
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 1

Real-Power Computing
Rishad Shafik†, Alex Yakovlev† and Shidhartha Das‡

Abstract—The traditional hallmark in embedded systems is
to minimize energy consumption considering hard or soft real-
time deadlines. The basic principle is to transfigure the uncer-
tainties of task execution times in the real world into energy
saving opportunities. The energy saving is achieved by suitably
controlling the reliable power supply at circuit or system-level
with the aim of minimizing the slack times, while meeting the
specified performance requirements.

Computing paradigm for emerging ubiquitous systems, par-
ticularly for the energy-harvested ones, has clearly shifted from
the traditional systems. The energy supply of these systems
can vary temporally and spatially within a dynamic range,
essentially making computation extremely challenging. Such a
paradigm shift requires disruptive approaches to design com-
puting systems that can provide continued functionality under
unreliable supply power envelope and operate with autonomous
survivability (i.e. the ability to automatically guarantee retention
and/or completion of a given computation task). In this paper,
we introduce Real-Power Computing, inspired by the above
trends and tenets. We show how computation systems must
be designed with power-proportionality to achieve sustained
computation and survivability when operating at extreme power
conditions. We present extensive analysis of the need for this new
computing approach using definitions, where necessary, coupled
with detailed taxonomies, empirical observations, a review of
relevant research works and example scenarios using three case
studies representing the proposed paradigm.

I. COMPUTING IS CHANGING

Over the years, computing systems have found their usage
in a large number of domains. Considering their typical power
consumptions, these domains can be roughly categorized into
six major applications, such as high-end many-core server
systems, desktop computing, portable computing, mobile sys-
tems, embedded systems and low-end ubiquitous systems.
Fig. 1 depicts four different trends of these applications: design
and optimization requirements, expected/current population
of these systems, power supply variations and energy effi-
ciency requirements by them. These trends show how design
considerations have evolved with power and/or performance
constraints for different application domains, highlighting
their degree of usage in terms of device populations. For
line supply powered computing applications, such as high-
end server and desktop computing systems, performance is
typically constrained by power consumption (which ranges
from tens of watts to several mega-watts) to control the
operational costs and system overheating [4]. For battery-
powered systems, such as portable computing devices and
embedded systems (with typical power from a few milliwatts

†R. Shafik and A. Yakovlev are with the School of Electrical and Electronic
Engineering, Newcastle University, Newcastle upon Tyne, UK
e-mail: {rishad.shafik,alex.yakovlev}@ncl.ac.uk.
‡Shidhartha Das is with ARM, Cambridge, UK

e-mail: {shidhartha.das}@arm.com
Manuscript received March 29, 2018.

Fig. 1. Major computing applications and their typical system design and
optimization requirements, expected current population of these systems,
normal supply power variations and energy efficiency requirements [1]–[3].

to several watts), performance is often compromised in favor
of extended operating lifetime [5]. In many embedded systems
it is common to have real-time constraints, which can either be
hard (i.e. time constraint cannot be violated) or soft (i.e. time
constraint can be occasionally violated) [6]. The energy saving
in these systems is achieved by suitably controlling the power
supply at circuit- or system-level with the aim of minimizing
the slack time (i.e. the time between task execution time and
its deadline). Fig. 2 shows a demonstration of performance-
driven energy minimization approaches for real-time systems.
A common denominator for all these applications is the
capability of operating under reliable power supplies, while
providing with certainty in computational performance.

Keynote: October 2016 Montreux Symposium on Emerging Trends in Computing – e.g. Yankin
Tanhuran of Synopsys http://www.nano‐tera.ch/pdf/soetc/tanhuran.pdf

Power Supply Clock Generator

Computational
Electronics

Time sourceEnergy source
Vdd clk

ctrl ctrl

busy idle

busy

de
ad

lin
e

Reduce Vdd/freq. to reduce
energy and slack time

Po
w
er

Time

Po
w
er

(a) (b)

Fig. 2. Real-time performance-driven power minimization in embedded
systems. Dynamic voltage/frequency scaling (DVFS) is a key aspect of
these systems; using DVFS the slack time (difference between deadline and
execution time) can be minimized for power/energy efficiency.

A point worth noting from Fig. 1 is the energy efficiency
requirements of these applications. As the operating power
level becomes smaller, particularly for the battery-powered
systems, they are being challenged with longer operating
lifetimes. This has led to research and innovation in the general
area of Low-Power Computing with the basic premise of
“making the most of available energy” [7]. A key aspect
of achieving such energy efficiency is the ability to operate
with multiple supply voltages (i.e. Vdd), from sub-threshold
to super-threshold [8], [9]. As energy efficiency needs become
more prominent, the Vdd range between minimum (Vmin) to
maximum (Vmax) point also tends to be higher (see Fig. 1).

The dramatic spread of computing, at the scale of tril-
lions of emerging ubiquitous systems, is delivering on the
pervasive penetration into the real world in the form of
data-driven Internet of Things (IoT) [10], [11]. Examples

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 2

include implantable or wearable devices, cybernetics and fire-
and-forget sensing systems in smart cities and offices. For
ubiquity, typical design requirements of these devices are to
be small, low-cost and light-weight by harvesting energy from
the real-world through vibration [12] or thermal [13] energy,
or from environment through solar or kinetic energy [13],
[14]. As harvesting sources have natural fluctuations in their
physical properties, the available energy of these devices also
varies significantly, both in spatial and temporal dimensions,
often by two orders of magnitude or more [15]. This makes
the operation of these devices challenging, particularly when
the available energy is unreliable but the device needs to
complete useful computations [16]. Hence, a highly desirable
property of these devices is to have natural survival instincts
defined by the available energy levels. In other words, they
should continue to provide a required computation capacity at
limited energy levels, even if it requires gracefully degrading
the computation quality or retaining the computation states
for resumption when more energy is available. Biological
organisms and systems, such as microbes, work with similar
principles as they morph and adapt for carrying out useful
synthesis and regenerative processes for their survival under
varying sunlight [17].

Traditional approaches are agnostic of such survival in-
stincts under varying supply energy levels [16]. These ap-
proaches react to low energy situations by scaling operating
voltage/frequency to extend lifetime, which does not guarantee
retention or completion of computation tasks before the system
is depleted of power [18]. In fact due to lack of survival
instincts the direct application of existing approach can cause
loss of computation in such an event, as shown in Fig. 3. In-
deed, a change in the computing paradigm is needed to design
computing systems with natural survivability and adaptability
instincts that go beyond traditional approaches for dealing
with unreliable power supply. This paper introduces one such
computing paradigm, named Real-Power Computing, with the
following key objectives and contributions:

1) a definition of the new paradigm underpinning rationale
and an extensive review of related works,

2) a detailed taxonomy of the paradigm, showing different
design and run-time optimization approaches,

3) three case studies and exemplars demonstrating the ef-
fectiveness of the proposed paradigm applied in different
taxonomy scenarios, and

4) a brief outline of the open research challenges and
opportunities surfacing this paradigm.

The rest of the paper is organized as follows. Section II
argues the rationale of real-power computing, together with its
definition, manifestations and taxonomies. Section III outlines
design methods for the envisioned new paradigm, while Sec-
tion IV gives insights into run-time adaptation needs for power
proportionality and survivability. Section V provides three
different case studies as exemplars of different real-power
computing aspects. Section VII and VI summarize challenges,
opportunities underpinning existing research works. Finally,
Section VIII concludes the paper.

Throughout the paper we will use energy and power terms as

follows. From the supply side, the energy term will be used to
refer to harvesters with built-in storage, while the power term
will indicate to the rate of energy dispensation over time. For
the computing logic side, the energy term will define the total
power consumed over a given time interval.

II. REAL-POWER COMPUTING

In his visionary article [19](p. 438), Oliver Heaviside wrote:
“Now, in Maxwell’s theory there is the potential energy..., and
there is the kinetic or magnetic energy.... They are supposed
to be set up by the current in the wire. We reverse this; the
current in the wire is set up by the energy transmitted through
the medium around it. The sum of the electric and magnetic
energiesis definite in amount, and the rate of transmission of
energy (total) is also definite in amount.”

In computing systems the situation is analogous; the energy
consumed by the electronic devices (e.g., transistor switches,
parasitic capacitors, current mirrors and interconnects) allows
for the information transformation from one form to another.
If we reverse this angle of thinking, we can see that the
information transformation is in fact the product of the energy
input to the underlying circuits and this energy as well as its
rate are definite in amount. The consequence of this reversal is
remarkable. Traditionally, our view would be to consider given
computation task as something definitely known, determined
by the algorithm, the hardware underneath and the data [20].
Hence, definitely known is the list of actions this system will
go through. Then, we can estimate, although approximately,
the amount of energy consumed by this definite computation.

With the reversed view, the key question is: can we guaran-
tee reliable computation under unreliable power supplies, mit-
igating frequent computational uncertainties? One particular
form of computational uncertainty is performance uncertainty
in terms of the time it takes to perform the computation. While
we have the definite power level what we can also have is a
definite computation (hardware, algorithm, data and sequence
of actions) but with uncertain performance [21]. Another form
would be to have both definite power or energy budget and
time deadlines, but then accept the possibility of the temporary
termination of the computation when either energy or time
limits has been reached.

However unusual the computational uncertainty might ap-
pear to us, raised to traditional approaches of computing,
our pervasive electronic systems will increasingly follow the
second and non-traditional view. This is because, today’s
widely used paradigms such as those of Real-Time (com-
pute by deadlines) and Low-Power (prolonging battery life
or throttling for power densities) cannot address the strict
computation requirements imposed by the above question. The
new generation of devices and applications in the computing
swarm, many of which are expected to be confronted with
challenges of autonomy in the absence of batteries, will need
a power-centric design and run-time adaptation. This leads
us to define the new envisioned paradigm as Real-Power
Computing. The engineering definition and taxonomies of real-
power computing follow.

