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Abstract: For over 50 years, Amdahl’s Law has been the hallmark model for reasoning about performance bounds for
homogeneous parallel computing resources. As heterogeneous, many-core parallel resources continue to permeate into the
modern server and embedded domains, there has been growing interests in promulgating realistic extensions and assumptions
in keeping with newer use cases. This paper aims to provide a comprehensive review of the purviews and insights provided by
the extensive body of work related to Amdahl’s Law to date, focusing on computation speedup. We show that a significant portion
of these studies has looked into analyzing the scalability of the model considering both workload and system heterogeneity in
real-world applications. The focus has been to improve the definition and semantic power of the two key parameters in the
original model: the parallel fraction (f ) and the computation capability improvement index (n). More recently, researchers have
shown normal-form and multi-fraction extensions that can account for wider ranges of heterogeneity, validated on many-core
systems running realistic workloads. Speedup models from Amdahl’s Law onwards have seen a wide range of uses such as the
optimization of system execution, and these uses are even more important with the advent of the heterogeneous many-core era.

1 Introduction

Parallelization has been an essential method for improving the
performance and energy efficiency of computation. On
performance, it is well known that the parallelization of workloads
may bring speedup [1–5]. On energy efficiency, with the advent of
such hardware techniques as dynamic voltage and frequency
scaling (DVFS), it is possible to trade an increase of the number of
processing units for a reduction of energy consumption without
affecting performance [6–9].

The scaling of CMOS electronics has persisted for decades,
resulting in more and more hardware capabilities being integrated
onto single chips [10, 11]. For both performance and energy
efficiency reasons, systems of relatively small physical size, i.e.,
those integrated onto single chips, have in general moved towards
multi-/many-core processors (M/MCP) from single-core structures,
with the trend predicted to further develop [12]. In general,
M/MCP may be configured into homogeneous MCP (HoMCP),
where all of the cores are of the same type, as seen in Intel Core-i
and Xeon processors [13–16], or heterogeneous MCP (HeMCP),
where the cores are different, as seen in ARM
big.LITTLE [3–5, 17, 18]. HeMCP may incorporate diverse
architectures of processing units such as CPU, GPU, DSP and
embedded FPGA, as well as complex cache memory and
communication facilities [5, 19–21].

An extensive body of work has been concentrated on the
modelling and analysis of the effects of computational
parallelization. The property of speedup is a popular topic in these
studies [1–5, 13, 19, 22–24], whilst energy and power have not been
neglected [3, 5, 25–30]. Various problems related to mapping
parallelizable (mostly software) workloads onto M/MCP hardware
platforms have also been intensely scrutinized. The energy efficient
load balancing, task migration and scheduling have been the target
of substantial investigations [5, 31–34].

This paper reviews the literature on workload parallelization in
the context of M/MCP speedup, particularly those related to
Amdahl-type speedup models such as Amdahl [1], Gustafson [22]
and Sun-Ni [2]. Non-Amdahl style speedup models relating to the
concept of parallelism will also be comparatively studied
[2, 13, 35, 36] and new research on extending Amdahl’s Law to
cover non-zero and non-infinity parallelism will be
highlighted [19, 23, 24, 37, 38]. The review especially covers model
extensions dealing with HeMCP with different degrees of
heterogeneity [4, 5, 24, 38].

The main topic of this review is the property of speedup and its
relatiohship with system improvements/enhancements in the sense
of increasing the number of processing units (cores). Energy/power
models for these kinds of systems related to speedup models and
making use of speedup and energy/power models for system
optimization will only be touched upon [15, 27, 30, 36, 39] but not
treated as main topics of discussion. Other related topics such as the
roofline modelling method [40], modelling speedup caused by
improvement techniques not related to parallelization [30], and
using Amdahl’s Law to model the improvements of parameters
other than speedup [41] are likewise not discussed in detail. The
publications reviewed in this paper are classified in a table which
highlights the topics covered by each publication aiming to form a
taxonomic view of the literature (Table 1, Section 10).

A comprehensive survey of Amdahl’s Law and its extensions can
be found in [42]. The authors of [42] strive to cover as many
research titles as possible and discuss the contributions of each
work in as much detail as possible. As a result, it is a good resource
for finding related work in this area of research. However, as is the
case of many survey papers, [42] skips over technical details. A
reader may struggle to build a complete mathematical picture of
model evolution without reading the cited publications.
Developments since 2013 are also inevitably missing from that title.

Taking a different aim, in this work we focus on telling the
technical story logically, by including the fundamental mathematics
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and their relevant explanations and derivation processes. In doing so
this paper attempts to build a picture of how the models
mathematically evolve and how each stage of the development
relates to other stages. This should help a reader build a starting
knowledge of the theories and practices of the field without leaving
the paper too often. As a result, we do not have space to re-list the
contributions of each paper, which can usually be found in a paper’s
abstract and conclusion sections. On the other hand, at the end of
each section, the contributions of selected publications which are
on-topic for that section are highlighted. We believe that these
highlighted developments represent important points in the story of
model evolution in the Amdahl’s Law space.

The rest of the paper is organized as follows. Section 2 sets the
scene by describing Amdahl’s Law and Gustafson’s model of
speedup. Section 3 discusses model extensions which concentrate
on the effects of non-processing costs, focusing on Li-Malek’s and
Sun-Ni’s models. Section 4 focuses on the initial attempts at
extending Amdahl’s Law to cover system heterogeneity, with
Hill-Marty’s model in the highlight. Section 5 explores the reality
of heterogeneous multi-core systems and their differences from
Hill-Marty’s assumptions. Section 6 presents the normal-form
assumption of core heterogeneity and the resulting speedup models.
Section 7 explains the relationship and differences between
parallelism and parallel fraction, and the limitations of Amdahl’s
Law in studying workloads with non-infinity parallelism. Section 8
describes efforts on and results from extending Amdahl’s Law so
that heterogeneity in both workload parallelism and system core
arrangements are covered, culminating in the normal-form
multi-fraction speedup model. Section 9 discusses the progression
of speedup model development and highlights the salient points in
both the modelling and model usage. Section 10 concludes the
paper and presents a classification table which taxonomizes the
reviewed research.

In this paper, the mathematical forms including variable names
and formulas follow a consistent presentation standard. Formulas
that are derived, adopted, or adapted from literature may have been
transformed to conform with this standard presentation.

2 Amdahl’s Law and Gustafson’s model

The classical method for modelling the speedup of workload
processing caused by some measure of improving the computation
capabilities is known as Amdahl’s Law, which developed from
observations presented by G. Amdahl in 1967 [1]. Amdahl did not
provide a mathematical formula for this law, which was later
formulated based on his verbal arguments. Given the context of this
paper, which is about the parallelization of workloads on M/MCP
systems, "improvement of computation capabilities" generally
means the incorporation of multiple processing units (to be called
"cores" in this paper) to improve the speed of workload execution,
unless otherwise noted. The fundamental assumption of an
Amdahl-type workload (also known as "program" or "job" [4, 35] –
we use "workload" in this paper) is that it can be divided into a fully
sequential (non-parallelizable, i.e., not affected by the
improvement) part and a fully parallel (infinitely parallelizable, i.e.,
fully affected by the improvement) part, in the following way:

Tw = Ts + Tp, (1)

where Tw is the time consumed to execute the entire workload, Ts
is the time taken to execute the sequential part and Tp is the time
taken to execute the parallel part, in all three cases on a single core
(before improvement). Amdahl’s Law proceeds to analyze the
maximum speedup that can be achieved by running such a workload
on n cores (after improvement), with n > 1 being an integer. The
most commonly seen form of Amdahl’s Law focuses on the fraction
of the workload execution time that is taken by the parallel part:

f =
Tp
Tw

=
Tp

Ts + Tp
, (2)

where f (0 ≤ f ≤ 1) is variously known as "parallel fraction",
"parallelization factor", etc. In this paper we call it the "p-fraction"
and use the variable name f exclusively for it. The p-fraction
pertains to execution time and not numbers of instructions.

Speedup is defined as the ratio between the execution speed after
improvement (expanding to n cores) and the original execution
speed before improvement (running on a single core). In other
words, speedup as a result of expanding to n cores is

S(n) =
T1
Tn

=
Ts + Tp

Ts +
Tp

n

, (3)

where T1 = Tw is the time taken to execute the entire workload on
one core, and Tn is the time taken to execute the same workload on n
cores. Speedup caused by an improvement is therefore the time taken
by the unimproved system divided by the time taken by the improved
system. Improving by expanding to n cores causes the time taken by
the parallel part to shrink by n times, without affecting the time taken
by the sequential part. By combining (2) and (3), Amdahl’s Law in
terms of the p-fraction is obtained as

S(n) =
1

(1− f) + f
n

. (4)

An alternative form of Amdahl’s Law (e.g. as found in [13]) is
related to the ratio between the parallel and sequential parts of the
workload:

β =
Tp
Ts

=
f

1− f , (5)

where β (0 ≤ β ≤ ∞) is a real number describing how large the
parallel part is relative to the sequential part. Amdahl’s Law, in terms
of β, is then

S(n) =
(1 + β) · n
n+ β

. (6)

There are also other forms of Amdahl’s Law in the literature, but
they are all mathematically equivalent. This paper uses the p-fraction
form of Amdahl’s Law (4), which is the most commonly seen form
in the literature.

