Fellow of RAEng. In 2011-2013 he was a Dream
Fellow of the UK Engineering and Physical Sci-
ences Research Council (EPSRC).


