
IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 0, MONTH YYYY 1

PARMA: Parallelization-Aware Run-time Management for
Energy-Efficient Many-Core Systems

Mohammed A. Noaman Al-hayanni, Member, IEEE, Ashur Rafiev, Fei Xia, Rishad Shafik, Senior
Member, IEEE, Alexander Romanovsky, Alex Yakovlev, Fellow, IEEE

Abstract—Performance and energy efficiency considerations have shifted computing paradigms from single-core to many-core
architectures. At the same time, traditional speedup models such as Amdahl’s Law face challenges in the run-time reasoning for
system performance and energy efficiency, because these models typically assume limited variations of the parallel fraction. Moreover,
the parallel fraction, which varies dynamically in workloads, is generally unknown at run-time without application-level instrumentation.
This paper describes novel performance/energy trade-off models based on realistic architectural considerations, which describe the
parallel fraction and speedup as functions of performance counter values available in modern processors, removing the need for
application-level instrumentation. These are then used to develop a Parallelization-Aware Run-time Management (PARMA) approach.
PARMA aims at controlling core allocations and operating voltage/frequency points for energy efficiency, according to the varying
workload parallel fractions. The efficacy of our models and the PARMA approach is extensively validated using a number of PARSEC
benchmark applications, involving two performance/energy trade-off metrics: energy-delay-product (EDP), typically used in
high-performance applications and energy per instruction (EPI), suitable for energy-aware applications. Up to 48 and 68 per-cent
improvements in EDP and EPI have been observed using the PARMA approach compared with parallelization-agnostic methods.

Index Terms—run-time management; many-core; speedup; power modelling; energy-delay-product; energy per instruction.
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1 INTRODUCTION

MULTIPLE processing cores on the same die [1] enable
higher computational performance by distributing

workloads among parallel cores. Speedup measures this
improvement, by comparing the performance of a multi-
/many-core implementation to its single-core equivalent.

Amdahl’s Law defines speedup as a function of
parallel and sequential elements and resources in a
system [2]. According to this law, speedup is related to
the parallelizability of a workload, defined by the parallel
fraction (p), and the number of parallel resources. Although
the original Law describes p as a function of ideal parallel
cores only, in reality it defines how effectively parallel the
workload is under architectural constraints, such as shared
memory [3].

In recent years, application programming models
and hardware systems have acquired powerful paral-
lelization features, including micro-architectural support,
e.g. instruction-level parallelism (ILP) [4], and macro-
architectural support, e.g. thread-/core-level parallelism [5].
These features are often intertwined internally by compilers
to provide better computational performance for the parallel
part of the workload [6]. However, when parallel parts
are interleaved with sequential parts with shared resources
between them, it can make effective parallel fraction
per workload vary dynamically and unpredictably during
execution (See Figure. 1 and Section 6.2).
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Run-time management is a set of methods for managing
hardware/software knobs and monitors under variable
workloads to improve system operation, for example by
optimizing some chosen metric in the performance/energy
trade-off [7]. Existing run-time algorithms react to
workload change by dynamically scaling voltage/frequency
(DVFS) [8], in combination with task mapping and core
allocations [9]. However, so far the natural attribute of
applications that lends itself to distribution into parallel
cores, the p fraction, has not been taken into account for
run-time control, as discussed in Section 2 in detail.

Workload parallelizability can be a significant indicator
for the run-time allocation of parallel resources. Run-time
decisions may be tuned to the value of p. For instance, if the
p fraction is low, there is little reason to use too many cores.

A crucial requirement of such parallelization-aware run-
time controls is to know p value closely during a workload’s
execution (Figure 1). However, the p fraction can vary
dynamically depending on application workload exercised
on a specific platform, and may require extensive software
instrumentation [5]. Our previous work in [10] has shown
the possibility of determining the p fraction by statically
analysing the system performance counter readings. In this
work, we extend the method to enable run-time tracking
of the instantaneous value of a variable p fraction for
Parallelization-Aware Run-time MAnagement (PARMA). To
the best of our knowledge, PARMA is the first approach
in run-time modeling and management using the accurate
measurement of p fraction of tasks/threads. We demonstrate
the strength of this method with practical implementation
and validation on real off-the-shelf systems.

This paper makes the following specific contributions:

• Develop a new practical method for determining
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Fig. 1. The same workload may display different p values in different
phases of execution. High p-variation benchmarks: a), b), c) canneal;
d), e), f) blackscholes.

workload parallel fraction p at run-time using
hardware performance counters and Amdahl’s Law.
The method improves on our previous work aimed
at offline analysis [10].

• Generate parallelization-aware power models for
many-core processors taking into account the full-
domain and per-core DVFS assumptions, such that
the optimal operating points for a given platform
can be calculated with regard to the following
optimization metrics: Energy per Instruction (EPI),
Energy-Delay Product (EDP), or the general energy-
delay trade-off metric ED (x) defined in Section 4.2.