A more general understanding of Amdahl’s Law decouples it
from parallelization and the use of multiple cores [4]. It can
describe speedup from any improvement on computational
capabilities, e.g. the use of an accelerator of some kind, or
increasing the operating frequency of the hardware [41, 43]. A
workload is divided into an infinitely improvable part and an
non-improvable part, in response to the particular improvement.
The variable n may be a real number [44], or even a function,
describing the degree of improvement to the computation
capabilities. In this context, it is best known as the "computation
capability improvement index". The relevant equations remain
unchanged and the meanings of f and β remain the same.

J. Gustafson presented a substantial modification to Amdahl’s
Law in 1988 [22]. It is argued that a fundamental assumption of
Amdahl’s Law, that a workload is a job or program of fixed size, no
matter whether the computation facilities are improved or not, may
be overly restrictive. Gustafson’s model deals with the case where
the unimproved part of the workload stays the same, whilst the
improved part of the workload scales linearly with the
improvement. An example of such a case can be found in modern
data centres where the synchronized booting up of computers takes
roughly the same amount of time regardless of the number of
computers involved, but the more computers there are, the more
processing jobs will be mapped onto them once they are up and
running. Basically, systems with more cores tend to be used to solve
larger problems.

Maximum speedup is then the ratio between the amount of
workload that can be executed on an improved (n-core) system and
the amount of workload that can be executed on an unimproved
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(single core) system, if both are given the same amount of execution
time. In terms of the p-fraction, Gustafson’s model is therefore

S(n) = (1− f) + n · f, (7)

which says that the unimproved (non-parallelizable) part is
unchanged whilst the improved (fully parallelizable) part scales
linearly with the rate of improvement n.

At a philosophical level, Amdahl’s Law, because of its saturation
of speedup if f 6= 1 even when n =∞, was used by some,
including Amdahl himself, to argue in favour of single
processors [1]. In that context, Gustafson’s model was intended as a
counter-argument to show that parallel processing was indeed
highly relevant [22]. Viewed from a more contemporary
perspective, when there is no longer any question on the relevance
of parallelization, both models are relevant according to the
workload realities of any particular scenario [4].

Summary: Amdahl’s intuitive reasoning [1] about the speedup of
computation because of hardware improvements is formulated into
Amdahl’s Law. Gustafson [22] shows that speedup does not have to
saturate if the workload consists of a serial part of constant size and
a parallel part whose size scales with the hardware improvement.

3 Non-processing elements and overheads

Both Amdahl’s Law and Gustafson’s model consider processing
only. And they are understood to estimate the maximum speedup as
ideal-case models, with any effects from non-processing elements,
especially overheads of all kinds, not taken into consideration.
However, for real-world application, there has always been a need
for representing such issues as non-zero overheads, architectural
and workload diversity, and non-processing element influences.
Although it may be argued that the p-fraction may be viewed as
capable of including the effects of non-processing activities such as
communication and memory access to some extent, the quantitative
relationship is far from straightforward. A single number parameter
such as f may become semantically too weak to properly represent
the complex effects of communications between different parts of a
workload and accessing memory which may require
synchronization and waiting in shared memory architectures such
as most modern off-the-shelf processors.

For instance, the "memory wall" characterizes the effects of the
memory-processor performance gap on the entire system. The less
than ideal situation in memory latency and bandwidth, among other
factors, limits the processor’s capability of accessing instructions
and data. In this case, the processor will stall waiting on memory in
order to continue computation. This issue becomes more
complicated with M/MCP and shared memory, but networks are not
immune either [45–48].

Communication overheads are the effects of communication on
the total performance of M/MCP [49–51]. Synchronization
overheads are the effects on performance of the joining and
handshaking of multiple processes and data in M/MCP [49, 51, 52].

In general, many of these effects can be called overheads as they
impede the system’s capability of realizing the maximum speedup
predicted by Amdahl’s Law and Gustafson’s model. Various
attempts have been made to extend these models to cover
overheads.

In 1988, the same year in which Gustafson proposed his speedup
model in [22], X. Li and M. Malek specifically incorporated
communication time in their extension of Amdahl’s Law [53]. The
parallel part of the workload is regarded as having distinct
computation and communication times. The communication time is
the time required for the inter-core communication necessitated by
mapping a workload onto multiple cores. This is described as

Tn = Ts +
Tp
n

+ Tc, (8)

where Tc is the additional communication time which does not scale

with parallelization, which is considered an additional overhead on
the parallel part. Speedup is then described by

S(n) =
Ts + Tp

Ts +
Tp

n + Tc
=

1

(1− f) + f
n + Tc

Tw

, (9)

where Tc/Tw is known as the communication/computation ratio
(CC-ratio) of a particular workload in [53]. The CC-ratio is zero
when n = 1, as Tc = 0 on a single core. This gives S(1) = 1 as all
other speedup models. The paper continues to expand into the realm
of statistical models. Eventually the relationship between the upper
and lower bounds of speedup and the statistical distributions of all
elements of inter-core communications was established analytically.

This technique, using what may be regarded as a penalty term in
the denominator of Amdahl’s Law (the CC-ratio in case of the
Li-Malek model), has been used on multiple occasions by different
researchers, to cover additive overheads of all types [54,
(p.167)][23, (p.42)][48, 55, 56]. However, overheads may be caused
by very complicated effects of multiple factors, which leads this
line of modelling to become more and more sophisticated,
expanding the penalty term from a constant to various different
functions.

From 1990 [2] onwards, Y. Sun, L. Ni and colleagues produced a
body of research leading to speedup models that extend those of
Amdahl and Gustafson by incorporating the requirements for
memory, communications and other services [2, 57–59] by
introducing an additional function of n as well as other coefficients.

The fundamental assumption leading to Sun-Ni’s model is that
the speedup is memory-bounded, unlike for Gustafson’s model
where speedup is bounded by the number of cores. Basically, with
Gustafson’s model, a system with more cores is used to solve larger
problems and the increase of problem size corresponds to the
number of cores n. However with Sun-Ni’s model, the size of these
larger problems would be limited by memory and not the number of
cores. In other words, as computing power increases, the
corresponding increase of problem size is constrained by memory.
This reasoning leads to the following speedup model:

S(n) =
(1− f) + f · g(n)
(1− f) + f ·g(n)

n

, (10)

where g(n) is a function representing the memory bound of
problem size increase. This function also takes into account the
relationship between total required memory and the number of
cores n, as the amount of required memory is assumed to depend on
the number of cores n. A typical example problem found in the
literature in the context of the memory bound function is matrix
multiplication. The memory requirement of multiplying two
N ×N matrices is proportional to N2, and the amount of
computation is proportional to N3, which gives g(n) = n3/2, and
following (10) the memory-bounded speedup is

S(n) =
(1− f) + f · n3/2

(1− f) + f · n1/2
. (11)

The function g is more semantically powerful than a number, and
can incorporate the effects of both memory and communications as
well as such issues as the parallelism of the workload itself [2, 35].
This last point will be discussed further in a later section.

Adding a similar sort of penalty coefficient function to the
parallel part in the denominator of Amdahl’s Law was also
proposed for representing the effects of synchronization [60].

With g(n) = 1, Sun-Ni’s model reduces to Amdahl’s Law. In
other words, g(n) = 1 indicates that workload does not increase
with n. With g(n) = n, Sun-Ni’s model reduces to Gustafson’s
model. In other words, with g(n) = n, the required memory size is
the same as the number of cores and the workload can also be said
to be core-bounded. Both earlier models are therefore special cases
of Sun-Ni’s model [3].

Fig. 1 compares Amdahl’s Law and Gustafson’s and Sun-Ni’s
models. It can be observed that Amdahl’s Law saturates as the
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Fig. 1: Speedup vs the number of cores for (a) Amdahl’s Law,
(b) Gustafson’s model and (c) Sun-Ni’s model with g(n) = n3/2.
Figure adapted from [7].

number of cores n increases, Gustafson’s model scales linearly with
n and Sun-Ni’s model has super-linear scaling, with n and
0 < f < 1, for g(n) = n3/2. Further development of Sun-Ni’s
model led to the incorporation of more parameters to better
represent different scenarios [58, 59]. With certain forms of g,
Sun-Ni type models may show a reduction of speedup after n goes
beyond some optimal value. This represents the superlinear scaling
of overheads [60].

Summary: Overheads such as communication and memory
access costs are recognized as factors affecting the speedup of the
parallel part of the workload. Modelling methods to represent such
costs include adding a penalty term to the denominator, as
exemplified by the Li-Malek model [53], and adding coefficient
functions to the parallel execution time in the Sun-Ni
models [57, 59].

4 Core heterogeneity, first attempts

Amdahl’s Law has a very simple mathematical form, which brings
with limited representation power, because it has only two

parameters f and n with which differences in system characteristics
may be expressed. On the side of workload characteristics, the
limited semantic power of the p-fraction in the form of a single
number f makes it difficult to represent the effects of
non-processing factors such as memory and communication
requirements in speedup models. Li-Malek [53] and Sun-Ni [2] deal
with this problem by using the CC-ratio and memory bound
function g(n) to modify Amdahl’s and Gustafson’s models. On the
side of system improvement, the simple integer n also suffers a
similar lack of semantic power when a system may consist of cores
of different types, which has become increasingly common. Early
attempts were made to address this issue by extending Amdahl’s
Law to cover simple cases of system heterogeneity in the
1990s [61].