Real-power computing can be defined as follows:
Real-power computing (RPC), or energy-driven computing,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 3

Power Supply
(with strict power/energy control)

Computation &
communication

Electronics

Energy source

Vdd

feedback

compute

C
o

n
su

m
ed

P
o

w
er

compute
busy

retention

ctrl

(a) (b)

retention

compute

C
o

n
su

m
ed

P
o

w
er

compute
lost

computation
lost

computation

compute

Traditional computing:
- no power/energy control
- no survival instinct

Real-power computing:
- strict power control based on avail. energy
- built-in survival instinct

Fig. 3. (a) High-level block diagram of the proposed real-power computing
paradigm consisting of feedback based power control unit and the compu-
tation/communication electronics, and (b) traditional computing compared to
real-power computing, showing two key features of the proposed paradigm:
the ability to control power budgets based on the available energy, and
autonomous deeply-embedded survival instincts.

describes hardware and software systems subject to a “real-
power constraint”, for example availability of energy from
a power source, or restriction on power dissipation. Real-
power applications must guarantee performance within speci-
fied power constraints, referred to as “power bands” Systems
of this type are linked to the notion of survivability, which
depends on their power aspects as well as their ability to
morph functional aspects to ensure continued computation.
Real-power systems are not simply low-power systems which
are optimized to the criterion of minimum power consumption.

Based on the above definition, we have a range of possible
formulations of the problems leading to various scenarios in
real-power computing. Considering the control derivatives of
the input power, we categorize these as hard or soft real-
power computing. Later, we also discuss the implications of
introducing the real-time constraints alongside power/energy.

A. Hard Real-Power Computing

Hard real-power computing systems have no energy storage
capacity, i.e. the scavenged power is delivered directly into
the circuits and systems. As such, the input power will need
to be strictly budgeted for guaranteeing a certain set of
computations; if the available power does not allow this, no
computation is carried out. The failure to meet power budget
will eventually lead to incomplete computations, which can be
carried out when more power is available. Examples of hard
real-power systems include autonomous cybernetic or signal
processing systems that have to carry out periodic and non-
critical data sensing and computations.

A key requirement for establishing hard real-power com-
putation is to have maximum predictability of supply power
so that power scheduling policies can be derived accordingly.
Moreover, it is equally important to have a high level of trans-
parency of the computing units in terms of worst case power
consumption (WCPC), similar to worst case execution time
(WCET) in hard real-time computing systems. The evaluation
of WCPC would need extensive off-line characterisation of de-
terministic computational loads (eg. ASICs, microcontrollers,
memories and interconnects) against different power supply
situations. We term this process of scheduling computational
tasks based on power availability as power-compute co-design.
Figure 4 shows demonstration of a hard real-power computing
system that periodically processes sensed data in four phases:
wake up, sense, process, communicate and retain/sleep.

C
o

n
su

m
ed

 p
o

w
er

H
ar

ve
st

er
 p

o
w

er

sense
process Tx

sense process
Tx

retention
busy

Not enough energy – computation skipped

Available energy allows for computation
(sensing, processing and transmission) to proceed

time

retention
busytime

Fig. 4. An example demonstration of hard real-power computing showing four
key tasks: initiate wake up, sense data, process data, transmit data and retain
data/initiate sleep mode. When energy is available, the system formulates a
strategy to control power with the aim of allowing these tasks to be carried
out, strictly meeting the power budget. However, when the available energy
is not sufficient, the system does not allow these tasks to be carried out.

B. Soft Real-Power Computing
Unlike hard real-power computing, soft real-power com-

puting has built-in energy buffers (e.g. supercapacitors) with
limited capacity. As such, it does not strictly control compu-
tations against a power budget derived from the scavenged
power. Instead, power budgets are formulated based on the
currently available energy. When the available energy is lower
than expected, soft real-power systems can allow for partial
computation to be carried out, even if these violate the power
budget. Examples of soft real-power applications include spo-
radic data ingestion or dynamic sensing systems, which can
tolerate loss of periodic computations in full or in part.

Soft real-power computing systems can use a combina-
tion of power-compute co-design and run-time optimisation.
Power-compute co-design simplifies the control problem with
estimation of the expected power consumption (EPC) of
computational loads. Computational loads, such as micro-
processors, dynamically reconfigurable systems and storage
subsystems are typical candidates for soft real-power controls
as EPC models can be instrumented for dynamic feedback
based run-time control. Based on the feedback, the control
decisions can be adapted to enforce high energy frugality [22].
Figure 5 demonstrates soft real-power computing systems
using similar example tasks as in Fig. 4.

C. Managing Performance Uncertainty
Some applications inherently require certainty in perfor-

mance, which could be imposed through either hard or soft
real-time deadlines. Within the remits of real-power comput-
ing the delivery of such performance expectations can be
explained as follows. With an additional real-time deadline,
the problem of devising power budgets in real-power com-
puting is reduced to identifying the least energy (product of
average power budget and time deadline) that can be frugally
utilized to deliver the best quality of computation (which can
be application-dependent), which can be modulated in favor

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 4

process
(part)

C
o

n
su

m
ed

 p
o

w
er

H
ar

ve
st

er
 p

o
w

er

wake
sense

wake
sense

process
(rest)

Tx

retention
busy

Low energy forces the system to complete part
and retain data to complete later

Current energy allows for part computation
(sensing and processing) to be carried out

time

retention
busytime

When more energy is available the rest of the tasks
(more processing and Tx) are completed

Occasional violation
of power budget

Fig. 5. An example demonstration of soft real-power computing showing
similar tasks. When energy is available, the system proceeds with power
budgeting to allow for part of the tasks to be carried out, often with some
violation of the power budget. The remaining tasks are completed when more
energy becomes available.

of energy efficiency through approximate or heterogeneous
computing or a combination of both.

Considering different performance uncertainly scenarios, a
number of different optimization problems (i.e. taxonomies)
are given below.

Given:
Td Expected time deadline
T Expected computation time
Pt Power consumption at time t

P budget
t Power budget at time t

Pavg Average power budget over time T
E Energy consumption over time T (E = Pavg×T)
Eavail Energy available over time T
C Computation/communication task functionalities
c Chosen task functionality/implementation
Q Quality of computation carried out

1. Hard real-power computing:
∀t∃Pt≤P

budget
t :c∈C max : Q(c)

Given no storage for scavenged energy, there exists a variant of
computation functionality c which will always meet the power
budget (Pt ≤ P budget

t) at time t. The choice of functionality c
will ensure the best possible computation quality within the power
budget. A case study of hard real-power computing is shown in
Section VI.B.
2. Soft real-power computing:
∀t∃Pt≈P

budget
t :c∈C

min : E(Pt, T, c) ≤ Eavail, &max : Q(c)
Given some storage for scavenged energy, there exists a variant of
computation functionality c which will approximately meet the power
budget (Pt ≈ P budget

t) at time t. The choice of functionality c will
ensure that energy consumption is always less than the available
stored energy, and provide the best possible computation quality. A
case study of soft real-power computing is presented in Section VI.A.
3. Hard real-power hard real-time computing:
∀t∃Pt≤P

budget
t :c∈C max : Q(c) st. T ≤ Td

Given no storage for scavenged energy, there exists a variant of
computation functionality c which will always meet the power budget
(Pt ≤ P budget

t) at time t. The choice of functionality c will ensure
the best possible computation quality within the power budget and
also strictly meet the real-time deadline.
4. Hard real-power soft real-time computing:

∀t∃Pt≤P
budget
t :c∈C max : Q(c) st. T ≈ Td

Given no storage for scavenged energy, there exists a variant of
computation functionality c which will always meet the power budget
(Pt ≤ P budget

t) at time t. The choice of functionality c will ensure
the best possible computation quality within the power budget and
also approximately meet the real-time deadline.
5. Soft real-power hard real-time computing:
∀t∃Pt≈P

budget
t :c∈C

min : E(Pt, T, c) ≤ Eavail, &max : Q(c) st. T ≤ Td

Given some storage for scavenged energy, there exists a variant of
computation functionality c which will approximately meet the power
budget (Pt ≈ P budget

t) at time t. The choice of functionality c will
ensure that energy consumption is always less than the available
stored energy, and strictly meet the given real-time deadline, while
also providing with the best possible computation quality.
6. Soft real-power soft real-time computing:
∀t∃Pt≈P

budget
t :c∈C

min : E(Pt, T, c) ≤ Eavail, &max : Q(c) st. T ≈ Td

Given some storage for scavenged energy, there exists a variant of
computation functionality c which will approximately meet the power
budget (Pt ≈ P budget

t) at time t. The choice of functionality c will
ensure that energy consumption is always less than the available
stored energy, and approximately meet the given real-time deadline,
while also providing with the best possible computation quality.

Ensuring energy efficiency, performance and quality re-
quirements are met in real-power computing can be challeng-
ing due to large system space during optimization. Hence, it
requires a systematic and cross-layer approach for design-time
power-compute co-design, together with run-time adaptation
as described in Fig. 6. The details of power-compute co-
design are described next, which is then followed by run-time
adaptation for energy efficiency and survivability (Section IV).

Communication tasks

Hardware/Software: Computation tasks

Hardware: Sensors/busses/controllers

Variable energy supply

R
u

n
-tim

e
 A

d
a

p
ta

tio
n

: P
o

w
er-

p
ro

p
o

rtio
n

al co
m

p
u

tin
g

 &
 su

rvivab
ility

Su
rvivab

ility again
st lim

ited
 en

ergy

R
u

n
-tim

e task p
artitio

n
, m

ap
 an

d

p
o

w
er sch

ed
u

lin
g

P
o

w
e

r-
co

m
p

u
te

 c
o

-d
e

si
g

n
: e

n
er

g
y

an
d

 s
u

p
p

ly
 m

o
d

el
s,

 c
o

-o
p

ti
m

iz
at

io
n

C
o

m
p

u
ta

ti
o

n
 q

u
al

it
y

ve
rs

u
s

en
er

gy

tr
ad

e-
o

ff
s

D
es

ig
n

-t
im

e
p

o
w

er
 s

u
p

p
ly

 m
o

d
el

,
p

o
w

er
 s

ch
ed

u
lin

g
fo

r
lo

ad
s

Fig. 6. A cross-layer block diagram of the envisioned real-power computing
paradigm. Power-centric control for resources, including communication/
computation tasks and input/output subsystems, is fundamental to the concept
of this new paradigm. To ensure optimal controls, the system requires early
stage power-compute co-design, which extensively analyzes the power supply
variations against computation/communication energy consumption. The aim
is to determine the optimal power scheduling for resources. Power-compute
co-design is often coupled with continuous run-time adaptation to ensure
application-aware survivability in the event of limited energy availability using
hardware/software knobs and feedback through monitors.