• Implement a PARMA run-time and validate its
efficacy using a number of benchmark applications
on an off-the-shelf multi-core system.

The rest of the paper is organized as follows. Section 2 de-
scribes related work. Section 3 gives the background
on our proposed extended speedup and parallelization
fraction models. Section 4 proposes a new paradigm for
parallelization-aware energy-efficient computing, starting
with many-core power modeling, EPI and EDP modeling
and optimization. Section 5 explains the parallelization-
aware run-time management algorithm. Section 6 describes
the experimental set-up, hardware performance counters
and the benchmark applications used in this study, and
presents a cross-validation of the models with measured
speedups and considers the applicability of our method.
Finally, Section 7 concludes the work in this paper.

2 RELATED WORK
This section provides a summary of the research relevant to
parallelization-aware run-time management.

A framework called Thread Reinforcer was developed [17]
in order to dynamically monitor multi-thread execution.
It can determine the number of threads that can produce
the best speedup. Hardware performance counters, a
favored method of on-chip monitoring [18], can also be
useful as monitors for this purpose [15], [19]. Continuous
monitoring can provide timely state control by combining
information about speedup and power [16], [19]. Workload
and instantaneous hardware capabilities can be matched to
improve speedup while satisfying efficiency metrics [6].

An efficient run-time system for many-core systems
[20] controls both types of on-chip actuators, thread-to-
core mapping (also known as context switching) and DVFS,
together rather than only using one of them. A heuristic
algorithm uses hardware performance counters to predict
run-time power and performance.

Per-core DVFS, which provide DVFS controls at the
granularity of individual cores [21], [8] provides enhanced
controllability. With per-core DVFS, the number of active
cores may be associated with the number of active threads
[22]. In addition, a wide range of DVFS points with run-time
DVFS optimization was shown to improve speedup, power
and energy in real time systems [23], [24].

As these examples show, the number of threads has been
a favorite handle for optimization with a substantial body of
work in the literature. However, the Amdahl p fraction has
not been investigated to date in the same context. Table 1
summarizes existing studies relevant to this work. The run-
time determination of the p fraction and per-core DVFS do
not feature in existing work. As such, using speedup and
parallelization models to identify suitable core allocations
and operating frequencies remains challenging These are the
gaps that this paper addresses.

3 PERFORMANCE AND SPEEDUP MODELS

Amdahl’s Law is based on an idealistic approximation
that divides a workload into completely sequential and
parallel parts, executed on a given number of processors.
The ratio between the parallel part and the entire workload,
0 ≤ p ≤ 1, is called parallel fraction. In reality p
is not the property of a workload alone. It implicitly
incorporates all effects including hardware bottlenecks, such
as memory and interconnects, and software properties, such
as programming models. It is a property of the entire
hardware-software system.

In a run-time system, control actions require time and
introduce additional overheads [19]; therefore an efficient
real-world run-time management should use control cycles
with reasonable durations. The core idea behind PARMA is
that the system behavior within such a control cycle can
be described using parallel fraction as a single dynamic
parameter. It also assumes that similar p values correspond
to a given set of optimal operating configurations. In this
paper we successfully demonstrate that this approximation
can be practically used in an efficient run-time environment.
Section 4 presents the methodology of finding the optimal
operating points, while this section focuses on the
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TABLE 1
Existing Optimization Methods and the Proposed Study

Previous studies Run-time Parallelization speedup based Validation Application DVFS Optimization
[11], [9] Yes No No Simulation Single Full-domain Off-line

[12] Yes No No Simulation Single Full-domain On-line
[13] Yes Instr. level No Simulation Single Full-domain Off-line
[14] Yes No No Experimental Single Full-domain On-line
[15] Yes No Yes Experimental Single No On-line
[16] Yes No Yes Experimental Single Full-domain On-line
[6] Yes Calculated Yes Experimental Single No Off-line

Proposed Yes Measured Yes Experimental Single Full and Per-core On-line

theoretical foundation of calculating p from the system
performance.

3.1 System Performance

We consider system performance as instructions per second
(IPS) and denote the performance of the n-core execution as
IPS (n). In this work, we assume that the average number of
instructions per clock cycle (IPC) of a single core execution
is constant for a given workload:

IPC (1) = const. (1)

Therefore the system performance can be modeled by the
system operating frequency F using a linear relationship:

IPS (n) = IPC (n) · F. (2)

Under this definition, IPC includes both halted and
unhalted clock cycles to ensure that the performance is
represented in relation to the system (wall clock) time
rather than CPU time. Halted cycles happen during a non-
parallelizable part of the workload execution and are the
main source of performance reduction in this model.