In 2008, M. Hill and M. Marty presented a method of deriving
speedup models for systems with certain types of core
heterogeneity [4]. They complement Amdahl’s Law, which
originally can be said to be focused on software, with a corollary of
a simple model of multi-core hardware chip. The hardware
assumption is centred around the concept of a "base core
equivalent" (BCE), which may be understood as a basic core
capable of performing the workload in question with a performance
of 1 (unit performance). A chip of given size and technology
generation is assumed to be able to contain at most n BCEs.
Multiple BCEs may also be organized together into a larger core,
with a higher sequential processing performance than a single BCE.
In other words, it is assumed to be possible to re-organize r
(1 ≤ r ≤ n) BCEs into one more powerful core, with a
performance of perf(r). The case of perf(r) ≥ r is uninteresting
because if that is the case, there is no point organizing the chip into
BCEs smaller than that large core. However, for perf(r) < r, the
Hill-Marty heterogeneous multi-core models describe the trade-offs
in core organization with regard to workloads.

For instance, it was argued that doubling sequential performance
requires a quadrupling of silicon [12]. In this case, perf(r) =

√
x,

or needing to organize a large core out of four BCEs for a doubling
of performance. Cases like this are covered by Hill-Marty’s models.

Hill and Marty stipulate that clustering multiple BCEs into larger
cores may result in two types of static organizations, called
symmetric and asymmetric. Symmetric is defined as all cores on the
chip being the same, i.e. of the same size r (1 ≤ r ≤ n). For full
chip area utilization, n must be divisible by r. The asymmetric case
has a single big core of size r with the rest of the chip organized
into n− r single-BCE cores. This is shown in Fig. 2.

 

 

 

 

 

 

 

 

 

 

(a) (c) (b) 

Fig. 2: Hill-Marty M/MCP diversity. (a) Symmetric Multi-Core
Processor (SMCP) with 16 single-BCE cores, (b) SMCP with 4 four-
BCE cores, and (c) Asymmetric Multi-Core Processor (AMCP) with
one six-BCE core and 10 single-BCE cores. Figure adapted from [4].

In the context of Hill-Marty HeMCP, speedup is relative to the
performance of a single BCE, which is 1. The speedup achievable
by executing a workload on a symmetric chip with a core size of r
follows Amdahl’s Law and is

Ss(n, r) =
1

1−f
perf(r)

+ f ·r
perf(r)·n

. (12)

The workload is assumed to be Amdahl’s type, of fixed size, with
a sequential part and a fully parallelizable part. The sequential part
is executed on a single r-sized core whose performance is perf(r)
times that of a single BCE. The parallel part is executed on all n/r
cores with a total performance of perf(r) · n/r.
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For the asymmetric case, it is natural to expect that the sequential
part should be executed on the single larger core of size r, and the
parallel part will be executed on all cores. This strategy is a form
of "favouring faster cores" scheduling, and it assumes that the large
core is faster than a BCE. Otherwise there is no point in assembling
a large core out of multiple BCEs. The speedup is therefore

Sa(n, r) =
1

1−f
perf(r)

+ f
perf(r)+n−r

. (13)

This is similar to (12) except that the parallel part is executed at a
performance of perf(r) on the single larger core and a performance
of 1 on the n− r BCEs. If r = 1, perf(r) = 1, these equations
reduce to Amdahl’s Law (4).

Hill and Marty also propose that the HeMCP may have a dynamic
organization, with BCEs being combined into larger r-sized cores
which can also be disbanded back to BCEs, both during run-time.
This dynamic HeMCP regime, when faced with an Amdahl’s type
workload, works best if the entire chip is combined into a single large
core, with r = n, to execute the sequential part, and disbanded into
n single-BCE cores to execute the parallel part, given perf(r) < r
for all r > 1. This scheme is shown in Fig. 3.

 

Sequential  

mode 

Parallel 

mode 

Fig. 3: Dynamic Multi-core chip with 16 one-BCE cores. Figure
adapted from [4].

The speedup achievable from such a dynamic HeMCP is

Sd =
1

1
perf(r)

+ f
n

, (14)

with best speedup at r = n.
Hill-Marty’s model extends Amdahl’s Law, and by inference

potentially Gustafson’s and Sun-Ni’s models, into system core
heterogeneity and, similar to Sun-Ni’s and Li-Malek’s efforts,
improves the power of direct representation of the speedup formulas
by incorporating additional terms and/or functions. The difference
is that whilst Li, Malek, Sun and Ni seek to improve the semantical
power of the p-fraction f to include non-core factors, Hill and
Marty try to enhance the semantical power of the computation
capability improvement index n to include core heterogeneity.

Further research has sought to strengthen the theoretical
understanding of the Hill-Marty model [42, 62, 63], and to extend it
to cover Gustafson’s [64] and Sun-Ni’s type of workloads [60, 65].
Blem et al. conducted more sophisticated research, based on the
Hill-Marty symmetric, asymmetric and dynamic taxonomy, to
develop multi-core speedup models as functions of first-order
single-core characteristics [66]. Overheads from such actions as
memory access, on-chip communications and synchronization
among cores have been a powerful motivation for extending
Hill-Marty’s model [55, 56, 67, 68], with such novel architectures
as networks on chip being included in the consideration [69, 70].
The Hill-Marty model has also been extended to cover other
properties than speedup, for example power dissipation [25].

Summary: Hill and Marty recognize the limitations posed by
one of the fundamental assumptions of Amdahl’s Law, as used in
the context of scaling with multiple cores, that the hardware
consists of multiples of processing units of the same type. The
Hill-Marty models [4], developed to extend Amdahl’s Law to cover
a few types of core heterogeneity, inspire a large body of research in
the modelling of speedup, power, energy and other non-functional
properties of such heterogeneous systems.

5 Heterogeneous multi-core reality

Hill and Marty’s speculation on HeMCP architecture has not been
borne out by commercial reality, and, a decade later today, most
current off-the-shelf HeMCP systems have little in common with
the Hill-Marty asymmetric and dynamic structures [4]. FPGA [71]
may be the best current technology for implementing the closest
approximations to these architectures. However, setting up a BCE,
distributing the right number of copies of this BCE across a chip,
and organizing exact integer multiples of a BCE’s area into a larger
core are non-trivial even for FPGA. It puts unnecessary restrictions
on chip configuration with possible wasting of interconnect,
memory and other microarchitecture elements. Run-time,
large-scale reconfiguration needed for making Hill-Marty dynamic
HeMCP useful is far from realistic even after decades of focused
academic research and industrial development on FPGA
reconfiguration [71].

As continued technology scaling [10, 11] causes ever increasing
M/MCP complexity, two types of M/MCPs have emerged:
homogeneous (HoMCP) and heterogeneous (HeMCP) [4, 18, 62].

HoMCP systems incorporate multiple cores that are essentially
the same as one another, organized in the symmetrical way in Hill-
Marty’s models [4, 17, 18]. In this type all the cores have identical
performance and instruction set architecture (ISA) [72, 73].

One example HoMCP architecture is found in GPUs which are
designed as special purpose processors for visual processing [74].
Modern GPUs may incorporate hundreds of cores, which are
carbon copies of one another, in order to achieve parallel processing
by handling thousands of threads simultaneously [75]. Classical
Amdahl’s Law and related models based on a simple core number n
are sufficient for HoMCP systems in general, as existing HoMCP
systems all have r = 1, i.e. their cores may be viewed as BCEs.

In contrast, an HeMCP system incorporates a number of different
cores that may have different architectures. These include full-blown
latency oriented cores for sequential processing, reduced-complexity
cores for low-power modes, massively parallel accelerators such as
VPUs or GPUs, DSPs, embedded FPGAs, media accelerators, and
ASICs [19, 20].

The simplest style of HeMCP is an extension of Hill-Marty’s
asymmetric structure where the system includes two types of
different cores, but both types may have multiple units beyond the
relatively narrow scope of Hill-Marty [4, 17, 18, 76]. In this case,
not all the cores have the same performance and may have a single
ISA or more than one ISA [72, 77–79]. This type of core
heterogeneity may provide an ability to manage the
performance/power trade-off or some other similar trade-off. For
instance, the big.LITTLE technology from ARM is HeMCP
incorporating a cluster of "big" cores for high performance and a
cluster of "LITTLE" cores for low power consumption, likely with
the same ISA [76, 78].

M/MCP architectures may be implemented on single chips (the
Hill-Marty assumption) or form distributed structures with multiple
cores connected through communications facilities such as
networks [68]. In both cases, HeMCP could include different types
of CPUs or CPU-GPU as shown in Fig. 4. The single-chip
CPU-GPU integration offers performance improvements [28, 80].
Further advantages include reduced communication overheads and
costs, and specially designed shared memory for avoiding explicit
data copying [81]. They may also deliver more power and energy
efficient computing [28, 80, 82].