III. POWER-COMPUTE CO-DESIGN

Power-compute co-design is a design-time optimization
approach of real-power computing. It can be defined as a
set of design automation tools and techniques that models
the relationships between power sources and computational
loads (hardware, software and communication subsystems),
thereby formulating efficient power scheduling policies for

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 5

computational tasks. In the following the different aspects of
power-compute co-design are briefly discussed.

A. Power Supply Models
The power supply in ubiquitous systems typically have large

spatial and temporal variations [23]. Understanding and mod-
eling these variations is core to real-power computing. Spatial
variation models characterize the power supply voltages and
their variations, and determine the maximum and minimum
operating points [24]. Since harvested power is typically a
function of the operating environment, realistic assumptions
must be made to derive accurate spatial variation models.
Additionally, temporal variations also need to be modeled
to establish high predictably of the available energy over a
given time. Hard real-power systems can use more pessimistic
assumptions of the available energy, while soft real-power
computing can leverage deviations in assumptions to a run-
time adaptation problem. Power supply models can then be
used to design power controllers with survivability instincts
and enable appropriate power scheduling for computational
loads at design-time [25]. Fig. 7 depicts harvested power of
four sources highlighting the temporal and spatial variations.

H
ar

ve
st

er
 p

o
w

er

time2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

40mW

80mW

120mW

160mW

(a) Solar harvested energy

H
ar

ve
st

er
 p

o
w

er

time2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

6W

14W

22W

30W

(b) Wind harvested energy

H
ar

ve
st

er
 p

o
w

er

time2m 4m 6m 8m 10m 12m 14m 16m 18m 20m 22m 24m

20mW

30mW

40mW

50mW

(c) Machine vibration harvested energy

10mW

H
ar

ve
st

er
 p

o
w

er

time

200mW

300mW

400mW

500mW

(d) Body thermal harvested energy

100mW

2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

sporadic within a day;
quasi-periodicity between days

sporadic within a day and also between days;
however in some hours there is high correlation

Machine vibration can be periodic and also dependent on workload;
Harvested energy tends to quasi-peridic

Harvested energy tends to be highly predictable

Fig. 7. Power supply behavior of different energy harvesting sources: (a)
solar harvested energy [16], [26] tends to have a sporadic pattern within a day;
however, between days the energy be quasi-periodic depending on the weather
(not shown), (b) wind harvested energy [27], [28] shows similar behaviour
as solar energy with typically larger spatial variation, (c) machine vibration
harvested energy [29], [30] can be quasi-periodic depending on the machine
workload, and (d) human body thermal energy harvested using a body area
network with 1700 nodes [31] tends to be highly predictable as the temporal
variations are generally slow.

B. Energy Transparency Models
Energy transparency models study the impact of performing

a set of computation or communication tasks in terms of their
resulting energy consumption, carried out at design-time. In
the following these models are briefly outlined for computation
and communication tasks:

1) Computation Tasks
Energy transparency models of computation tasks study

the energy consumption variations of hardware/software re-
sources [32]. Depending on the intended real-power computing
paradigm (hard or soft), the energy cost estimation either needs
to be accurate or approximate. For example, hard real-power
systems requires accurate estimation at instruction- or micro-
architectural level as under-estimation can lead to violation of
the power budgets imposed by the power controller. Micro-
controllers and ASICs typically have deterministic compu-
tational behavior [33], and hence these are well-suited for
accurate energy transparency models using worst-case power
consumption (WCPC) estimations. On the other hand, soft
real-power systems can leverage approximations in energy es-
timations, and adapt during run-time. Microprocessors with hi-
erarchical caches and reconfigurable logic circuits and systems
tend to exhibit variations in their energy consumptions [34],
and as such they are suitable for power-compute co-design
using expected power consumption (EPC) models.

Fig. 8. Layered computational activity in response to power levels. The
different layers signify power layers and their classes of functionalities: the
inner layers have lower computational capacity and hence more energy-frugal,
while the outer layers have higher power/computation capacity. In a typical
system different classes with higher number of software tasks are carried out
at outer layers, while modular and simpler hardware tasks are performed
at innermost layers. The layers in the middle gradually change in their
computational capacities and energies. In a real-power computing system,
when energy is scarce, the tasks at outer layers are progressively shut down
to retain the most essential tasks, e.g. retention, check-pointing.

2) Communication Tasks
Communication tasks are carried out in parallel or in an

interleaved manner alongside computation [35]. In ubiquitous
systems, these tasks are deterministic (in regular patterns of
sense, process and communicate data). However, the energy
consumption of these tasks can vary due to network behav-
ior (wireless or wired) [36]. As such, to generate energy
transparency models for these tasks a key requirement is to
define the detailed network characteristics (including traffic,
channel or network availability and congestion scenarios) [37].
Based on such network characteristics, the expected energy
consumed for each of the communication packets can be
estimated. Similar to computation tasks, these estimations can

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 6

be carried out optimistically for soft real-power systems or
pessimistically for hard real-power systems.

Predicted energy
model

Formulate power Budget

W
o

rs
t-

ca
se

 p
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

h
ar

d
)

Ex
p

ec
te

d
 p

o
w

er
 c

o
n

su
m

p
ti

o
n

 (
so

ft
)

Harvested
energy

(simulated)

Power supply
model

Energy transparency
model

Comp. #1
(SW)

Comp. #2
(HW)

Comp. #3
(approx.)

Comp. #4
(approx.)

High-level power allocation:
communication and computation

Low-level power allocation:
power-proportional computing

Computation Communication

Temporal
variation

Spatial
variation

Criteria Constraints

Fig. 9. A flowchart of power-compute co-design for real-power computing
systems. The power supply model, together with harvested energy simulation
enables a power budget formulation. For hard real-power system, a more
conservative budget is formulated, while for soft real-power systems, a more
pessimistic power control is applied. Based on the power budget, the power
allocation to the computation and communication loads are carried out using
the energy transparency model. Initially, a high-level power scheduling is
done between computation and communication tasks. The higher-level power
schuduling is also coupled with a low-level power scheduling algorithm
that suitably identifies the best hardware/software partitioning and mapping
needed to optimize for the given criteria (eg. soft or hard real-power) and
constraints (eg. deadline, quality) for the optimization problem. For accurate
formulation of the design-time policies, energy/power models of the individual
computational loads are also fed back to the power scheduling governor.

C. Power Scheduling and Optimization Problems
Existing electronic design automation tools allow for hard-

ware/software co-design to optimize for performance and/
or reduced power consumption [38]. A common feature of
these tools is the mapping and partitioning decisions between
hardware and software resources that need exploration at early
design phase. For real-time systems, such exploration can
drastically reduce the complexity of run-time optimization to
warrant task executions by a given deadline.

Within the remits of proposed real-power computing, power-
compute co-design needs to identify the appropriate power
scheduling and optimization policies to ensure a fixed energy
budget can be effectively allocated among the computation
(and communication) resources. The co-design tool will be
provided with a set of supply power and load energy trans-
parency models, and it will then generate a set of rules for
power distribution among computation and communication
loads. Using these rules, multiple layers of the system archi-
tecture can turn on/off at different power levels (cf. analogies
with living organisms nervous systems or underwater life,
or layers of expensive/cheap labour in most of the resilient
economies). As power goes lower computation at deeper layers
(i.e. survival layers with lower accuracy and computation
capacity) stay on, while the surface layers (i.e. higher accuracy
and more computation capacity) turn off; this is where instincts
become more in charge! The more effectively the system

manages these layers, the more energy-efficient and survivable
it is. This layered view is reflected in Fig. 8, which puts it in
analogy with the sea layers and ability of different forms of life
to survive in different conditions of sunlight penetration. Fig. 9
shows a flowchart of power-compute co-design, demonstrating
how layered power scheduling is governed to ensure the
desired optimization criteria and constraints are met [39].

IV. RUN-TIME ADAPTATION
Run-time survivability is a new concept for electronic

systems. According to Oxford English Dictionary, “Survival is
the continuing to live after some event; remaining alive, living
on.” Such an event could be the termination of power supply or
drastic reduction in power levels. Conventional definitions of
survival and survivability in ICT systems render themselves to
considering this notion as a synonym to graceful degradation
in the presence of faults or something abnormal, i.e. “out of
order” conditions. This might be a suitable way if we treat the
system to work normally under the unlimited energy resources.

When we consider real-power conditions, we are actually
staying within “normal operating” conditions. Hence our sys-
tem should be equipped with the capability to react to power
and energy interruptions. In biology, such capability is usually
called ‘instincts’ [40], which can be better described by the
following two quotations: 1) “the very essence of an instinct
is that it is followed independently of reason.” 1, and 2) “the
operation of instinct is more sure and simple than that of
reason.” 2. Based on these observations, an equivalent of
instincts in electronic systems can be associated with the
notion of “Deep Survival”. Deep Survival refers to maintaining
the operation in several structural and behavioural layers, with
mechanisms to adapt to unexpected energy situations. Elec-
tronic systems can be designed for deep survival by providing
multi-modal computational capability in layers, where each
layer corresponds to a given computational complexity and
associated quality/energy tradeoffs [41] (see Fig. 8).

Fig. 11 depicts an illustrative approach to engineering run-
time adaptability and survivability. As can be seen, power-
proportional heterogeneous computing and adaptability for
survival are two key issues for real-power computing as
described below:

A. Power-Proportional Computing
A fundamental approach to achieving survivability is the

principle of power-proportional computing [18], [42]. A given
power, when applied to a computational device, can be con-
verted into a corresponding amount of computation activity
by selecting the appropriate layer of computation. Run-time
adaptation must ensure this through seamless switching be-
tween layers of different computation activities at different
power levels (see Section III) and Fig. 10).