The speedup of n cores compared to m cores is defined
as a ratio of performances:

S (n,m) =
IPS (n)

IPS (m)
. (3)

Typically, speedup models consider m = 1, but in this
work we define the speedup between any two numbers of
cores. The numbers m and n represent cores available to the
application. The fundamental assumption behind PARMA
is that this number can change during the execution, for
example, because of the run-time management.

3.2 Amdahl’s Speedup Model

Amdahl’s model assumes that the total workload constitutes
I instructions. The workload I is also split into Ip
parallelizable instructions and I (1− p) instructions that
must be executed sequentially. Assuming that time t (1) is
needed to execute both the sequential and parallel parts of
workload I on a single core and the time t (n) is needed to
execute the sequential part of workload I on a single core
and the parallel part on n cores, we have:

t (1) =
I

IPS (1)
, and (4)

t (n) =
(1− p) · I
IPS (1)

+
p · I

n · IPS (1)
, (5)

where IPS (1) is single-core performance. The IPS-based
classical Amdahl’s speedup model is thus [2]:

S (n, 1) =
I · t(1)
I · t(n)

=
1

(1− p) + p
n

. (6)

It is also possible to compare the speedup between n
cores and m cores, where n ≥ 1,m ≥ 1. From (3) we have:

S (n,m) =
I · t(m)

I · t(n)
=

(1− p) + p
m

(1− p) + p
n

. (7)

This law shows an indirect relation between p and
performance counters via the speedup. By knowing the
initial m-core performance IPS (m) = I/t (m) and p,
it is possible to calculate the performance on n cores.
This is often used to solve an optimization problem, i.e.
which value of n gives the highest performance. The major
challenge here is that p is usually an unknown parameter.
However, this can be addressed if p can be measured
directly from the architectural performance counters at run-
time, which is demonstrated in the next section.

3.3 Estimation of Parallel Fraction

Finding p can be done by measuring the speedup S (n,m) as
a ratio of performances between two executions on different
numbers of cores and then solving (7) for an unknown p:

p =
S (n,m)− 1

S (n,m) · (n−1)
n − (m−1)

m

. (8)

S (n,m) is calculated according to (3), with IPS values
directly obtained from performance counters. The average p
of an entire workload can be obtained from offline analysis
of execution traces [10], but the method has limited use
as it requires complete workload executions. In this paper,
we modify the method in two important ways: 1) it can
be used in run-time while the workload is being executed
and 2) it provides an instantaneous estimate of a workload’s
p within a given time window. Given that p has distinct
phases during a workload’s execution, similar to other
properties [18], [25], the average p of an entire workload
is less useful than its instantaneous p for run-time use.

We can avoid running the application fully twice if we
change the number of available cores in the middle of
execution. Let’s split the workload arbitrarily in two parts,
I1 + I2 = I and run each part on a different number of
cores (m and n respectively), as shown in Figure 2. For
the moment, we assume that the parallel fraction remains
constant throughout the execution: p1 = p2 = p. Since
the number of cores change, the sub-parts I1 and I2 must
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p1 = p2 = p

t2(n)
t2(m)

t1(m)

I1 + I2 = I

Fig. 2. Determining p by splitting the workload in two arbitrary parts I1
and I2.

show different speedup values. However, since p is assumed
to be constant in this scenario, we can use the speedup
of any of the parts in order to calculate (8); let’s use
S2 (n,m) = (I2/t2 (n)) / (I2/t2 (m)). The value of t2 (m)
is unknown but relates to the measurable t1 (m) as follows:

t2 (m) =
I2
I1
· t1 (m) , (9)

which can be found from (5). This formally derives that the
speedup substitute for (8) can be calculated from the IPS
measurements as follows:

S2 (n,m) =
I2 · t1 (m)

I1 · t2 (n)
=

IPS 2 (n)

IPS 1 (m)
. (10)

Under the PARMA assumptions of the dynamic p, we
cannot apply p1 = p2 = p to the entire workload; however,
we can still approximate p to a constant within a small
sliding window. The scenario shown in Figure 2 represents
two most recent PARMA control cycles: t1 (m) time and I1
instructions for the previous cycle, and t2 (n) time and I2
instructions for the current cycle. The control then assumes
that the current value for p, determined from these two
cycles, will be valid for at least the next control cycle and can
be used to find the current optimal system configuration. In
the worst case, if this is not true, we lose optimal decision
in only one control cycle, hence for sufficiently small control
cycles and sufficiently long periods of stable workload p,
this approach should be acceptable.