Recently, it has been claimed in the literature that optimization
targeting certain applications have resulted in performance speedup
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Fig. 4: Architecture of a Central Processing Unit-Graphics
Processing Unit (CPU-GPU) chip. Figure from [83].

from 25x to 100x or more utilizing GPUs instead of CPUs [84]. The
main reason of this comes from the differences of the architecture
of each. CPUs and GPUs are designed in order to execute different
types of applications [85, 86]. These differences allows CPUs to
achieve better performance on latency-sensitive applications which
need to respond rapidly to specific events and partially parallel
applications [85–87]. On the other hand, GPUs achieve better
performance with latency-tolerant but throughput-critical
applications, and the processor utilization may be high due to
multi-threading [88, 89], highly parallel applications and
independent applications [84]. There has been a rapid increase of
using GPUs for general-purpose processing unrelated to graphics or
video applications, in collaboration with the CPUs with which they
are either integrated on the same chips or connected through close
off-chip links [90].

In addition, other heterogeneous architectures combine
unconventional "cores" such as custom logic, FPGA, and/or
pipelining (including hyperthreading) in the traditional M/MCP in
order to achieve superior energy efficiency and performance
improvements [44, 80, 86]. This new paradigm considers the
relationships between a conventional processor and a varied set of
unconventional cores. It forecasts future architectures from scaling
developments predicted by the International Technology Roadmap
for Semiconductors (ITRS) [91]. All of this argues for speedup and
other models studying the execution of the same workloads on an
HeMCP with cores that differ from one another not only
performance-wise, but also ISA-wise.

None of these types of architectures are directly covered by Hill-
Marty’s models.

Summary: The Hill-Marty core heterogeneity assumptions are
inappropriate for most modern heterogeneous multi-core
architectures.

6 Normal form of core heterogeneity

Since 2016 [3], M. Al-hayanni et al. have engaged in extending
Amdahl’s Law and Gustafson’s and Sun-Ni’s models into HeMCPs
with more general assumptions of HeMCP architectures. The aim is
to cover as many current HeMCP architectures as possible directly.
To that end, a "normal form" of HeMCP has emerged [5].

By further expanding the computation capability improvement
index n by characterizing cores with a vector, the normal form
extends the direct representation of M/MCP heterogeneity to
include a number of different types of cores, each having a number
of members. The fundamental assumption is that an HeMCP
consists of x clusters (types) of cores – within each type the cores
are identical (See Fig. 5(c)). The numbers of cores of the different
types are then defined as a vector n = (n1, n2, ..., nx), and the
total number of cores is denoted as n =

∑x
i=1 ni.

The performance of each core of type i is defined as αi, relative
to some BCE whose performance is regarded as 1, similar to
Hill-Marty [4], and the vector α = (α1, α2, ..., αx) describes the
performance of individual cores of all x types. In other words, for
all 1 < i < x, perf(i) = αi. The α vector is therefore an
extension of the perf(r) method in Hill-Marty’s models. This is
preferable to directly making the improvement index n itself a real
number, the technique used to model hyperthreading speedup
in [44]. Leaving n as integers the cores remain countable.

(a)
1 1 1 1 1 1 1 1

n cores

(b)
1 1 1 1 1 �(r)

(n – r) small cores 1 large core

n1 type 1 cores

�1�1 �1�1 �1�1 �1�1 �1�1 �1�1

(c)

n2 type 2 cores

�1�2 �1�2 �1�2 �1�2 �1�2

..
.

nX type x cores

�x

1

virtual
BCE

�x �x

Fig. 5: Normal form of HeMCP (c) compared to HoMCP (a) and
Hill-Marty’s assumption [4] on heterogeneity (b). The numbers
in the core boxes denote the equivalent number of BCEs. Figure
adapted from [5].

The issue of workload distribution was not investigated in earlier
models. This is partly because for HoMCP the parallel part of the
workload is evenly distributed to all cores by default. Hill and Marty,
however, did not explore this issue for even the asymmetric HeMCP,
but effectively assumed that the workload is distributed to all cores,
large and small, in such a way that they all complete their execution
at the same time [4]. This convention has been maintained without
discussion by most other research following Hill and Marty.

For the normal-form model, the authors of [5] made no such
assumption but investigated the quality and impact of workload
distribution. It is assumed, as usual, that one of the cores is
responsible for executing the sequential part of the workload, and
the parallel part of the workload is distributed to all cores. The
execution time for the parallel part, and therefore the speedup,
depend on the distribution policy for the parallel workload. In the
normal-form model, the variable Nα denotes the overall equivalent
computation capability improvement index, serving the purpose of
n in the HoMCP models. Nα describes the performance
improvement of the parallel part of the workload, given a particular
normal-form HeMCP architecture and a particular parallel
workload distribution.

It is expected that legacy software (including system software),
made with HoMCP in mind, by default would attempt to distribute
any parallel workload equally among available cores. This causes
faster cores to wait for the slowest core, as illustrated in Fig. 6(a) –
a very inefficient workload distribution [5, 60]. In this case, Nα is
calculated from the minimum of α:

Nα = N ·
x

min
i=1

αi, (15)

where N = n1 + n2 + ...+ nx is the total number of cores of all
types. Equation (15) corresponds to the naïve equal-share
distribution policy with no balancing. It says that with an
equal-sharing of the workload across all cores, the system behaves
as if it had n cores of the slowest type, in terms of speedup. In the
case of Fig. 6(a), by giving all three cores an equal workload of 13,
the system behaves in the same way as one with three cores, each of
which having α = α2 = 3. The faster cores 1 and 3 have to wait
after they’ve completed their shares of workload.

Fig. 6(b) shows the ideal case of parallel workload distribution,
with workloads assigned to cores in inverse proportion to their α
values [5, 60]. This method theoretically may achieve zero waiting
time, with all cores finishing at the same time. Nα for this fully
balanced workload distribution is
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Fig. 6: Workload distribution examples following (a) equal-share
model and (b) balanced model. Figure adopted from [5].

Nα =
x∑
i=1

αini. (16)

This is what Hill-Marty’s asymmetric model assumes. This ideal
case almost never happens, as the α values are real numbers and
workloads generally cannot be divided into infinitesimally small
parts, and any dependency across threads would cause the critical
path to be irreducible after some point [23, p. 42]. Some amount of
waiting is therefore almost inevitable, even if such system software
as load balancers may support the run-time redistribution of
partially executed threads across cores, through such techniques as
task (thread) migration.

Task migration is the transfer of partially executed tasks from a
core or cluster of cores to another core or cluster of cores in
M/MCP [31–34]. Task migration may be used to migrate a task
from heavily loaded cores to lightly loaded or idle cores in M/MCP,
in particular for HeMCP, in order to balance the load across all
cores. Thus, the utilization of the cores are improved and core
waiting minimized [31, 34]. On the other hand, in spite of extensive
research in this area, experiments have shown that the load
balancers found in off-the-shelf commercial HeMCP systems,
which are designed to target the characteristics of their specific
HeMCPs, never achieve ideal workload distribution in the sense of
(16) and sometimes return even worse results than equal-share
distribution [5].

The normal-form model does not require one of the existing core
types in the system to be equal to one BCE, but speedup is still
relative to one BCE which is defined as having a performance of 1,
following the convention of Hill-Marty. In other words, for an
Amdahl’s type workload, Tw = T1 = 1. Assuming one core of
type s, 1 ≤ s ≤ x, is used to run the sequential part, the execution
time on all n cores is

Tn =
1− f
αs

+
f

Nα
, (17)

where αs is the performance of one core of type s. The speedup can
then be calculated as

S(n) =
1

Tn
=

1
1−f
αs

+ f
Nα

. (18)

It can be seen that to maximize speedup, the sequential part of
the workload should be run on a core of the fastest type, which has
αfastest = maxxi=1 αi.

To derive the speedup for Gustafson and Sun-Ni types of
workloads, workload scaling according to the number of cores,
memory and/or communications capabilities needs to be
investigated. The normal-form modelling method assumes a general
form of workload scaling. Specifically, the parallel part of the
workload is assumed to be scaled according to a function g(n),
which has the same representation power for any effects of cores,
memory and/or communications as the scaling function g(n) in
Sun-Ni’s model (10).

The general equation of normal-form HeMCP speedup models
including for Amdahl, Gustafson and Sun-Ni types of workloads is

S (n) =
(1− f) + f · g (n)
(1−f)
αs

+
f ·g(n)
Nα

. (19)

It can be seen that the homogeneous Amdah’s Law and
Gustafson’s and Sun-Ni’s models are special cases of the
normal-form model. They apply when only one core type (one-BCE
cores) exists, causing αs = 1 and Nα = n. The role of Nα as the
parallel workload computation capability improvement index is
now clear, as it may be regarded as the equivalent number of
one-BCE cores in an HeMCP.

Similar to Hill-Marty’s model, the normal-form model has also
been extended to cover more than speedup. Power models
especially have been developed for normal-form core heterogeneity.
Extensive experimentation on off-the-shelf CPU-only and
CPU-GPU-GPU systems covering single-ISA and multi-ISA cases
validate the normal-form model’s real-world applicability [3, 5, 15].

Summary: The normal-form model [3] extends Amdahl’s Law
and related models to cover more general types of hardware
heterogeneity applicable to current platform technologies.