Servicing a known functionality (a set of computation
and communication tasks) in different modes and types is
key to achieving power proportionality. One mode of this
could be computing (and communicating) with heterogeneous
resources. These resources can provide similar functionality

1C. Darwin, Descent of Man I, 1871
2E. Gibbon, Decline & Fall of The Roman Empire, 1804

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 7

Fig. 10. Power profile in time, its uncertainty and illustration of power-
modulated computing. The past observations can provide certainty in power
distribution in response to computation capacities through statistical inference.
Current and future observations use the past observations to manage the
uncertainty in performance responding to different computation capacity and
its power allocations.

but with different energy/performance trade-offs. When there
is good energy availability, it may be more convenient in
terms of controllability, precision and programmability to
perform functionality using traditional computing resources,
such as CPUs with DSPs. However, when the energy is scarce,
similar functionality can be provided through more customized
resources, such as FPGAs/ASICs for better quality of service
at low energy. The decision of performing computation (and
communication) through a resource will be strictly governed
by design-time rules and run-time adaptation algorithms built
in the system based on the energy availability and proportion-
ality [43], [44].

In extreme energy conditions, computing can be challenging
using these traditional computing resources. To ensure useful
computation (and communication) tasks can still be carried
out, the traditional definition of functionality, whereby the
output data and their quality can be deterministically related
to a given set of input data, will need to be relaxed. This
leads to another mode of computing using power-proportional
approximate computing. To enable this promising mode new
computational units need be designed to meet the ultra low-
energy computing requirements at gracefully degraded quality
of the functionality [45]. The impact of trading quality off in
favor of energy can be strictly application-specific, and hence
these will need to carefully analyzed at design-time during
power-compute co-design (see Section III).

B. Adaptability for Survival
When power levels become uncertain or scarce, deep sur-

vival becomes incumbent. During such an event, the system
will need to “consciously” switch between a full functionality
mode to a low-latency hibernating mode primarily depending
on the data processing and application requirements (see
Fig. 11). The consciousness requires two unique design fea-
tures in the system: dynamic retention and adaptability. In
the following we briefly discuss these characteristics with
examples.

1) Dynamic retention
Retention is the ability to save a stable state of the com-

puting system. Using this state, the system can continue the
computation from where it left off. In traditional comput-
ing systems, retention is carried out through check-pointing

Fig. 11. A demonstrative flowchart of run-time adaptation for real-power
computing systems. For run-time adaptation the available energy (Eavail)
is directly measured from the power supply; based on this energy power
budget (Pbudget) is formulated. The run-time manager allocates power
resources using Pbudget as a guideline. For hard real-power systems, initially
Eavail is checked against the required energy by the tasks in concern.
If the required energy is less than Eavail, no computation/communication
is carried out and data are retained; however, when Eavail can ensure
survivability, computation and communication tasks are carried out meeting a
specified quality. Unlike hard real-power systems, soft real-power systems are
managed most optimistically. When Eavail is greater than a threshold voltage,
Ethreshold, computation and communication tasks are carried out in full on
in part, depending on the availability of energy. For both systems, energy/
power measurements are fed back to the run-time energy transparency models
for more accurate power budget allocations, and run-time management.

process that requires saving the instruction and data states
in special purpose registers and memory units. The check-
pointing process is governed by a special software routine
that is triggered on-demand when the system encounters any
known hardware/software anomalies.

In real-power computing systems, traditional approaches of
check-pointing can prove challenging due to the following two
reasons. First, the requirement to retain data can be aperiodic
and on-demand, and second, the typical latency of check-
pointing can result in diminish returns in terms of energy
efficiency and performance [46].

A promising approach to integrating dynamic retention is
deeply embedding non-volatile logic or storage registers in
the electronic system. This will require additional survivability
controls and run-time adaptability features as described next.

2) Run-time Adaptability
Real-power systems are expected to operate autonomously.

Hence, they must be capable of adapting to changes in the

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 8

real world. This will include learning to predict the changes in
power supply conditions and thereby reviewing power budget
formulations, managing around unreliable situations in harsh
operating environments for safety-critical applications, and
ensuring energy frugality through dynamic power scheduling
policies. To incorporate these capabilities, these systems will
need to have a new types of knobs and monitors. At the power
supply unit monitors will need to be designed to accurately
capture the available energy levels (as shown in Fig. 11). Com-
putation/communication resources must also be designed with
power and performance monitors to enable feedback based
run-time controls. Additionally, these resources will need to
appropriately instrumented with retention control knobs to
enable deep survivability [47].

V. CASE STUDIES
Following the definitions of real-power systems with design-

and run-time aspects (Sections III and IV), in this section, we
present three different case studies as exemplars to demon-
strate our research in the development of real-power systems.
Case Study 1 represents a soft real-power system, which aims
to maximize computation under variable power supply levels
ignoring the impact of delays. Case Study 2 shows an example
of a hard real-power system, demonstrating how resources
can be dynamically proportional to incoming power. Case
Study 3 presents the example of a tunable delay element with
survivable instinct with the aim of learning delay based on the
incoming power and remembering the delay properties in the
event of a power loss. These case studies should be considered
as systematic developments in different directions of real-
power systems proposed in this paper; however, the complete
chain of hardware/software tools, techniques and automation
remain subjects of further research (See Section VIII).

A. Case Study 1: Self-timed Soft Real-Power Micropipelines
Traditionally, concurrency has been used to improve com-

puting performance and/or efficiency, but there had been
limited studies to leverage concurrency under variable energy
situations. In this case study, a self-timed micropipeline is
designed, based on our work [23]. The aim is to maximize
the amount of compute per energy unit through dynamically
variable concurrency. The case study represents a soft real-
power systems as the processing of the data tokens of a given
computation functionality will be favorably completed in part
or in full following a non-stringent power budget derived from
the available energy.

Fig. 12 shows the architecture of a C-element based mi-
cropipeline. It is implemented using an unrolled configuration,
forming a ring by connecting the last stage output back to the
first stage input [48]. The latches (i.e. C elements) can be set
or reset by S1 or S0 inputs as shown in Fig. 12(a). The data
items, called tokens, are identified as “01” or “10” input to the
pair of C elements shown in dashes, while “00” is considered
as non-data. Due to time delay based events it is possible
to have an old copy of the token, called a bubble. With more
incoming tokens moving forward, the bubbles move backward.
The maximum number of tokens that can be processed by an
N-stage pipeline is (N-1) tokens in order to free one stage to
hold a bubble. N and 0 tokens are deadlock states.

Fig. 12. (a) Modified asynchronous C element architecture with set/reset
functions, and (b) four-stage micropipeline architecture using C elements.

(a)

(b)
Fig. 13. (a) Units of computations carried out against different supply voltage
levels (split in two levels for legibility), and (b) computation delays for these
voltage levels (again split in two levels for legibility).

To validate the effectiveness of power-centric management
of computation, a 5-stage ring micropipeline is used in exper-
iments. Simulation results are obtained with different paral-
lelism (1, 2, 3, 4 tokens), in different working voltages (1.0V,
0.8V, 0.6V, 0.4V, 0.35V, 0.25V, 0.2V, 0.16V) under various
energy levels (600pJ, 700pJ, 800pJ). In each experiment, the
power-compute run stops when the energy is fully consumed
through power budgets (established through power-compute
co-design steps prior to experiments). The resulting amount
of computation is counted for each run in terms of a unit,
defined as one pulse generated in the pipeline. Fig. 13 shows

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 9

Fig. 14. Computations versus concurrency at different supply voltages

the different voltage levels and the resulting computation units
and associated delays from the experiments.

The micropipeline (Fig. 12) concurrency adapts to the
incoming energy levels and the data availability. For example,
under 600pJ @1V with one data item, the power budget was
adjusted to ensure 1276 computations (Fig. 13(a)). However,
when two data become available for the same energy and
voltage, the power budget and pipeline are set to deliver the
highest concurrency (1299 computations), which is a small
increase. However the time is more than halved. For the
same amount of energy, when Vdd drops from 1V to 0.8V,
the amount of computations for the most concurrent case is
increased 61.7%. It takes longer, about 50% more for the same
amount of computation. The power budget is 387uW at 0.8V
compared to 968uW at 1V, about a 60% lower. When further
reducing Vdd to 0.2V, exhausting the same amount energy,
the amount of computation is increased 23.3 times and it
takes about 10,000 times more time. For the same amount
of computation, it takes about 380x more time compared
to working at the nominal Vdd. However, the power figure
goes from 968uW down to 110nW. Fig. 13(b) shows the
corresponding delay for different computation voltages.

Fig. 14 shows computations versus the degree of concur-
rency at different Vdds with 1-4 tokens. It can be concluded
that the maximum number of computations happens at the
same condition of the optimum throughput, which is at N/2
tokens when N is even or (N-1)/2 tokens when N is odd; the
higher the concurrency the greater the amount of computation.
At the nominal voltage, moving from the lowest extreme (four
tokens) to the optimum point (two tokens) results in a 5%

improvement in terms of the amount of computations per
unit energy. But at a sub-threshold voltage the effect on the
computation from 4 to 2 tokens is much more considerable -
nearly 1.7 times. Theoretically, at a fixed Vdd, under the same
amount energy, the optimum case will shorten the execution
time to half. Across a shorter period of time the amount
of leakage loss will be lower, hence the improvement. The
results (Fig. 14) further suggest that above threshold voltage,
the amount of computation per given amount of energy is
practically insensitive to the degree of concurrency, but below
threshold the dependency on the degree of concurrency and
thereby also the energy efficiency goes up significantly due to
the dynamic power adaptation in this case study.