Another problem remains: (8) requires m 6= n, i.e. if we
want to always use the two most recent control cycles, we
need to change the number of cores on every control cycle,
leading to inefficiency. We need to update the value of p
based on its previously determined value without changing
the number of cores. Let us assume that the base core
performance IPS (1) remains the same between two recent
cycles, i.e. the core frequency does not change. According
to Amdahl’s Law, if p and n remain the same, we should
expect IPS 1 (n) = IPS 2 (n). On the other hand, a change
in performance indicates a p change if n stays the same. In
this case, we have S1 (n, 1) = IPS 1 (n) /IPS (1) based on
the previous p1, which is assumed to be known from the
previous control cycle, and S2 (n, 1) = IPS 2 (n) /IPS (1)
based on p2, which we need to calculate. From (6) we can
derive the following equation:

IPS 1 (n) ·
(
(1− p1) +

p1
n

)
= IPS 2 (n) ·

(
(1− p2) +

p2
n

)
,

(11)

from which, in the case of n > 1, we can find p2:

p2 =
IPS 1 (n)

IPS 2 (n)
· p1 −

(
IPS 1 (n)

IPS 2 (n)
− 1

)
· n

n− 1
. (12)

The minimum number of cores we can run to use this
equation is 2, even if the workload is purely sequential. It is
a necessary overhead for capturing the sequential to parallel
transition as workload dynamically varies.

So far, all models in this section assume constant IPS (1).
It is possible to extend the models to variable frequency
by using performance assumptions (1) and (2). When the
frequency changes between control cycles from F1 to F2,
we can recalculate the models for one control cycle in the
time domain of another control cycle by using the ratio
IPS 1 (1) /F1 = IPS 2 (1) /F2.

However, in real applications, IPC (1) can also change
over time in the same way as p. The method still works
if IPC (1) stays approximately the same within two
consecutive measurement cycles.

4 PROPOSED PARALLELIZATION-AWARE MODELS

This section describes the power modelling methodology
aimed at determining the optimal operating points for a
given platform. The method considers two types of DVFS
control: full-domain and per-core. The presented models
are parametric, and the proposed characterization method
is based on a series of experiments with a synthetic
benchmark. Any given platform needs to be characterized
only once, therefore the calculations in this section do not
contribute to the run-time overheads.

4.1 Many-Core Power Modelling
The total power Wtotal, includes background switching
power W0, effective power Wn, and leakage power WL [26]:

Wtotal =W0 +Wn +WL. (13)

Background switching power is the dynamic power
always consumed by the cores unrelated to the workload.
Effective power is the switching power consumed by the
workload. This work considers leakage power WL to be
constant and does not consider thermal effects.

W0 and Wn can be expressed as functions of the supply
voltage V , frequency F , and switching capacitance [27]:

W0 =
1

2
·A0 · V 2 · F, Wn =

1

2
·An · V 2 · F, (14)

where A0 is the capacitance of components contributing to
the background switching power, and An is the capacitance
of components contributing to the effective power, which
depends on the activity factor and can be calculated as the
effective capacitance of a single core A1 multiplied by the
speedup (6). The total power of executing a given workload
on n cores can be calculated as follows:

Wtotal =
1

2
· (A0 +A1 · S (n, 1)) · V 2 · F +WL. (15)

Equation (15) can be applied to full-domain DVFS
platforms, where all cores operate on the same frequency
and voltage, and idle cores remain online contributing to
the background and leakage powers. Per-core DVFS control
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provides much greater flexibility in controlling system
power by tuning down or switching off individual cores.
Although at present this feature is often unavailable in off-
the-shelf consumer devices, we extend our models to cover
such future systems because of their advantages.

Amdahl’s Law for homogeneous systems implies even
distribution of the workload between the cores, hence
it does not provide a theoretical basis for individually
tuning DVFS of active cores. However, for the execution
on n out of nmax cores, it is still possible to distinguish
(nmax − n) unused cores and reduce their contribution to
the total power. If we set the voltage and frequency of
unused cores to Vun and Fun while running the workload
on n cores at V and F , the total power becomes:

Wtotal =
1

2
·
(

n

nmax
·A0 +A1 · S (n, 1)

)
· V 2 · F+

+
1

2
· nmax − n

nmax
·A0 · V 2

un · Fun +WL. (16)

It is possible to further reduce the power if we allow
switching off the unused cores, so they no longer contribute
to the background power and also the leakage power:

Wtotal =
1

2
·
(

n

nmax
·A0 +A1 · S (n, 1)

)
·V 2 ·F+

n

nmax
·WL.

(17)
In this paper we use (17) to model the platforms with

per-core DVFS capabilities.
In commercial platforms, each possible operating

frequency value F is typically coupled with a supply
voltage V , forming a VF-pair. The set of VF-pairs is
predefined by the manufacturer in a rather conservative
way and forms the platform’s DVFS table. Since we aim
to solve the power optimization problem analytically, we
require the voltage V to be expressed as a differentiable
function of frequency F . This function can be obtained by
curve-fitting the data from a given DVFS table. The results
for an actual platform can be found in Section 6.1.