7 Parallelism or p-fraction?

In this section we deal with HoMCP, unless otherwise noted.
In parallel to researchers challenging Amdahl’s Law about its

assumption on hardware cores being all of the same type (parameter
n), others have also questioned its assumption about the workload
(parameter f ). Especially, the assumed binary composition of
sequential and parallel parts has also been regarded as inadequate.

In 1997, A. Downey commented that the parameter β in
Equations (5) and (6) "has little semantic content" [13]. This can be
understood to also apply to the p-fraction f . He proceeds to
concentrate on the quantity known as parallelism, and derive
speedup models based on that parameter, instead of the p-fraction.

Downey is far from the only researcher with this view, as Sun and
Ni also analyzed the importance of parallelism [2], and Cassidy and
Andreou commented that this binary assumption of the workload is
"somewhat arbitrary" [37]. Others have been more adamant about
the inadequacy of Amdahl’s Law [92].

The focus of this dispute is the fundamental assumption of
Amdahl’s Law as described by Equation (1), which says that a
workload is assumed to consist of two distinct parts, one of which
absolutely cannot be parallelized and the other has full (infinite)
parallelizability.

First of all, infinite parallelizability is difficult to envisage (hence
semantically weak) for a workload of fixed size, which Amdahl’s
Law targets. The fundamental atomic element of workloads is
usually agreed to be the single instruction. As a workload of fixed
size does not expand into an infinite number of instructions,
because of the fixed size assumption, it or any part of it should
always have non-infinite parallelizability. Secondly, the idea of
trying to approximate different degrees of parallelizability with a
weighted sum of non- and full-parallelizability may not be regarded
as attractive, and has practical limitations, as will be explained later
in this section.

Even if the fundamental "a none-part plus an infinity-part"
assumption is accepted, we run into the problem that the p-fraction
f is regarded as difficult to determine for workloads not designed
on-purpose to fit specific f values, such as synthetic benchmarks
that allow the intentional tuning of f [5, 15]. Even programmers
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would have difficulty determining the f value of any code that they
themselves have generated. As a result the practical usability of
Amdahl’s Law and any other models that derive from it may be
negatively affected, even though beautiful mathematical forms can
be readily derived.

Parallelism, on the other hand, suffers from none of these issues.
The parallelism of a workload, denoted by the variable name p in
this paper, is defined as follows [35, p. 780] [2, 36]:

p =
T1
T∞

, (20)

where T1 is the time taken to execute the workload on one core, and
T∞ is the time taken to execute the workload on an infinite number
of cores. In other words, parallelism is the maximum possible
speedup of a workload through increasing the number of cores
available for its execution.

A narrower, more intuitive understanding is that p is the number
of concurrent threads a parallel workload has [2, 35, 93]. This
works with the assumption that each core can execute one and only
one thread exclusively at any time, and parallelization means
mapping individual concurrent threads onto available cores, one
thread per core. In this context, the maximum speedup of a parallel
workload is indeed its number of concurrent threads. You can
increase n and the speedup would increase, until you hit n = p,
after which further increases of n would not improve speedup
because the workload simply runs out of threads to parallelize and
some cores may be starved of tasks. With this intuition, the
parallelism p of a workload acquires a clear meaning as the
workload’s inherent parallelizability.

In this view, an Amdahl’s type workload can be divided into two
parts: a sequential part, whose parallelism is ps = 1, and a parallel
part, whose parallelism is pp =∞.

With Amdahl’s Law, a workload can be said to have a static
p-fraction, i.e. the entire workload as a whole has a constant f
which describes the workload’s overall parallelizability, leading to a
speedup estimation based on the improvement index n. For
parallelism, because the number of concurrent threads is rarely a
constant throughout the entire workload, it is possible to consider a
workload’s average p and its variance as the static parameters.
Detailed speedup models may then become more complex ending
up with a family of speedup curves for different cases [13].

Another way of studying speedup with regard to parallelism is
through two formulas known as the Work Law and Span Law [35,
92], which deal with bounds. In this context, work is defined as the
sum of the time taken by every one of a workload’s instructions,
which is the same as the total time taken by executing a workload
fully sequentially on a single core. In other words, work is none other
than Tw (T1).

Let Tn be the shortest possible execution time for running the
workload on n cores. The Work Law is then

Tn ≥
T1
n
. (21)

For this simple version of the Work Law to hold, a set of
assumptions must be true. The workload is assumed to contain an
integer number of instructions, which are its atomic elements. Each
core executes one instruction in one unit of time. As a result, n
cores at most executes n instructions per unit time. Therefore, to
complete the entire workload on n cores must take at least T1/n
units of time. It has been shown that it is possible to extend the
model to handle non-unit instruction times and other more complex
behaviours [35].

A workload of this type may be described by a directed acyclic
graph (dag) [35], sometimes known as the workload’s task
graph [24, 94]. An example dag can be seen in Fig. 7. Following
the assumptions for the simple Work Law in (21), the dag in Fig. 7
describes a workload consisting of 20 instructions, with the vertices
representing the instructions and the directed arcs defining the
sequential order between pairs of instructions. For instance,
instructions 7© and 8© start after the completion of instruction 3©,
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Fig. 7: Dag describing a workload consisting of 20 atomic elements.

and in turn complete before instruction 12© starts. The work T1 of
this dag is 20.

Speedup from the Work Law is

S(n) =
T1
Tn
≤ n. (22)

This simple version of the Work Law covers both Amdahl’s and
Gustafson’s models, but does not cover the superlinearity observed
in Sun-Ni’s model. This is because the assumptions leading to the
Work Law deals with core-bounded speedup. It may be extended to
deal with complex issues, including memory and communications,
that may lead to superlinear speedup [92].

"Span" is another word for critical path length. A critical path is
the, or one of the, longest sequence(s) of consecutive vertices in a
task graph. Given the set of simple assumptions mentioned in the
preceding paragraphs, the span, in units of time, is the greatest
number of instructions that must be executed sequentially in a
workload. In other words, span is none other than T∞, as the time
taken to complete a workload on an infinite number of cores is
indeed the workload’s longest sequence of consecutive instructions.
For the workload described by the task graph in Fig. 7, one of the
critical paths is 1©, 3©, 8©, 12©, 16©, 18©, and 20©, with seven
instructions. Thus this workload has a span of 7.

The Span Law says that a parallel processing machine with n
cores cannot run faster than one that has an infinite number of
cores, for any value of n. Hence

Tn ≥ T∞. (23)

Taking work T1 to span T∞ results in a workload’s parallelism
p = T1/T∞. For the example in Fig. 7 this is 20/7 ≈ 2.86. Apart
from being the maximum speedup for a workload obtainable from
adding cores, parallelism can also be understood as the average
amount of work along each step of the critical path. For instance,
the steps in the example described by Fig. 7 have parallelisms of 1,
3, 5, 5, 3, 2 and 1, which average out to about 2.86. It is also
possible to use a task dag to describe a workload at the granularity
of threads rather than instructions, by extending the notion of task
from individual instructions to cover multi-instruction threads. The
overall assumption that a task does not include any internal
parallelism (i.e. ptask = 1) must always be true for this extension
to be valid. In this extended case, vertices represent threads, and the
parallelism p is the number of threads that can be run in parallel
[2]. Threads may not all take the same time to run, however, but this
can easily be worked into a dag representation. Although the
quantities of Work and Span will have more complex definitions
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which must include potentially varied thread execution times, this
does not affect the qualitative validity of the Work and Span Laws.

Compared with the difficulty of obtaining correct f values for
workloads, which tends to require post-design or even run-time
experimentation [15, 66], the parallelism p is much more readily
available to the programmer, who should be able to generate a task
graph during the workload design process, which would contain
information about parallelism. Program code can also be annotated
or instrumented to help run-time extraction of the task graph.
Independent of the programmer, there are methods of extracting the
task graph or otherwise determine the parallelism during workload
execution [24, 36, 94].

The average p and its variances may be useful in speedup
analysis [13], but "instantaneous parallelism" is more useful for
such endeavors as the efficient scheduling of tasks [36, 44, 95–97].
The concept of instantaneous parallelism is highlighted in [36]. A
workload may display a particular parallelism p at any point of its
execution, as the number of parallel threads change.

The examples of task distribution shown in Fig. 6 can now be
reviewed in terms of parallelism. It can be seen that the naïve
workload distribution in Fig. 6(a) results in an overall smaller
parallelism than the ideal distribution in Fig. 6(b). This results in a
larger span (if span is understood in terms of execution time) for the
former case.

Instantaneous parallelism may be used to analyze and design
scheduling policies. For instance, in Fig. 6(a), p starts at 1, then
becomes 3 after crossing Ts, then it reduces to 2 and eventually 1 as
the faster cores stop processing. In Fig. 6(b), however, p only has
two phases, 1 and 3. The greater instantaneous p in the second case
is the cause of its comparatively smaller span and higher speedup.
In other words, the quality of parallel workload distribution is
positively related to the parallelism achieved. The points in the
execution trace in Fig. 6(a) where the instantaneous parallelism
reduces from 3 to 2 and from 2 to 1 may be identified as the result
of non-optimal workload distribution (scheduling).