B. Case Study 2: Hard Real-Power Signal Processing
This case study represents a hard real-power computing sys-

tem with the aim of delivering the best possible computation
functionality proportional to the input power. The design and
experiments assumed no energy storage (the difference from
our original definition in Section II-A is in the absence of
coordinated dynamic retention circuitry, which is our ongoing
research). Fig. 15 shows the simplified block diagram of the
proposed computing using signal processing as an exemplar.
As shown, the incoming harvested power is fed into the target
logic circuit through a voltage protection and conditioning
circuit (our ongoing works include using self-powered voltage
sensors [49]). The logic block consists of power measurement
subsystem (using shunt resistance network), followed by three
different DC-DC converters to ensure variable voltage-current
requirements into the main logic circuit (i.e. signal convolution

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 10

Fig. 15. Power-proportional convolution circuitry

circuit, which is commonly used for filtering information from
raw signals). Based on the incoming power, one of the four
convolution logic blocks with suitable approximation is chosen
such that incoming power budget is not violated, while also
maximizing the quality of computational functionality.

(a)

(b)
Fig. 16. (a) An 2-level SLDC multiplier showing approximate compaction of
the partial product terms, and (b) the partial product terms after commutative
remapping, showing reduction in the critical path.

The circuit in Fig. 15 was designed with simulated power
scavenging with the assumption that the incoming power
does not vary faster than the period of synchronous logic
clock. Since multipliers constitute the bulk proportion of the
convolution logic blocks, they were designed with 16-bit mul-
tipliers of four different approximations: precise Wallace-Tree
Multiplier (WTM), approximate multiplier with 2-, 3- and 4-
level significance-driven logic compression (SDLC) [50]. All
four convolution configurations used precise carry-propagation
adders organized in array of multiply-accumulate (MAC) units.

Fig. 16 shows the stylized block diagram of a 2-level SDLC

multiplier. For demonstration purposes an 8-bit multiplier
is shown. As can be seen, the basic premise of such an
approximate multiplier is to reduce the number of partial
product terms, and effectively shortening the critical path.
For example, instead of producing two product terms A1B0
and A0B1, the multiplier directly produces an approximate
sum term of the two (Fig. 16(a)). The sum term is generated
by using an OR gate in place of an XOR gate, which only
produces an incorrect output of 1, when both inputs are 1
(as compared to 0 in an XOR gate). The grouping of partial
product terms is done using progressing bit significance, from
lower to higher. The product terms are then commutatively
remapped to reduce the number of partial product terms in
the critical path to 4, instead of 8 (Fig. 16(b)). As a result,
substantial energy reduction is achieved at the cost of low
loss in accuracy. For higher level SDLC multipliers, further
reductions in the critical path can drastically cut down the
latency and power consumption with more imprecisions are
incorporated in the process, representing a trade-off between
power-energy-quality (PEQ).

Table I shows the synthesized power, delay, area and power-
delay-product (PDP) comparisons of the different MAC units
used in the four convolution circuits. As can be seen, the
accurate MAC (row 2) has significantly higher power con-
sumption and delay compared with the approximate MAC
implementations (rows 3-5). As the logic compression level is
increased from 2-level (2L) to 3-level (3L) and 4-level (4L),
the critical path is incrementally cut down in favor of reduced
dynamic and leakage power, coupled with latency. As a result,
up to 5.5x energy efficiency (expressed in terms of PDP) can
be achieved in the case of 4L SDLC MAC. Note that the
energy reductions are achieved at the cost of reduced quality.

TABLE I
POWER, DELAY AND AREA COMPARISONS OF DIFFERENT LOGIC

COMPONENTS

Circuit Pdyn

(uW)
Pleak

(uW)
Delay
(ns)

Area
(um2)

PDP
(fJ)

Accurate MAC 58.19 4.23 2.63 1417.47 174.27
2L SDLC MAC 36.24 2.97 2.11 904.56 76.86
3L SDLC MAC 28.90 2.40 1.73 672.31 49.66
4L SDLC MAC 23.41 2.01 1.35 501.37 32.32

Fig. 17 presents the simulation results of an example ap-
plication using the convolution circuitry in Fig. 15. In a hard
real-power scenario, the system requires the signal convolution
tasks to be completed in units of 2700 MACs (300-sample
packets being convoluted by a signal with 9 samples). No
deadline is imposed for the number of packets to be processed
over a given time in this example. Fig. 17(a) depicts the input
power (Pin) scavenged using a simulated source, together
with the effective logic power (Plogic) for consecutive time
intervals of 50ms each. The logic selection and management
subsystem (Fig. 15) estimates Pbudget for the convolution
circuit discounting the power losses in power delivery (PDC).

The Plogic determines which logic mode can be operated
to ensure each signal packet is processed with the available
power, while also providing with the best possible quality of
outcomes. The excess power (Ploss) is bypassed through a
RC network parallel to the logic block (not shown). As can
be seen, when higher power is available initially, the accurate

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 11

Fig. 17. (a) Input power (Pin) and effective logic power (Plogic), together
with the logic bypass losses (Ploss), (b) logic mode selection [0: none
selected, 1: 4L SDLC MACs, 2: 3L SDLC MACs, 3: 2L SDLC MACs, and
4: accurate MACs] and the total number of MAC operations performed for
the given real-power budget for logic subsystem in (a), and (c) Valid signal-
to-noise (SNR) points for the selected convolution tasks.

MACs are selected for the convolution task, allowing up to 2
packets being processed (Fig. 17(b)). However, as scavenged
power becomes scarce, lower logic modes (such as 2L, 3L
or 4L SDLC MACs) are selected. When the available power
is low for processing a packet, the computation is skipped to
the next interval. The selection of logic modes has a direct
impact on the quality of the outcomes as shown in Fig. 17(c).
Processing convolution using 4L SDLC MACs causes the SNR
to degrade to as low as 19dB. Note that the effective SNR
for a given packet can still vary despite having the similar
logic mode selection. This is because the error introduced
by the approximate logic block is dependent on the signal
values. Signals with higher numeric values (i.e. higher ’1’s in
the significant parts of the logic) can incur marginally higher
errors than those with less numeric values due to progressive
bit significance-driven logic compression (Fig. 16). Overall the
SLDC-based switching of the circuit reacting to instantaneous
power levels provides ≈60X better convolution functionality
(from 2.7k MACs to 150k MACs) when compared with the
accurate convolution circuit alone (observed over 10 signal
processing experiments of 30-min each).

C. Case Study 3: Delay Elements with Survival Instincts

Supply voltage variations not only pose functionality chal-
lenges, but also introduce challenges in retaining parametric
values of the circuit, such as buffer delays [51]. Configurable
delay matching approaches, such as [52], [53], have been
proposed by researchers to address delay variation challenges.
The basic premise is to provide programmable delays that can
match the propagation delay of the original circuits [54].

Designing delay elements with deeply embedded survival
instincts is key to ensuring continued computational func-
tionality in real-power systems. The instinct must allow for
learning of the circuit delay properties adjusted to different
voltage levels, and remember these properties when there is
no current or voltage. In this case study, we briefly describe
the design of a pulse controlled tunable delay element that
has the above desirable attributes, based on our ongoing
research in [55]. Fundamental to this tunable delay are two
key modifications to existing buffers. These are: a) placing
a memristor element between two CMOS inverters, and b)
introducing a tunable interface for different supply voltages.

Normal
out = in cfg = ++

tune = -

cfg = ++
tune = ++

cfg = -
tune = x

cfg = -
tune = x

Tune up
out = tune

Tune down
out = tune

(a)

GND

Vdd

GND

Vtune

in out

tune

cfg

MP1 MP4

MP3

MN1 MN4

MN3

mem_in mem_out

cfg

tune

cfg

MP5

MN5

Vdd

GND

MP6

MN6

MN2

cfg

MP2

GND

MP7

(b)
Fig. 18. (a) State diagram for switching the operating mode of the memristor-
based delay element, and (b) circuit schematic for the pulse controlled
memristor-based delay element.

Fig. 18 shows (a) the state diagram of the tunable delay
element, together with (b) its schematic. As can be seen, in
the normal mode the cfg is “−” and turns on both MP2 and
MN2, which form a pass gate, to pass the normal signal from
the input buffer to the memristor and then to the output buffer.
The cfg also turns off both MP3 and MN3 to cut the tuning
network from Vtune and ground whether the tune is “++” or
“−”. In the tune up mode, the cfg switches to “++” and turns
off the pass gate while both MP3 and MN3 are turned on. At
the same time, the tune is “++” and turns on both MP5 and
MN4. This connects mem out and mem in to Vtune and
ground respectively and causes the state variable to go higher.
On the other hand, in tune down mode, the cfg is “++” which
turns on both MP3 and MN3 while the turn changes to “−”

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 12

and turns on MP4 and MN5. This also connects the memristor
to Vtune and ground but in the opposite direction and causes
the state variable to go lower.

The transistor MP7, whose the gate and source are con-
nected to mem in and mem out respectively, is used to deal
with the backward tuning issue commonly seen in existing
solutions [56]. In addition, the pass gate is necessary to block
the leakage current that flows from Vtune to Vdd via the body
of MP1 which occurs in both tuning operations. Note that the
memristor can be placed in both directions depending on the
thresholds. The side that has the threshold above the normal
signal amplitude must be attached at mem in to avoid the
memristance change. However, the memristor can be placed
in any directions if both of its thresholds are greater than the
mentioned amplitude. All transistors except MP7 are sized to
balance the rise and fall times. For high voltage analog and
mixed signal (AMS) CMOS 0.35µm technology, the proper
Wp/Wn ratio is 1. Therefore, the widths of 40µm are selected
for MP1-MP5 and MN1-MN5 while both MP6 and MN6 are
sized as 20µm.

cfg (V)

tune (V)

in (V)

out (V)

Time (μs)

μμμ

0.3 0.6 0.9 1.2 1.5 1.8

state
variable
(x10)-3

Tune up
pulse width 1ns 2ns 3ns 4ns 5ns

0.0

7.0

0.0

7.0

0.0

5.0

0.0

5.0

17.2

0.0

29.5
42.8

0.0

6.1

(a) Tune up mode.

cfg (V)
0.0

7.0

tune (V)
0.0

7.0

in (V)
0.0

5.0

out (V)
0.0

5.0

36.9

38.4

39.5
40.0

Time (μs)

μμμ

0.0 0.3 0.6 0.9 1.2 1.5 1.8

variable
(x10)-3

Tune down
pulse width 1ns 2ns 3ns 4ns 5ns

state

(b) Tune down mode.
Fig. 19. Identification of the minimum tuning pulse width in (a) tune up, and
in (b) tune down modes.