Thus, (15) and (17) define the total platform power
as functions of p, n, and F , where A0, A1, and WL are
platform-specific constants that can be obtained from the
characterization experiments as described in Section 4.3.

4.2 EPI and EDP Modelling and Optimization

Power-normalized performance (PNP) and its reciprocal,
energy per instruction (EPI), are popular metrics for
optimizing system power consumption [28]. EPI is
calculated as Wtotal · tins, where tins is the instruction delay
that can be determined from the execution time and the
workload. From (2), (4), and (6) we have:

tins =
t (n)

I
=

1

S (n, 1) · IPC (1) · F
. (18)

Hence, we can express EPI as a function of p, n, and F :

EPI =
Wtotal

S (n, 1) · IPC (1) · F
, (19)

where Wtotal can be calculated from (15), (16) or (17),
depending on the platform, and IPC (1) is an application-
dependent constant as assumed in (1).

One argument against PNP or EPI is that it only
optimizes energy, and the system performance is not
considered. A commonly used technique to balance multi-
variable optimization is to add a trade-off exponent x to the
equation to create a general energy-delay trade-off metric:

ED (x) =Wtotal · txins =
Wtotal

(S (n, 1) · IPC (1) · F )x
. (20)

For x = 1 the metric transforms into EPI, and x = 2 gives
another popular optimization metric known as energy-
delay product (EDP) [29]. In our validation experiments in
Section 6 we focus on these two trade-off metrics; however,
the method accepts any x ≥ 0, including non-integer values.

The goal of PARMA run-time is to determine the optimal
operating tuple (n, F ) for the estimated instantaneous
parallel fraction p (Section 3.3), in order to minimize
ED (x) for any given x.

Minimization can be solved using gradient descent:

ni+1 = ni − λ ·
∂ED (x)

∂n
, (21)

Fi+1 = Fi − λ ·
∂ED (x)

∂F
, (22)

where λ is the learning rate. Starting from an arbitrary point
(n0, F0), partial derivatives ∂ED (x) /∂n and ∂ED (x) /∂F
are used to gradually approach the local minimum. Note
that p and x are constant during this calculation.

The method is not aimed at calculating the actual values
of ED (x) but aims at locating its minima. The application-
dependent constant IPC (1) scales the calculation by a
constant factor, but does not move the optimal points, which
means that the optimization results are system-wide and
independent of the workload-specific IPC (1). The only
determinant variable for the proposed method is p.

Solving (21) and (22) can be computationally expensive
and doing it in every run-time control cycle may not
be advisable. However, it is possible to use offline pre-
calculation for a finite set of discrete input (p) values. We
subdivide the range of 0 ≤ p ≤ 1 into h evenly spaced
bins, such that each i-th bin represents pi ± 1

h parallel
fractions, where 1 ≤ i ≤ h. In our experiments, we chose
h = 100 to obtain a 1% precision on p. The number of
optimization modes supported by the run-time (selected
by the parameter x) is also finite. Solutions for (21) and
(22) in each combination of (x, pi) form a lookup table for
run-time use to determine optimal n and F with minimal
computation overhead. The table is constructed only once
for any given platform.

Our approach uses p as the sole parameter to describe
the instantaneous behavior of a workload. Under this
assumption, the calculated lookup table applies to all
applications that can be executed on the platform without
needing prior knowledge before run-time. This is similar
to the approach adopted in [25] where multiple workloads
are classified during run-time for their CPU memory usage
characteristics without prior knowledge.

Compared to [25], this work only studies single
application scenarios. We consider the challenges posed by
multiple concurrent applications as a part of future work.
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Two methods show promising potential. One is to adapt the
method employed in [25], and classify multiple running and
incoming applications according to their p values and make
run-time control decisions based on the classification results.
Alternatively, it may also be possible to view concurrently
running applications as a single combined workload with
an overall dynamically changing p. Both methods require
further investigations.

4.3 Methodology for Model Characterization
This section gives a platform-independent description
of the methodology for experimentally obtaining model
parameters for any given platform.

System power measurements are needed for character-
izing the system power models. These measurements are
performed only once at the stage of model characterization
and are not required during the PARMA run-time control.
This means that, even if the platform does not provide
online power sensors, it is still possible to use the method
with a specifically instrumented experimental rig.