Instantaneous parallelism may also be studied during the original
design of workloads. For instance, for the workload with a task
graph of the shape of the dag in Fig. 7, functionally the designer
may decide to move 9© to the fourth step, and form a new step with
13© and 14© inserted before the step of 15©, 16© and 17©. This does

not affect the logical correctness of the workload, but would reduce
the instantaneous parallelism of steps 4 and 5 from 5 to 4, and lead
to the addition of one more step causing the span of the dag to grow
from 7 to 8. The overall parallelism would reduce from p ≈ 2.86 to
p = 2.5. Fully sequentializing 5©, 6©, 10© and 11© would lead to
an even bigger reduction of instantaneous parallelism and increase
of span. The costs of such design changes are clearly described by
changes in the instantaneous (and overall) parallelism and span,
helping the designer to derive quantitative trade-offs with any
benefits.

The example in Fig. 7 may be used to clarify why Amdahl’s Law
is regarded as semantically weak in certain cases. This dag has a
maximum parallelism of 5. In no part of the workload is it infinitely
parallelizable. Only in two steps out of seven is the workload
non-parallelizable. The rest of the workload has 1 < p <∞, i.e.
parallelism values of neither 1 nor infinity. It is not immediately
clear what single f value can describe the entire workload
satisfactorily.

Looking closer at the example by focusing on the first two steps
involving tasks 1©, 2©, 3© and 4© in Fig. 7, it can be seen that the
workload is non-parallelizable (p = 1) in step 1 and has a parallelism
of p = 3 in step 2.

The case of n = 1 can be trivially observed to conform to
Amdahl’s Law. For n = 2, the sequential part of the workload, task

1©, executes on one core, then tasks 2© and 3© execute on n = 2
cores and 4© executes on one core, with the entire workload taking
a total time of T2 = 3. The speedup achieved by using two cores is
therefore

S(2) =
T1
T2

=
4

3
≈ 1.33. (24)

For Amdahl’s Law, we may calculate f from (2) as f = Tp/T1 =
3/4 = 0.75. From (4), the speedup can be derived as follows

S(2) =
1

(1− f) + f
n

=
1

0.25 + 0.75
2

= 1.6. (25)

In other words, the real speedup of the workload does not tightly
observe Amdahl’s Law for n = 2, but is smaller. In fact it follows
Li-Malek’s type of model with a penalty term of 1 added to the
denominator (See Equation (9)), although in this case, the penalty
term comes from non-ideal load balancing because of the atomicity
of a task and not from inter-core communications. For n = 3,
however, using Amdahl’s Law the speedup can be calculated as
S(3) = 2, the same as the real speedup obtained from executing

1© on one core and 2©, 3© and 4© on three cores because load
balancing is not a problem.

When the number of available cores grows to n > pp (from
n = 4 onwards in this case), the parallel part of the workload, with
a parallelism of pp, cannot be evenly distributed to the n available
cores, with some n− pp cores starved of workload. The speedup is
a constant S(n) = S(pp) = S(3) = 2, for all n ≥ 3. The overall
parallelism of this workload is 2, which means that the speedup
achievable with an infinite number of cores is 2, which is already
achieved by having 3 cores. This core starvation is not captured by
Amdahl’s Law, which says adding cores always improves speedup,
so long as f is not zero. Testing with n = 4 shows that whilst the
real speedup is 2, Amdahl’s Law returns a higher speedup estimate
of approximately 2.29. For n =∞, Amdahl’s Law gives a speedup
of 4 for f = 0.75.

S(n)

n

1.0

2.0

3.0

1 2 3 4 5 6 7 8 9

Work Law
speedup

(22)

Amdahl's speedup (4)

Real speedup

n = pp

Fig. 8: Three different speedup estimations.

Fig. 8 illustrates this example discussion. Work Law speedup
formula (22) gives maximum speedup S(n) ≤ n, the black line in
the figure. Amdahl’s Law gives speedup
S(n) = 1/(0.25 + 0.75/x) according to (4), shown in blue in the
figure. The real upper limit of speedup, given pp = 3, follows the
curve in red in the figure. It can be seen that the most precise
speedup estimation, with the lowest speedup values obtained, is
below Amdahl’s Law before n = pp and is constant after that. This
type of starvation may appear naturally suited for roofline
modelling [40], however, the following sections will show that
Amdah’s Law may be extended to cover such behaviour without
resorting to roofline models.

Compared to Amdahl’s Law, because Gustafson assumes
scalability of the workload in relation to n, which implies pp ≥ n
always, the problem of core starvation does not apply to
Gustafson’s model [22]. In other words, if you run larger parallel
problems when you get more cores, you would never run out of
threads and end up with starved cores, assuming ideal load
balancing [5]. Sun-Ni’s model can represent the effects of
parallelism in the function g(n), in addition to the effects of
memory, on which the model is primarily focused [2]. This will be
discussed further in the following section.

Summary: Another fundamental assumption of Amdahl’s Law,
that the workload consists of two parts, one fully sequential and the
other fully parallel, has always attracted criticism. Workload studies
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have progressed separately along the lines of using the concept of
parallelism rather than the p-fraction when calculating speedup as a
result of parallelization leading to the Span Law and Work
Law [35]. More intuitive methods such as roofline modelling [40]
directly represent behaviour that is not straightforward under
Amdahl-style assumptions.

8 Parallelism and p-fractions!

Amdahl’s Law, whose simple mathematical form results from its
somewhat simplistic assumptions, has remained a popular tool for
reasoning about speedup [5, 24, 42, 44, 60, 98]. A number of
researchers have attempted to resolve the problems with regard to
the workload parallelism p.

In 2012, S. Tang et al. presented a method for dealing with multi-
level parallelization [93] and T. Zidenberg et al. presented the Multi-
Amdahl method of optimizing resources on a chip [19], both hinting
the possible use of multiple p-fractions. It was however Cassidy and
Andreou who presented in [37] the concrete form of what we will
call the multi-fraction model. This method has been used to make
Amdahl’s Law relevant in the context of workloads with different
degrees of parallelism during execution [23, eq.(2.6)] [24].

The multi-fraction speedup model is based on the vectorization of
the p-fraction f into f = (f1, f2, ..., fn), where for any 1 ≤ j ≤ n,
fj is the fraction of workload that is executed on j cores.

Using the task graph in Fig. 7 as an example, let us assume
simple task distribution, i.e. cores are scheduled according to the
instantaneous parallelism of the workload, with one task per core at
any time, to ease the discussion. In step 2 of the dag there would be
three cores executing tasks 2©, 3© and 4© in parallel, and in the
next step five cores execute the tasks 5© to 9© in parallel. In the
dag the tasks are of the same size, this provides for better intuitive
description, but is not required by the method.

The method sums the tasks with the same parallelism p under the
respective fp and then normalizes the value by the total number of
tasks. In this example, two tasks have p = j = 1, two tasks have
p = j = 2, six tasks have p = j = 3 and ten tasks have p = j = 5,
where j is the correct number of cores used to deal with a
corresponding instantaneous p value. This gives f1 = 2/20 = 0.1,
f2 = 2/20 = 0.1, f3 = 6/20 = 0.3, f4 = 0, and
f5 = 10/20 = 0.5. Note that the sum of all fj values is 1, just like
in Amdahl’s Law, because of the normalization.

Assuming that the total time taken to execute the entire workload
sequentially on one core is T1 = 1 (i.e. BCE, to simplify discussion
without losing generality – in speedup models the actual value of T1
does not matter as it gets cancelled out), the time taken to execute
the jth fraction of the workload, 1 ≤ j ≤ n, on j cores is then fj/j,
and the total time to execute the entire workload with each fraction
on its corresponding number of cores (with p = j, according to the
simple task distribution assumption) is

Tn =

n∑
j=1

fj
j
. (26)

The multi-fraction extension of Amdahl’s Law, adapted from [37,
Equation (3)] is then

S(n) =
T1
Tn

=

 n∑
j=1

fj
j

−1 . (27)

Classical Amdahl’s Law (4) is a special case of (27) with
f1 = 1− f and fn = f , with all other fj = 0, ∀1 < j < n. This
is because when running an Amdahl’s type workload on a system
with n cores, the parallel part is fully parallelizable onto all cores
hence essentially f = f∞ = fn.

The sum of f should equal to 1 in order to represent the entire
workload:

n∑
j=1

fj = 1. (28)

For the example described by Fig. 7, the speedup is therefore
S(n ≥ 5) = 1/(f1/1 + f2/2 + f3/3 + f4/4 + f5/5) =
1/(0.1 + 0.05 + 0.1 + 0 + 0.1) = 1/0.35. This is indeed the
dag’s overall parallelism p = Tw/T∞ = 20/7 ≈ 2.86. It makes
sense that for a workload whose dag shows a maximum parallelism
of 5, running it on a maximum of five cores already achieves the
same speedup as running it on an infinite number of cores. The
issue of core starvation when there are more cores than threads is
therefore naturally represented in the multi-fraction model of (27).

When the task graph is used on its own for reasoning about
speedup, with no special mention of hardware, it is usually assumed
that there are always cores available to execute one task per core no
matter how large the workload’s instantaneous p is. In other words,
p ≤ n. However, if max p > n, i.e. the task graph allows higher
parallelism than there are cores available, the best scheduling could
only provide n cores at any time. The fraction extraction needs to
represent the effects of this scheduling by appropriately "stretching"
the task times. For instance, if the workload described by the task
graph in Fig. 7 is executed on a system with a maximum of four
available cores, instead of f5 = 10/20 = 0.5, we have f5 = 0,
f4 = 8/20, and f2 changing from 2/20 to 4/20, if we push task

9© down a step and then execute tasks 13© and 14© in an extra
two-tasks-on-two-cores step. This would add one step to the span.
The speedup is reduced to 2.5 for n = 4 from 2.86 for n ≥ 5.