Using the tunable delay circuit (Fig. 18(b)) extensive ex-
periments were conducted using high voltage CMOS 0.35µm
technology and memristor model with Biolek window func-
tion [57]. The ferroelectric fitting parameter for the memristor
was chosen because of its wide memristance range and ON
threshold that fits with the operating voltage. The Vtune was
set above the highest threshold of ≈7V while Vdd was set
as ≈5V to let the transistors operate correctly. Ten identical

devices were connected in parallel resulting in high 15KΩ
and 5MΩ as the actual minimum and maximum memristance
respectively. The normal signal frequency in all experiments
was set to 10MHz.

Experiments were conducted initially to identify the max-
imum effective memristance and the maximum delay to de-
termine their upper limits. The maximum memristance was
observed by applying tuning pulses on 3ns width. The average
delay grows exponentially and saturates on the 6th pulse,
indicating the maximum delay of 13.54ns and the state variable
value of 40 × 10−3. This value can be converted to the
maximum effective memristance of 214KΩ. The minimum and
average delay are obtained as 5.48ns and 1.34ns per step.

To identify minimum and average timing pulse widths for
the delay element, next simulations were run by sweeping the
tuning pulse width in tune up mode from 1ns to 5ns with
1ns increment per step. Fig. 19 shows the waveforms, which
indicate that the state variable starts to increase at the 2ns pulse
width. In tune down mode the state variable was initialized to
the maximum effective memristance, determined earlier. The
results also reveal the minimum pulse width settles to 3ns.
The variation comes from the difference in memristances: the
lower one allows the signal to swing faster. Hence, 3ns pulse
width was assigned as the minimum tuning pulse width for all
the experiments.

Besides retention of delay properties, the introduction of
memristor in the tunable delay circuit also ensured low static
power of 14pW and dynamic power of 203µW.

VI. RELATED WORKS

Significant research works are being carried within the
realm of real-power computing. These works have found
different terminologies in literature, namely transient com-
puting [58]–[60], power-/energy-neutral computing [61],
power-/energy-proportional computing [18], [62], energy-
modulated computing [42], ultra low-power computing [63]
and normally-off computing [64], [65]. These terminologies
continue to highlight specific issues surfacing around the
overall need to design new breed of computing systems that
can go beyond the state-of-the-art in terms of energy efficiency
and survivability [66]. In the following we give a brief account
of the relevant works to date.

The term transient computing, proposed by Gomez et
al. [60], refers to opportunistic computing for energy harvest-
ing systems. The aim is to ensure computation and communi-
cation tasks can be carried out based on the available energy in
the battery or the supercapacitor. Faster wake up and reaction
times are critical for transient computing as these allow for bet-
ter predictions of harvested energy availability [59]. To enable
computation at challenging energy levels, the ability to operate
at ultra low-power is also of profound importance [63]. An
ultra low power micro-controller architecture, named PULP
(URL: http://www.pulp-platform.org), is proposed by Conti et
al. in [67]. The PULP processor has built-in parallelization
features, and can interact with a power controller to react
to energy critical situations. Additionally, it supports check-
pointing, coupled with run-time routines, to retain the stable
state of the computation [68], [69].

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 13

Supercapacitors or batteries pose pollution, sustainability
and design geometry issues. Hence, operating at instanta-
neous power levels is often desirable, particularly for systems
that need to operate autonomously without supercapacitors
or batteries. Underpinning this motivation, Balsamo et al.
proposed a power-neutral computing in [61]. The computation
tasks in this system are instantaneously adapted based on
available power using dynamic frequency scaling (DFS). For
an uninterrupted operation, the system also needs to have state
retention feature enabled by on-demand check-pointing [70]. A
variant of power-neutral computing is energy-neutral comput-
ing, which assumes the presence of supercapacitors or small
batteries with limited capacity. Similar to transient computing,
energy-neutral computing needs power controllers that closely
interact with these supercapacitors or batteries to ensure un-
interrupted computation under varying energy situations.

Energy- or power-proportional computing stems from sim-
ilar principles of energy-neutral or power-neutral computing.
However, the main impetus of such computing is the trans-
parency of energy usage profile of every system compo-
nent, particularly the memory and input/output (IO) subsys-
tems [18], [42]. The aim is to achieve tighter control over
the energy consumption of hardware/software systems when
subjected to different workloads. Liqat et al. and Kerrison
et al. proposed software energy modeling and verification
approach using execution statistics together with instruction set
architecture (ISA) in [32], [71], showing minor deviation with
from hardware energy measurements. The model elaborated
the impact of different instructions on the hardware compo-
nents, including processors, arithmetic/logic units, memories
and pipelines for multi-threaded XMOS-based embedded sys-
tems. Flinn and Satyanarayanan proposed another modeling
tool in [72], called Powerscape, which can combine execution
statistics and hardware instrumentation to generate a detailed
energy usage footprint. Tools like these can reason for better
hardware/software energy efficiency using a number of differ-
ent approaches. For example, a compiler based approach for
optimized register cache sizing for modern superscalar pro-
cessors is proposed in [73]. Based on the energy/performance
profiles obtained from ISA, expressed as a energy-delay
product (EDP), and using the detailed characterization of
cache associativity, the authors demonstrate how EDP can be
improved with energy-proportional considerations.

Energy-modulated computing, recently proposed in [7],
[42], extends the above concepts further by adding elasticity
in computing. The general argument is that computation must
continue to provide intended functionality of its equivalent
even when energy is scarce, particularly in energy harvesting
systems. The elasticity in computation is achieved through
two aspects. Firstly, the system must have a layered design
with heterogeneous computing units to enable control over
the quality of intended computing functionality. When more
energy is available, the layer with high-complexity and high-
accuracy hardware/software resources will be active. Con-
versely, when energy is scarce, the layer of low-complexity,
energy-efficient and less-accurate resources will be active,
powering off the other layers [74] (see Fig. 8). A key aspect
of achieving full control in energy-modulated computing is

approximate computing system design that can operate with
variable precision based on the data or logic significance [50].

Recently normally-off computing has been proposed by
Nakamura et al. [64], [65]. The main principle is to design a
new generation of computing system with faster non-volatile
memories. Integration of these memories enable aggressive
shutting down the computing components (as opposed to
power gating using of leaky switches) when energy/power
is low. The power management features are incorporated
at micro-architectural level, providing the system with sur-
vivability features (as highlighted in Section IV). Table II
shows a brief summary of the existing works relevant to real-
power computing, with classifications based on the taxonomies
shown earlier in Section III.

TABLE II
CLASSIFICATION OF EXISTING APPROACHES WITHIN THE REMITS OF

REAL-POWER COMPUTING

Approach Soft
RPC

Hard
RPC

Instincts & features

[18], [42] power-adaptive approximation
[23] energy-adaptive, no retention
[60] Supercapacitors without retention
[61] no retention, power-adaptive

[64], [65] non-volatile computing
[70] retention through check-pointing

[68], [69] ultra low-power check-pointing

We are already seeing the penetration of survivability-based
systems design in industrial products, increasingly following
the real-power approach. Two relevant examples are: a) mod-
ern smartphones, in which services are reduced progressively
when the battery is low or unreliable [75], and b) autonomous
drones or vehicles, in which reduced flying/driving capabil-
ities would still be required to ensure safe landing/parking
when the power supply is about to fail [76]. Although these
products do not have autonomous survival instincts reacting to
instantaneous power supply variations, real-power approach is
expected to make this possible.

VII. CHALLENGES AND OPPORTUNITIES

Despite progress in different aspects of real-power comput-
ing (Section VI), the full-scale design and implementation of
real-power computing systems will need holistic and concerted
efforts across the entire system stack: from hardware to
software. We envisage the following key research challenges
and opportunities covering different aspects:

A. Design Automation Tools

Power-centric controls and management introduced in real-
power computing is clearly a departure from the existing
power agnostic controls. As such, existing electronic design
automation (EDA) tools will not be able to meet the needs
of the new paradigm, largely due to the reversal of the
controls. Hence, new EDA tools and techniques will need to
be developed to facilitate power-compute co-design, validation
and verification. These tools will use power-compute co-design
policies to generate power controllers and layers of hardware/
software resources.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 14

B. Instrumentation and Run-time Optimization
To orchestrate run-time adaptability and control features,

careful instrumentation of knobs and monitors is a key require-
ment. Existing design principles of power/performance knobs/
monitors can be used. However, new knobs and monitors
need to be developed to build systems with survival instincts.
These can be used in conjunction with light-weight run-time
optimization routines for feedback based reactive control [66],
[77], or run-time model based proactive controls using ma-
chine learning principles [78], [79].

C. Architectures for Survivability
The concept of power-proportional computing introduced

in Section IV-A requires development of new system archi-
tectures for real-power computing. These architectures are
expected to feature heterogeneous computing resources, in-
cluding traditional (CPUs, DSPs, FPGAs/ASICs) and emerg-
ing circuits and systems, such as programmable approximate
computing units [50]. Based on the available energy, the
computation and communication resource(s) would be suitably
chosen to provide required functionality or its gracefully
degraded equivalent. To allow for run-time survivability, the
architectures will also need to integrate hardware/software
support (such as non-volatile registers or tightly-coupled mem-
ories) for dynamic retention capabilities.

D. Programming Model
For high-level scheduling between power supply and com-

pute units, new programming models will need to be devel-
oped. These models will consist of a set of annotations and
run-time routines. Annotations will dictate the power budgets
of modular tasks in heterogeneous computing resources, either
statically (for hard real-power systems) or dynamically (for
soft real-power systems), while run-time routines will manage
the system (and its survivability) based around the given power
budgets. Interacting with knobs and monitors will be exposed
to the run-time through application programming interfaces.