The method of finding A0, A1, and WL is based on
collecting power readings for the range of values for
n, p, and F and curve-fitting the measurements to (15).
It is difficult to assemble a set of standard benchmarks
that would provide a good coverage for the entire range
of p values and at the same time show stable parallel
behavior. Instead, we built a synthetic benchmark (available
in open source1), which implements a controllable parallel
fraction, such that p can be set to a given value during
the experiments. Figure 3 illustrates the flowchart of the
benchmark, which has distinct sequential and parallel
sections. It is based on a looped arithmetic calculation
(square root), which ensures CPU-heavy workload with
minimal memory access. The relative number of loop cycles
between the parallel and sequential parts is determined
by the input p value. Each parallel thread is pinned to a
dedicated core using Linux core-affinity. The benchmark
can accept p = 1 and run only the parallel section. In
this case, the actual p value of the execution may not meet
the requirement, but the benchmark will still display the
highest parallelization achievable on the platform, which is
not expected to be exceeded by any real application.

5 PARALLELIZATION-AWARE RUN-TIME

Based on Sections 3 and 4, this section constructs an
algorithm for parallelization-aware run-time management.
Figure 4 illustrates the control cycle, which consists of the
following steps:

• reading hardware performance counters and calcu-
lating current IPS value;

• determining the instantaneous value of p according
to Section 3.3;

• finding the optimal operating point (n, F ) for a
given the optimization mode (EPI or EDP) using the
lookup table as proposed in Section 4.2.

In order to calculate IPS, the method uses the number
of instructions retired and the number of unhalted cycles,

1. https://github.com/ashurrafiev/PThreads

START

END

Pin to Core0

Execute
(1–P)·X cycles

Pin to Core0

Execute
P·X/N cycles

... Pin to Core(N–1)

Execute
P·X/N cycles

Create N pthreads

Join pthreads

se
qu

en
tia

l
pa

ra
lle

l

Fig. 3. Flowchart of the synthetic benchmark with programmable p,
considering a total workload of X computation cycles.
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Fig. 4. The run-time management system.

which are usually available as performance counters in
modern CPU’s [10], [30], [31]. However, as noted in
Section 3.1, the instantaneous value of IPC used by
the models for IPS calculation includes both halted and
unhalted cycles and should correspond to the wall-clock
duration of the measurement window. The number of halted
cycles is often not available as a performance counter
and requires the following workaround. According to the
model, the halted cycles appear when the parallel cores
are waiting for the sequential execution to finish on one of
the cores. This also means that at least one core is always
busy executing both parallel and sequential parts and has
no halted cycles. Hence, we can indirectly measure the
correct total number of halted and unhalted cycles by using
the maximum number of unhalted cycles across all cores
running on the same frequency [10].

Section 3.3 proposed two methods for determining
parallel fraction p, both having pros and cons:

Method 1: Equations (8) and (10) require the number
of cores to differ between control cycles. The benefit of
using this approach is that it accepts n = 1 and does not
accumulate errors over time.

Method 2: Equation (12) can determine p over the
periods of constant n, but it requires n ≥ 2 and can
potentially accumulate errors because p is calculated in
relation to its previous value. Any measurement uncertainty
adds up to the subsequent measurements. Hence, even if
the individual uncertainties are small, they may cause the
estimated p to gradually drift away from its true value.

Consequently, each of the methods cannot be reliably
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used on its own. Therefore, PARMA run-time employs a
combination of both methods in a way that maximizes
the advantages of both methods while cancelling their
drawbacks. Here, Method 2 is used during the periods
of stable p, when the optimal number of cores stays the
same. Method 1 is used when there is a significant change
in behavior leading to a different n, at which point any
potential errors accumulated by Method 2 get reset.

A noteworthy constraint of the PARMA algorithm is that
n = 1 cannot be used even if it is the optimal operating
point (for example, during a purely sequential execution).
This makes sense since the behavior of an application
constrained to a single core does not exhibit parallelization
properties that could be monitored by the run-time. This
potential overhead is taken into consideration during the
experimental validation of the run-time.

Stability and convergence are important properties for
any control scheme [32]. Here we need to explore the
conditions under which PARMA may display oscillatory
behavior, similar to what was done in [25].

PARMA assumes that the determined p is valid for the
next control cycle. The same assumption is also true for IPC.
In the worst case when the workload changes its p faster
than the control cycle, the PARMA approach may produce
suboptimal results. Specifically, if the workload’s p oscillates
between a high value and a low value in step with the
control cycle, oscillations may occur because a high p and
a low p require very different control actions. This type of
oscillatory behavior is easy to detect at run-time and may be
remedied by reducing the control cycle’s length away from
its current value.

In theory, the control cycle cannot be infinitely reduced
because the control actuators, thread-to-core mapping or
context switching (tuning n) and DVFS (tuning F ), are not
cost-free and have inherent minimum latencies. It also needs
to include enough time for the control decision computation.
This means that PARMA’s usefulness is limited by the rate
of change of a workload’s p in relation to these latencies.
An appropriate control cycle length needs to be much
greater than the actuator latencies in order for the latter to
be relatively negligible and long enough to allow control
computation to complete, but also needs to be small enough
to satisfy the Nyquist-Shannon sampling theorem [33] with
regard to the rate of p change in the workload (i.e. cycling
at least twice as fast) for correct control.