An interesting consequence of the dependence of fj values on n
is that the multi-fraction model implicitly supports workload scaling
models such as Gustafson’s [22] and Sun-Ni’s [2]. These classical
workload scaling models assume that f does not change but describe
the scaling of workload according to the improvement index (or core
number) nwith a separate parameter – the scaling function g(n) – so
that the scaled parallel part of the workload becomes f · g(n). This
scaling function is not required for the multi-fraction model since
the fj values already can represent workloads that change with n,
as they are functions of the number of cores they correspond to, i.e.
fj = f(j). The only required extension is to allow the workload task
graph to change with the number of cores, i.e. the system’s maximum
parallelism to be no smaller than the number of cores.

However, an important detail difference is that, according to
Gustafson and Sun-Ni, the workload scaling may break
condition (28). In fact, for n > 1, the sums of their scaled workload
fractions are always greater than 1. Consequently, a
re-normalization is needed to derive the speedup, and (27) becomes

S(n) =

 n∑
j=1

fj

 ·
 n∑
j=1

fj
j

−1 . (29)

It can be verified that (29) transforms into Sun-Ni’s model (10)
by substituting f1 with 1− f and fn with f · g(n), and
fj = 0, ∀ 1 < j < n. For g(n) = n the model further transforms
into Gustafson’s (7), and for g(n) = 1 it becomes classical
Amdahl’s Law (4).

Other related models, for instance that extending models similar
to Sun-Ni’s over Hill-Marty asymmetric heterogeneity [60], are also
covered by the multi-fraction model with similar arguments.

The method of adding a penalty term to the denominator of
Amdahl’s Law to represent overheads, exemplified by Li-Malek’s
model (9) [53] and used in other work [54, p.167][23, p.42][55, 56],
is also covered by the multi-fraction model. The multi-fraction
model allows the more precise representation of qualitative and
quantitative overhead effects as these can usually be precisely
incorporated into task graph modifications: additional tasks,
lengthening existing tasks, synchronizing tasks, data overheads,
instruction overheads, etc. The simplest form (9) essentially
enlarges the sequential part with no change to the parallel part. This
can be represented in the multi-fraction model by appropriately
increasing f1 whilst keeping the other fj values unchanged, then
re-normalizing where appropriate.
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The method of extracting fj values from the task graph, found in
e.g. [24], produces normalized fj values by design. The
condition (28) holds in the resulting models without requiring
re-normalization. For simplicity, in the subsequent text we use (27)
and assume no need for re-normalization, without losing generality.

In 2018, Yun et al. proposed a method to further extend the
multi-fraction speedup model to cover an enhanced asymmetric
core heterogeneity [24]. Their method assumes that there are two
types of cores in the system, each with a different processing
capability, and reduces the normal-form model [5] to fit this
assumption. This assumption is correct for the ARM big.LITTLE
system configuration consisting of nL low power LITTLE cores
and nb high performance big cores.

They regard the LITTLE core as BCE (with performance of 1),
and the performance of a big core is represented as relative to this
BCE by αb. They also assume that the scheduling always prioritizes
high performance cores. The resulting heterogeneous model is

S(nb, nL) =

[
nb∑
b=1

fb
αb · b

+

nL∑
L=1

fnb+L

αb · b+ L

]−1
. (30)

The degree of core heterogeneity covered by this model is limited,
in the sense that there are only two types of cores and the scheduling
favours the faster type.

Gupta et al. [30, 99] investigated the effects of the performance
of individual cores on speedup, in a heterogeneous parallel
processing context. These models focus on the performance scaling
of cores, via such techniques as DVFS and performance
optimization. In this context, it is legitimate to assume that neither
the number of cores nor the task to core scheduling change between
the unscaled baseline and the scaled execution. These
considerations allow the direct use of time fractions instead of
going through workload fractions. On the subject of system
heterogeneity, they make two main extensions. Firstly the implicit
assumption that the sequential part of a workload is executed on a
single type of core is removed, and the sequential part of the task is
now assumed to be executed on an arbitrary number of cores of
arbitrary types, fully sequentially (i.e. potentially involving core to
core handovers). Secondly the parallel part is assumed to consist of
multiple phases that must be executed sequentially, phase by phase,
with each phase being a parallelizable set of tasks. The model for
speedup by scaling core speeds can be found in [30, Equation (5)].
In this multi-fraction model following Cassidy and Andreou [37],
the execution time of each parallel phase is calculated according to
a similar method to that shown in Equation (15), which is generally
correct for all schemes of task to core allocation. The modelling
does not make assumptions on the parallelism of each parallel
phase or the number of cores available for each parallel phase, but
the assumption of sequential plus parallel phases is fully within the
descriptive power of dags of the type found in Fig. 7.

A more general heterogeneity in multi-fraction approach is also
supported by the method known as Multi-Amdahl [19]. This model
links heterogeneity with the allocation of some resource X , which
can be divided into n arbitrary sections, and each section xj is
dedicated to run a fraction of the workload fj , 1 ≤ j ≤ n. These
arbitrary sections are able to universally represent any type of
heterogeneity; however, the authors put a very specific constraint on
their model: these sections can only be executed sequentially, so
that the total execution time Tn is:

Tn =
n∑
j=1

fj · e
(
xj
)
, (31)

where e
(
xj
)

is the so-called efficiency function (although the name
is somewhat misleading as larger values of e

(
xj
)

cause longer
execution times; in other words, this function is reciprocal to the
performance achieved by the resource xj ). The model also
explicitly states that the resources do not overlap:

n∑
j=1

xj ≤ X. (32)

The Multi-Amdahl paper [19] does not explicitly specify the
equation for speedup but focuses directly on minimizing Tn under
the constraint (32), but since they define their execution time in
relation to a baseline T1 = 1, it is straightforward to deduce that the
speedup in their case is calculated as:

S (n) =
T1
Tn

=

 n∑
j=1

fj · e
(
xj
)−1 . (33)

Despite the generality of Multi-Amdahl, its assumption of
sequentially executing hardware sections has been a major criticism
against the practicality of the model [42].

Rafiev et al. combined the multi-fraction model (27) with the
normal-form HeMCP assumption (Fig. 5) to better cover core
heterogeneity without restraining the model by any specific
scheduling priorities or core or execution constraints [38].

The normal-form model of core heterogeneity makes use of two
vectors n = (n1, ..., nx) and α = (α1, ...αx) to represent the
number of each of x types of cores and the core type’s relative
performance with regard to a BCE. In the present context, there is
no need to highlight core-type differences. Without clustering cores
by type, each core’s performance can be defined individually,
leading to a single vector α = (α1, ...αn) for n cores,
n = n1 + ...+ nx. This individual-core view also facilitates the
representation of such fine-grain control possibilities as per-core
DVFS [8, 9, 100]. To derive speedup models based on this type of
normal-form HeMCP assumption, models for scheduling options,
which now have to deal with core heterogeneity, also need to be
explored. This is because with heterogeneous core performances,
some scheme of core prioritizing, exemplified by but by no means
limited to "favouring faster cores", is natural in any sensible
scheduling policy. And this needs to be represented properly in any
reasonable model.

Similar to Gupta et al. [30], Rafiev et al. [38] generalized the
representation of scheduling policy beyond "favouring faster cores".
Intuitively, this may be done by enumerating the cores in the order
of their scheduling priority, if these stay constant during the
execution of a workload. However, this is not enough as the
priorities may change depending on the number of parallel threads
(instantaneous parallelism p) which may change with a workload’s
progress. For instance, it may be desirable to use a single high
performance core for sequential execution when p = 1 and then in
some cases change to all low power cores under higher degrees of
parallelism, when p > 1. The scheduling priority passes from high
performance to low power cores in response to parallelism changes
and a constant priority per core list cannot be built. This type of
scheduling is especially relevant when trying to maximize
performance without exceeding some power budget [101]. Two
methods for generalizing scheduling models were described in [38]
to cover these kinds of characteristics.

In "core-based generalization", it is assumed that the scheduling
behaviour is determined by the instantaneous parallelism p. As a
result, for any 1 ≤ j ≤ n, a separate vector αj = (αj1, ...αjj) is
defined representing the BCE-relative performances of exactly
those j cores that execute the fraction fj . The combined
performance of these cores is

Aj =

j∑
i=1

αji, 1 ≤ j ≤ n. (34)

The core-based multi-fraction model extended to normal-form
core heterogeneity (called "normal-form multi-fraction model" in
this paper) is then
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S(n) =

 n∑
j=1

fj
Aj

−1 . (35)

The variable Aj has the same semantic meaning as Nα in
equations (15) to (19), i.e. the generalized computation capability
improvement index. It is a function of the participating cores and
their relative performances, and hence of the scheduling decision.
This brings the question of whether the effect of load balancing
should be considered in the models. In other words, what happens
when during the fj phase, some k cores finish early (for example, if
they are faster cores)? According to the multi-fraction model (27),
the execution then switches to f(j−k). Therefore load balancing is
already captured by the multiple fj values [23, 24, 93], and Aj
always equals the sum of performances and represent the
improvement index over a BCE, as in (34). This simplifies the
model, but adds practical complexities to the process of determining
fj values. For an HeMCP, the task graph needs to be analyzed and
potentially modified with regard to the system’s load balancing.