VIII. CONCLUSIONS

We are entering an era of massively ubiquitous computing
(e.g. swarms of devices such as sensors, monitors, actuators,
markers, smart tags) at the smallest possible granularity level.
The quantity of devices that form such swarms will be in
the order of trillions with inherent requirement of autonomous
survival capabilities. Cumulatively, they are expected to con-
sume enormous amounts of power, which cannot be expected
with current and predicted battery technology scaling. Ex-
isting low power design methods largely use performance-
constrained power/energy minimization without considering
the survivability under energy/power variabilities. Indeed, for
these promising devices we need to design and build systems
that can operate uninterruptedly under a wide range of power
constraints. Underpinning these motivations, we defined and
proposed a new computing paradigm, named Real-Power
Computing. Our definitions have been complemented with
different case studies and exemplars, coupled with reflections
and experiences from existing research efforts in the form of
power- or energy-aware design. Although this new paradigm

has direct relevance to current and future generations of
ubiquitous systems, we believe that there is a strong impetus
for this paradigm to be useful in other computing applications
for cost and energy-efficiency considerations.

We have considered an electronic design approach inspired
by the survivability instinct seen in many natural phenomena,
e.g. microbes, to ensure continued functionality under such
unreliable energy. We have also shown in Case Study 1 that
the new paradigm lends itself to the principle of using the
available energy to the maximum amount of computation in
systems. According to [80], “this principle of least action
is an expression not of nature’s parsimony, but of nature’s
prodigality: a system’s natural trajectory is the one that will
hog the most computational resources”.

Our approach develops a holistic view and a research
framework for the Real-Power paradigm covering challenges
and opportunities of power schedulability, tools and algorithms
for power-centric design, design- and run-time optimization
and adaptation for ensuring continued execution of battery-
less ubiquitous systems. We strongly believe the proposed
paradigm will broaden the scopes for extensive future research
with definitive pathways.

ACKNOWLEDGEMENT

The authors would like to thank EPSRC PRiME project
(EP/K034448/1) for supporting this work and appreciate the
useful discussions with Geoff Merrett (Uni. Southampton),
George Constantinides (Imperial College, London), Kerstin
Eder (Uni. Bristol) and members of the Microsystems Re-
search Group (Uni. Newcastle).

REFERENCES

[1] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable-voltage core-based systems,” IEEE
TCAD, vol. 18, no. 12, pp. 1702–1714, Dec 1999.

[2] V. Venkatachalam and M. Franz, “Power reduction techniques for
microprocessor systems,” ACM Comput. Surv., vol. 37, no. 3, pp. 195–
237, Sep. 2005.

[3] M. Bauer, N. Bui, C. Jardak, and A. Nettstrter, “The IoT ARM reference
manual,” 12 2013.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[5] T. Simunic, L. Benini, and G. De Micheli, “Energy-efficient design of
battery-powered embedded systems,” IEEE Trans. on Very Large Scale
Integration (TVLSI) Systems, vol. 9, no. 1, pp. 15–28, 2001.

[6] A. Andrei, P. Eles, Z. Peng, M. T. Schmitz, and B. M. Al Hashimi,
“Energy optimization of multiprocessor systems on chip by voltage
selection,” TVLSI, vol. 15, no. 3, pp. 262–275, 2007.

[7] A. Yakovlev, “Energy-modulated computing,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2011, pp. 1–6.

[8] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in Proc. of the 41st annual
Design Automation Conference (DAC). ACM, 2004, pp. 868–873.

[9] F. Xia, A. Rafiev, A. Aalsaud, M. Al-Hayanni, J. Davis, J. Levine,
A. Mokhov, A. Romanovsky, R. Shafik, A. Yakovlev, and S. Yang,
“Voltage, throughput, power, reliability, and multicore scaling,” Com-
puter, vol. 50, no. 8, pp. 34–45, 2017.

[10] K. Lyytinen and Y. Yoo, “Ubiquitous computing,” Communications of
the ACM, vol. 45, no. 12, pp. 63–96, 2002.

[11] R. Iyer and E. Ozer, “Visual iot: Architectural challenges and opportuni-
ties; toward a self-learning and energy-neutral iot,” IEEE Micro, vol. 36,
no. 6, pp. 45–49, 2016.

[12] S. P. Beeby, R. Torah, M. Tudor, P. Glynne-Jones, T. O’donnell, C. Saha,
and S. Roy, “A micro electromagnetic generator for vibration energy
harvesting,” J. of Micromechanics and microengineering, vol. 17, no. 7,
p. 1257, 2007.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 15

[13] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and
wireless electronics,” IEEE Perv. Comp., vol. 4, no. 1, pp. 18–27, 2005.

[14] S. Chalasani and J. M. Conrad, “A survey of energy harvesting sources
for embedded systems,” in SouthEastCon. IEEE, 2008, pp. 442–447.

[15] L. Mateu and F. Moll, “Review of energy harvesting techniques and ap-
plications for microelectronics (keynote address),” in Microtechnologies
for the New Millennium 2005, 2005, pp. 359–373.

[16] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava,
“Design considerations for solar energy harvesting wireless embedded
systems,” in Proc. IPSN. IEEE Press, 2005, p. 64.

[17] S. Haruta and N. Kanno, “Survivability of microbes in natural environ-
ments and their ecological impacts,” Microbes and environments, vol. 30,
no. 2, pp. 123–125, 2015.

[18] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, Dec 2007.

[19] O. Heaviside, Electrical papers. Cambridge Uni. Press, 2011, vol. 2.
[20] M. Kleanthous, Y. Sazeides, E. Özer, C. Nicopoulos, P. Nikolaou, and

Z. Hadjilambrou, “Toward multi-layer holistic evaluation of system
designs,” IEEE Comp. Arch. Letters, vol. 15, no. 1, pp. 58–61, 2016.

[21] H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and
M. Rosset, “Efficient power management circuit: From thermal energy
harvesting to above-IC microbattery energy storage,” IEEE J. of solid-
state circuits, vol. 43, no. 1, pp. 246–255, 2008.

[22] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett, and
B. M. Al-Hashimi, “Learning transfer-based adaptive energy minimiza-
tion in embedded systems,” IEEE Trans. on Comp.-Aided Des. of Integ.
Circuits and Systems (TCAD), vol. 35, no. 6, pp. 877–890, 2016.

[23] A. Baz, D. Shang, F. Xia, X. Gu, and A. Yakovlev, “Energy efficiency
of micropipelines under wide dynamic supply voltages,” in 2014 IEEE
Faible Tension Faible Consommation, May 2014, pp. 1–4.

[24] A. S. Weddell, M. Magno, G. V. Merrett, D. Brunelli, B. M. Al-Hashimi,
and L. Benini, “A survey of multi-source energy harvesting systems,”
in DATE. EDA Consortium, 2013, pp. 905–908.

[25] Y. Li and J. Henkel, “A framework for estimating and minimizing energy
dissipation of embedded hw/sw systems,” in DAC, 1998, pp. 188–193.

[26] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Trans. Embed. Comput.
Syst., vol. 6, no. 4, Sep. 2007.

[27] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy computing:
Leveraging weather forecasts in energy harvesting sensor systems,” in
Sensor Mesh and Ad Hoc Communications and Networks (SECON),
IEEE Comms. Society Conf. on. IEEE, 2010, pp. 1–9.

[28] R. J. Vullers, R. Van Schaijk, H. J. Visser, J. Penders, and C. Van Hoof,
“Energy harvesting for autonomous wireless sensor networks,” IEEE
Solid-State Circuits Magazine, vol. 2, no. 2, pp. 29–38, 2010.

[29] D. Zhu, S. Roberts, M. J. Tudor, and S. P. Beeby, “Design and exper-
imental characterization of a tunable vibration-based electromagnetic
micro-generator,” Sensors and Actuators A: Physical, vol. 158, no. 2,
pp. 284–293, 2010.

[30] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C.
Green, “Energy harvesting from human and machine motion for wireless
electronic devices,” Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.

[31] D. C. Hoang, Y. K. Tan, H. B. Chng, and S. K. Panda, “Thermal
energy harvesting from human warmth for wireless body area network
in medical healthcare system,” in IEEE PEDS, 2009, pp. 1277–1282.

[32] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia,
N. Grech, M. V. Hermenegildo, and K. Eder, “Energy consumption
analysis of programs based on xmos isa-level models,” in Intl. Sym.
on Logic-Based Program Synth. & Transf., 2013, pp. 72–90.

[33] B. H. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A.
Müller, P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe et al., “Using
models at runtime to address assurance for self-adaptive systems,” in
Models@ run. time. Springer, 2014, pp. 101–136.

[34] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M.
Al-Hashimi, and G. V. Merrett, “Accurate and stable run-time power
modeling for mobile and embedded cpus,” TCAD, vol. 36, no. 1, pp.
106–119, Jan 2017.

[35] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-Fi enabled
sensors for Internet of Things: A practical approach,” IEEE Commu-
nications Magazine, vol. 50, no. 6, 2012.

[36] F. Xia, A. V. Yakovlev, I. G. Clark, and D. Shang, “Data communication
in systems with heterogeneous timing,” IEEE Micro, vol. 22, no. 6, pp.
58–69, 2002.

[37] Y.-K. Chen, “Challenges and opportunities of Internet of Things,” in
Design Automation Conference, 2012 17th Asia and South Pacific (ASP-
DAC). IEEE, 2012, pp. 383–388.

[38] R. A. Shafik, B. M. Al-Hashimi, and K. Chakrabarty, “Soft error-
aware design optimization of low power and time-constrained embedded
systems,” in DATE, 2010, pp. 1462–1467.

[39] A. Yakovlev, Enabling Survival Instincts in Electronic Sys..., 2015,
ch. 13, pp. 237–263.

[40] Y. Cai, “Survivability,” in Instinctive Computing. Springer, 2016, pp.
353–371.

[41] M. Magno, D. Boyle, D. Brunelli, E. Popovici, and L. Benini, “Ensuring
survivability of resource-intensive sensor networks through ultra-low
power overlays,” IEEE Trans. on Industrial Informatics, vol. 10, no. 2,
pp. 946–956, 2014.