DVFS transitions take no more than tens of µs [34] and
context switching requires less time [35] in modern systems.
On the other hand, empirical evidence shows that even
high-variance workloads (Figure 1) consist of relatively long
phases of stable p, with any full cycling between high and
low values taking multiple seconds. The difference between
actuator latencies and workload p cycle times is as much
as 5 orders of magnitude. In our experiments the control
cycle is set to 100ms which is 3 orders of magnitude greater
than the context switching and DVFS transition latencies
and more than 1 order of magnitude smaller than workload
p change latencies. This means that the actuator time
overheads can be safely ignored on the one hand and the
Nyquist-Shannon requirement is more than satisfied on the
other. The conservative range of appropriate control cycle
durations spans more than 2 orders of magnitude, between

several ms (more than long enough for the low-overhead
lookup-table control decision making) and hundreds of ms.
This range may be used for trading off the energy overhead
of PARMA with its control precision and responsiveness.

Even if PARMA runs out of space for reducing its
control cycle, sympathetic oscillations can still be avoided
by increasing the control cycle from its current value. The
resulting control will not be optimal in that case as the
control decision will be based on an average p whose
relevance is unknown in the next control cycle. This is a
general problem for any control scheme if actuators and
control decisions cannot change as fast as the plant being
controlled, making Nyquist-Shannon impossible to satisfy.
This, however, rarely happens when the objectives of control
optimization consist of non-functional properties such as
performance and energy [32], [25].

The proposed algorithm has been implemented and
Section 6 validates it in an experimental setup.

6 CASE STUDY

This section presents the experimental validation of the
proposed method.

6.1 Experimental Platform and Characterization

The experiments are based on Core-i7-4820K Intel quad-core
platform with 64 KB L1 cache, 256 KB L2 cache, and 10
MB L3 shared cache. In our experiments we disable hyper-
threading and allocate tasks to physical (not logical) cores.

The platform supports full-domain DVFS, i.e. all cores
operate on the same frequency. Table 2 presents the available
voltage-frequency pairs. In the characterization experiments
we only make use of 4 test points (as marked 1 to 4 in
Table 2). In order to validate per-core DVFS, we build a
simulation in Matlab based on the characteristics of this
Intel platform. The simulation does not take into account the
time overheads of switching the cores on and off, hence the
simulation results are optimistic as discussed in Section 6.3.

Because of the requirement in Section 4.1, we convert
voltage-frequency pairs into a differentiable function by
building a linear regression model using the following
hypothesis:

V = γ0 + γ1 · F, (23)

where γ0 is found to be 0.6619 and γ1 equals to 0.1178. The
models give R-squared ≥ 0.98 and SSE ≥ 0.004232.

The platform provides performance counters via the
Linux Model-Specific Register (MSR) module. In this paper,
we use the likwid tool to collect this information; likwid
is a lightweight performance oriented tool suite for x86
multi-core processors [36]. The following likwid events are
used in this work.

• INSTR_RETIRED_ANY counts the instructions leav-
ing the retirement unit: these are the instructions that
have been executed and their results are correct [31].

• CPU_CLK_UNHALTED_CORE counts the number of
unhalted clocks, i.e. the number of recorded clock
cycles while the core is not in a halt state. This
number is not proportional to the elapsed time in the
case of core halting and changing core frequency [30].
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TABLE 2
Voltage Frequency Scaling Readings

Test point F , GHz V , V Wtotal, W
1 3.7 1.1 49.683

3.5 1.07 45.785
3.3 1.05 42.263
3.2 1.04 40.668

2 3.0 1.02 37.111
2.8 0.99 34.209
2.6 0.97 31.490
2.4 0.94 29.075
2.3 0.93 27.754

3 2.1 0.91 25.234
1.9 0.89 23.198
1.7 0.86 21.157
1.6 0.85 20.492
1.4 0.82 18.886

4 1.2 0.81 17.181

The number of halted cycles and the total number of
cycles are not available directly in Intel platforms, as Intel
focuses on unhalted clock for IPC calculations [30]. Section 5
describes the method of calculating the total number of
cycles from the number of unhalted cycles on each core.

The characterization experiments are aimed at building
the power profile of the platform and follow the
methodology presented in Section 4.3. The synthetic
benchmark (Figure 3) is used to produce the workload with
a specific value of p. The monitoring of CPU energy has been
achieved using PWR_PKG_ENERGY counter; [37] shows that
this performance counter produces reliable results validated
through direct measurements such as DC instrumentation.