This can be dealt with using the "configuration-based
generalization" [38]. This method includes the scheduling policy
details as a central part of the model, which is built around the set
{α1, ...αQ} of system configurations, where Q ≥ 1 is the number
of configurations. Each configuration corresponds to a scheduling
policy (i.e. a mapping of the workload on up to n cores), and
defines the vector of n performance coefficients
αj = (αj1, ..., αjn), where 1 ≤ j ≤ Q. If some cores are not used
in a configuration, their performances are set to 0. The combined
performance of a configuration is the sum of its n performance
coefficients:

Aj =

n∑
i=1

αji, 1 ≤ j ≤ Q. (36)

With this configuration-centric modelling, the workload fractions
fj now correspond to the configurations rather than cores. In other
words, fj represents the fraction of the workload that is executed in
the jth configuration αj , 1 ≤ j ≤ Q. The configuration-based
normal-form multi-fraction model then takes the following form:

S(n) =

 Q∑
j=1

fj
Aj

−1 . (37)

The equation (37) is closely connected with the Multi-Amdahl
model (33). Indeed, if we subdivide the resource X into Q parts
instead of n and define the efficiency function as e

(
xj
)
= 1/Aj ,

the equation (33) transforms into (37).
The major difference, however, is that the constraint (32) is not

required: different configurations are allowed to reuse the same
cores or resources because their execution times do not overlap.
This even applies to classical Amdahl’s Law where the core
executing sequential fraction is also involved in the parallel
execution. The issue with Multi-Amdahl approach can be solved by
modifying (32) as:

xj ≤ X, (38)

or in other words, the fraction fj can use any amount of system
resources as long as it does not exceed the entire system. This can
also be applied to (36) in the following form:

Aj ≤ Amax, (39)

where Amax is the maximum performance that can be achieved by
the system.

The core-based normal-form multi-fraction model of (35) is a
special case of (37). There is also a broader understanding of what a
configuration is, which extends the semantic strength of this model

to exceed a world view of concurrent threads running on parallel
cores.

In this general understanding, a workload is executed on some
machine, which has Q distinctive modes of operation. Each mode
Mj , 1 ≤ j ≤ Q, has a relative performance Aj when executing the
workload, compared to some base equivalent performance, which
has Abase = 1. The variable fj denotes the probability of the
workload being executed in Mj . This probability understanding
extends the fraction assumption for deterministic systems to cover
stochastic behaviour, and agrees well with the re-normalization for
Gustafson’s and Sun-Ni’s models. The vector of mode
(configuration) performances A = (A1, ...AQ) is the generalized
computation capability improvement index, and a vector of real
numbers. Each of these real numbers is the improvement, over that
of the base equivalent performance of Abase = 1, achieved by a
particular mode of the machine. Special cases are all covered by
this understanding, for instance fj = 0 if the workload cannot be
executed in, or is not scheduled to Mj .

This broader understanding of the normal-form multi-fraction
model returns to the broader understanding of the original form of
Amdahl’s Law (4), where the computation capability improvement
index n could be a real number, which may not necessarily have
anything to do with parallel processing or multiple cores. Similarly,
operating modes do not have to achieve their computation
capability improvements through parallel processing or multiple
cores. Speedup is a result of improvement, and therefore a function
of the improvement index A. The model is valid regardless of the
specific method from which any improvement derives. It is also
valid for all possible workload structures including the number of
steps and the degree of parallelism of each step, and the mapping of
these tasks to cores fitting arbitrary system core architectures. For
instance, the speedup obtained by scaling the sequential
performances of cores investigated in [30, 99] is fully covered by
this model.

Summary: Cassidy and Andreou, questioning the original
Amdahl binary division of workloads into sequential and parallel
parts, extend Amdahl’s Law into the multi-fraction model [37]. The
Multi-Amdahl research results in a more general type of the
multi-fraction model [19]. The normal-form model is incorporated
into the multi-fraction framework, leading to the
configuration-based model [5] which applies to any type of system
improvement. This kind of modelling is shown to be useful for
deriving speedup from non-parallelization methods [30].

9 Discussions

The attraction of Amdahl’s Law has been strong ever since the
original observation was made in [1]. The reason is not difficult to
understand. The concept of parallel processing and computer
platforms supporting it have seen rapid developments in the half
century since the publication of [1], and Amdahl’s Law, with its
simple form and intuitive understandability, has more often than not
been the first formula for researchers and engineers to study when
they want to reason about speedup.

The simplistic assumptions on which Amdahl’s Law depends
have, naturally, been the focus of a large number of model
extensions, starting from Gustafson [22] and Sun-Ni [2, 59]. The
popularity of Amdahl’s Law means that it formed the foundation of
a large body of research with people using it as the basis of their
models, which target different real-world systems. This has
inevitably led to similarities and re-inventing and re-iterating very
similar ideas or even the same ideas.

For instance, multiple contributions, including [23, 48, 53–55],
have suggested adding penalty terms to the denominator of
Amdahl’s Law to represent diverse overheads that reduce the
parallelism in many different ways. Some of the researchers appear
to have arrived at this method independently of others. Others have
proposed to add a coefficient function to the parallel part of the
denominator of Amdahl’s Law, appearing to arrive at their models
independently [2, 60].
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Table 1 Classification of existing research (continued)

Model types covered

Types of heterogeneity covered
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On occasion, Amdahl’s Law itself has been used without it being
mentioned as Amdahl’s Law [13].

Core heterogeneity is another issue tackled by multiple
researchers. In certain ways, Moncrieff et al. [61], published in
1996, presented a more general model of core heterogeneity than
Hill-Marty’s models [4], which appeared more than a decade later.
And yet it was the latter which directly inspired a large body of
other research, including [25, 55, 56, 62–70], and led towards the
development of forms of extension to cover HeMCP
realities [3, 5, 19].

The work on Multi-Amdahl [19, 20, 102] produced models of
extensive heterogeneity both in workload and in platform hardware
configurations. The speedup model that may be derived from this
method is a very small distance away from the normal-form
multi-fraction model in Equation (37), as explained in Section 8.
However, Multi-Amdahl was tied to a Hill-Marty-like assumption
of microarchitecture and chip configuration, had restrictions that are
not necessary for M/MCP, and did not specifically promote a
speedup model. It was not immediately picked up for HeMCP
modelling [38, 42].

One of the most important questions for models is what they shall
be used for. One use of a speedup model is in the optimization of
system operations via design-time and run-time management [8, 15,
30, 34, 36, 96, 99–101, 103, 106, 107].

For practical applications, the task graph of a workload may be
extracted [36, 94, 104], and the p-fraction of a workload can also
be obtained using experimental methods [15, 66]. The availability of
these input variables to speedup models through offline experiments,
design-time modelling and run-time monitoring allow the models to
be used for run-time control purposes [14, 15, 30, 36, 105].

Both generalization and specialization have happened in model
design and use with regard to various extensions of Amdahl’s Law.
Using vectors to replace the scalars found in (4) has been one of
the main ways of improving the coverage of Amdahl’s Law [5, 93].
Others include adding terms in the form of constant parameters or
functions [53, 54] and strengthening constants with functions [2].
Reduced forms of general models with more limited scopes have
also been used in targeted cases to lessen the modelling effort and
improve the presentational clarity. For instance, a reduced form of
the normal-form speedup model was used in [24] to specially target
the ARM big.LITTLE architecture.

Given that a form of Amdahl’s Law has been derived (37) that
generalizes speedup modelling to cover wide heterogeneity in
workload, hardware and workload to hardware mapping, a major
challenge for researchers and engineers who want to reason about
speedup and performance bounds in the HeMCP era is to find the
most user-friendly reduced-scope models to target their specific
needs. In this context, the general model of (37) may serve as the
foundation for deriving appropriate special-purpose models for
practical use. Its method of use, the enumeration of all modes and
all workload-mode mapping probabilities, is methodologically
straightforward but may be practically challenging. This creates
rich opportunities for further research and the development of
innovative practical solutions. For instance, what easy-to-use
functional forms can be derived to relate Aj to practical factors
(e.g. effects associated with design and operational realities such as
network topology, communication synchronization, and power
budgeting) deemed important by system designers reasoning about
mode Mj?

Table 1 summarizes the surveyed research publications
highlighting the topics they cover.

10 Concluding remarks

Starting from the observation made by Amdahl in 1967 [1],
researchers have come up with a series of extensions to Amdahl’s
Law in order to improve the semantic power of both of its
parameters, the p-fraction f [2, 24, 38, 53, 93] and the computation
capability improvement index n [3–5, 24, 38, 94]. Through the
vectorization of both parameters, and by viewing them as variables
and functions rather than constants, the normal-form multi-fraction

models now represent wide scopes of heterogeneity in workload
parallelism, processor core architectures, and scheduling decisions.
The general form of the normal-form multi-fraction model (37) has
now gone back to basics without specifically targeting multiple
cores and parallel processing.
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