[42] R. Ramezani, D. Sokolov, F. Xia, and A. Yakovlev, “Energy-modulated
quality of service: New scheduling approach,” in Faible Tension Faible
Consommation (FTFC), 2012 IEEE. IEEE, 2012, pp. 1–4.

[43] Q. Liu, T. Mak, J. Luo, W. Luk, and A. Yakovlev, “Power adaptive com-
puting system design in energy harvesting environment,” in Embedded
Computer Systems (SAMOS), 2011 International Conference on. IEEE,
2011, pp. 33–40.

[44] E. Beigne, P. Vivet, Y. Thonnart, J.-F. Christmann, and F. Clermidy,
“Asynchronous circuit designs for the Internet of Everything: A method-
ology for ultralow-power circuits with gals architecture,” IEEE Solid-
State Circuits Magazine, vol. 8, no. 4, pp. 39–47, 2016.

[45] D. Sokolov and A. Yakovlev, “Quality of service in power proportional
computing,” Citeseer, Tech. Rep., 2011.

[46] D. Chabi, W. Zhao, E. Deng, Y. Zhang, N. B. Romdhane, J.-O. Klein,
and C. Chappert, “Ultra low power magnetic flip-flop based on check-
pointing/power gating and self-enable mechanisms,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 61, no. 6, pp. 1755–
1765, 2014.

[47] R. Ramezani, A. Yakovlev, F. Xia, J. P. Murphy, and D. Shang, “Voltage
sensing using an asynchronous charge-to-digital converter for energy-
autonomous environments,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 3, pp. 35–44, 2013.

[48] T. E. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Stanford, CA, USA, 1991, uMI Order No. GAX92-05744.

[49] X. Zhang, D. Shang, F. Xia, and A. Yakovlev, “A novel power delivery
method for asynchronous loads in energy harvesting systems,” J. Emerg.
Technol. Comput. Syst., vol. 7, no. 4, pp. 16:1–16:22, Dec. 2011.

[50] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev,
“Energy-efficient approximate multiplier design using bit significance-
driven logic compression,” in DATE, March 2017, pp. 7–12.

[51] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in Proc. of MICRO-
36., Dec 2003, pp. 7–18.

[52] M. Maymandi-Nejad and M. Sachdev, “A monotonic digitally controlled
delay element,” IEEE J. of Solid-State Circuits, vol. 40, no. 11, pp.
2212–2219, Nov 2005.

[53] J. Christiansen, “An integrated high resolution cmos timing generator
based on an array of delay locked loops,” IEEE J. of Solid-State Circuits,
vol. 31, no. 7, pp. 952–957, Jul 1996.

[54] J.-S. Chiang and K.-Y. Chen, “The design of an all-digital phase-locked
loop with small dco hardware and fast phase lock,” IEEE Trans. on
Circuits and Systems (TCAS) II: Analog and Digital Signal Processing,
vol. 46, no. 7, pp. 945–950, Jul 1999.

[55] T. Bunnam, A. Soltan, D. Sokolov, and A. Yakovlev, “Pulse controlled
memristor-based delay element,” in PATMOS, Sept 2017, p. (in press).

[56] X. Zhang, Z. Ma, J. Yu, and L. Xie, “Memristor-based programmable
delay element,” in 2014 12th IEEE International Conference on Solid-
State and Integrated Circuit Technology (ICSICT), Oct 2014, pp. 1–3.

[57] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE TCAS II:
Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[58] A. Rodriguez, D. Balsamo, A. Das, A. S. Weddell, D. Brunelli, B. Al-
Hashimi, and G. V. Merrett, “Approaches to transient computing for
energy harvesting systems...” in ENSsys 2015, 2015.

[59] D. Spenza, M. Magno, S. Basagni, L. Benini, M. Paoli, and C. Petrioli,
“Beyond duty cycling: Wake-up radio with selective awakenings for
long-lived wireless sensing systems,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 522–530.

[60] A. Gomez, L. Sigrist, M. Magno, L. Benini, and L. Thiele, “Dynamic
energy burst scaling for transiently powered systems,” in DATE, 2016,
pp. 349–354.

[61] D. Balsamo, A. Das, A. S. Weddell, D. Brunelli, B. M. Al-Hashimi, G. V.
Merrett, and L. Benini, “Graceful performance modulation for power-
neutral transient computing systems,” IEEE TCAD, vol. 35, no. 5, pp.
738–749, 2016.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, MONTH YEAR 16

[62] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
ACM SIGPLAN Notices, vol. 46, no. 3. ACM, 2011, pp. 199–212.

[63] A. Abnous and J. Rabaey, “Ultra-low-power domain-specific multimedia
processors,” in VLSI Signal Processing, IX, 1996.,[Workshop on]. IEEE,
1996, pp. 461–470.

[64] T. Nakada and H. Nakamura, “Normally-off computing,” in Normally-
Off Computing. Springer, 2017, pp. 57–63.

[65] T. Nakada, T. Shimizu, and H. Nakamura, “Normally-off computing for
iot systems,” in SoC Design Conference (ISOCC), 2015 International.
IEEE, 2015, pp. 147–148.

[66] J.-F. Christmann, E. Beigné, C. Condemine, J. Willemin, and C. Piguet,
“Energy harvesting and power management for autonomous sensor
nodes,” in DAC. ACM, 2012, pp. 1049–1054.

[67] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “PULP: A ultra-
low power parallel accelerator for energy-efficient and flexible embedded
vision,” J. of Signal Proc. Sys., vol. 84, no. 3, pp. 339–354, 2016.

[68] G. Tagliavini, A. Marongiu, D. Rossi, and L. Benini, “Always-on
motion detection with application-level error control on a near-threshold
approximate computing platform,” in ICECS. IEEE, 2016, pp. 552–555.

[69] M. Rusci, D. Rossi, M. Lecca, M. Gottardi, E. Farella, and L. Benini,
“An event-driven ultra-low-power smart visual sensor,” IEEE Sensors J.,
vol. 16, no. 13, pp. 5344–5353, 2016.

[70] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” IEEE Embedded
Systems Letters, vol. 7, no. 1, pp. 15–18, 2015.

[71] S. Kerrison and K. Eder, “Energy modeling of software for a hardware
multithreaded embedded microprocessor,” ACM Trans. on Embedded
Computing Systems (TECS), vol. 14, no. 3, p. 56, 2015.

[72] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the
energy usage of mobile applications,” in Mobile Computing Systems
and Applications, 1999. Proc.. WMCSA’99. Second IEEE Workshop on.
IEEE, 1999, pp. 2–10.

[73] T. M. Jones, M. F. O’Boyle, J. Abella, A. González, and O. Er-
gin, “Energy-efficient register caching with compiler assistance,” ACM
TACO, vol. 6, no. 4, p. 13, 2009.

[74] K. G. Larsen, S. Laursen, and M. Zimmermann, “Limit your consump-
tion! finding bounds in average-energy games,” in Proc. of QAPL, The
Netherlands, April 2-3, 2016., 2016, pp. 1–14.

[75] A. Elnashar and M. A. El-Saidny, “Extending the battery life of
smartphones and tablets: A practical approach to optimizing the lte
network,” IEEE Vehicular Technology Magazine, vol. 9, no. 2, pp. 38–
49, 2014.

[76] I. Schiller and J. S. Draper, “Mission adaptable autonomous vehicles,”
in Neural Networks for Ocean Engineering, 1991., IEEE Conference on.
IEEE, 1991, pp. 143–150.

[77] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and
B. Veeravalli, “Reinforcement learning-based inter-and intra-application
thermal optimization for lifetime improvement of multicore systems,” in
DAC. ACM, 2014, pp. 1–6.

[78] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,
and B. M. Al-Hashimi, “Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning,” in PATMOS.
IEEE, 2015, pp. 103–110.

[79] A. Das, A. Kumar, B. Veeravalli, R. Shafik, G. Merrett, and B. Al-
Hashimi, “Workload uncertainty characterization and adaptive frequency
scaling for energy minimization of embedded systems,” in DATE. IEEE,
2015, pp. 43–48.

[80] T. Toffoli, Action, or the fungibility of computation in Feynman and
Computation. Ed. Anthony Hey, Perseus Books, Cambridge, MA, 1999,
ch. 21, pp. 349–392.

Rishad Shafik (MIET, MIEEE) is a Lecturer in
Electronic Systems within the School of Engineer-
ing, Newcastle University, UK. Dr. Rishad received
his Ph.D., and M.Sc. (with distinction) degrees from
Southampton in 2010, and 2005; and B.Sc. (with
distinction) from the IUT, Bangladesh in 2001. He
is one of the editors of the book ”Energy-efficient
Fault-tolerant Systems,” published by Springer USA.
He is also author/co-author of 85+ IEEE/ACM jour-
nal and conference articles, with three best pa-
per nominations. He has recently co-chaired 30th

DFT2017 (www.dfts.org) at Cambridge, UK. His research interests include
energy-efficiency and adaptability aspects of embedded computing systems.

Alex Yakovlev (FIET, FIEEE) is a Professor
of Computer Engineering, who founded and leads
the MicroSystems Research Group, and co-founded
the Asynchronous Systems Laboratory at Newcas-
tle University. He was awarded an EPSRC Dream
Fellowship in 2011–13. He has published 8 edited
and co-authored monographs and more than 300
papers in IEEE/ACM journals and conferences, in
the area of concurrent and asynchronous systems,
with several best paper awards and nominations.
He has chaired organizational committees of major

international conferences. He has been principal investigator on more than 30
research grants and supervised 40 PhD students. Most recently, he has been
elected to the fellowship of Royal Academy of Engineering in the UK.

Shidhartha Das (MIET, MIEEE) is currently the
Principal R&D Engineer at ARM, and the recipient
of the ARM Inventor of the Year award in 2016. He
received the B.Tech degree from the IIT, Bombay
in 2002 and the M.S and Ph.D degrees from the
University of Michigan, Ann Arbor in 2005 and
2009. His research interests include emerging non-
volatile memory technologies, micro-architectural
circuit and systems design. He is the recipient of
multiple best paper awards; his research also fea-
tured in popular IEEE magazines. Dr. Das serves on

the technical program committee of several leading international conferences.