We ran a total of 48 experiments for the range of
n ∈ {1, 2, 3, 4}, DVFS test points 1 to 4 in Table 2, and
p ∈ {0.1, 0.5, 0.9}. In each experiment, we measured the
total power dissipation Wtotal and fitted the measurements
to (15) to find platform constants A0, A1, and WL. The
average WL is 10.349 W with standard deviation of 0.113
and R-squared ≥ 0.994. The background capacitance A0 =
7.012 nF and the effective capacitance An = 2.406 nF.

The resulting platform models and optimal operating
points are discussed in Section 6.3.

6.2 Benchmark Applications and Motivational Findings

The PARMA implementation has been validated using the
PARSEC benchmark suite [38]. The PARSEC suite contains
a set of reference applications from many fields, including
industry and academia, aimed at studying concurrent
applications on parallel hardware. Some of them are
parallelized using OpenMP and the others are parallelized
using POSIX threads.

In our initial experiments for determining the
instantaneous values of p and IPS, we observed that
some benchmarks display a very stable behavior with low
variation of p value, while others have distinct phases
with drastically different parallel fraction values. In this
paper we present typical cases of each behavior class. Other
benchmarks fall somewhere in between these two extremes
and behave accordingly2.

2. http://async.org.uk/data/PARMA2019/
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Fig. 5. Low p-variation benchmarks: a), b), c) bodytrack; d), e), f)
swaptions.

For the low-variation cases, the selected benchmarks
are bodytrack and swaptions. Figure 5(a),(b) and
(c) illustrate the low changes in p, IPS calculation and
power consumption respectively during execution time for
bodytrack. Figure 5(d), (e) and (f) show the low variation
in p, IPS and power consumption during execution time
respectively for both swaptions benchmark.

For the high-variation cases, the selected benchmarks
are canneal and blackscholes. Figure 1(a),(b) and
(c) illustrate the low changes in p, IPS calculation and
power consumption respectively during execution time for
canneal. Figure 1(d), (e) and (f) show the low variation
in p, IPS and power consumption during execution time
respectively for both blackscholes benchmark.

6.3 Results and Discussions

This section provides offline analysis of the obtained
platform models and presents the results of using these
models in run-time optimization.

6.3.1 Modelling and Optimization Results
The experimentally obtained platform characteristics are
applied to (20) to obtain the EPI and EDP models shown
in Figures 6 and 7. The presented values are calculated for
IPC (1) = 0.411 corresponding to the synthetic benchmark.
Throughout the experiments we observe IPC (1) in the
range of 0.2 to 2.0 across various applications. The value of
IPC (1) is shown to scale the EPI and EDP graphs but not
affect the locations of minima, as predicted by the models.

Figure 8 shows the optimal operating points (n, F ).
These points are used in the PARMA control, and the
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Fig. 6. EPI for synthetic application: (a) with high parallelization p = 0.9
and (b) low p = 0.1.

respective run-time results are discussed in Section 6.3.2. To
investigate further trends, we increase nmax to 64 cores and
show the results of the same optimization in Figure 9 under
the assumption that A0, A1, and WL stay the same.

For the full-domain DVFS models, the optimal operation
is always at the maximum number of cores. An interesting
point is p = 0 where the suggested n is 1. For p = 0, this
is not a unique optimal point: the minimum values of EPI
and EDP are the same for all n for any given frequency,
hence the maximum number of cores can also be used for
p = 0. This choice can be explained by not being able to
shut down individual cores in full-domain platforms, hence
the total power is dominated by background and leakage
powers regardless of the number of active cores.

The optimal F for full-domain DVFS depends on the
optimization metric. EDP requires maximum F , but EPI
results depend on p. As can be observed from Figures 6(a)
and 7(a), with large p and maximum n, the metric graphs are
almost flat with regard to F . The optimal frequency point
does not lead to large improvements in the metrics.

In the case of per-core DVFS, EPI control is
uncomplicated and always requires minimum n and
minimum F regardless of p. Since EPI is heavily biased
towards energy optimization, it is reasonable to choose
the smallest number of cores and the lowest frequency.
On the other hand, EDP optimization with per-core DVFS
is equally concerned about performance and energy; it
requires different n for different p values, but the frequency
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Fig. 7. EDP for synthetic application: (a) with high parallelization p = 0.9
and (b) low p = 0.1.

is always set to the maximum.

6.3.2 Run-Time Optimization Results
The PARMA algorithm presented in Section 5 is imlemented
on the platform and evaluated with PARSEC benchmarks:
bodytrack and swaptions representing low p-variation,
and blacksholes and canneal representing high p-
variation workloads. These experiments provide results
for full-domain DVFS control. Since per-core DVFS is
not available on the platform, we evaluated it using
Matlab simulations. The simulations use the traces of actual
benchmark executions to feed the performance counter data,
but also consider the effect of switching off individual cores.

The baseline for comparison is the default Linux
ondemand governor. The results are shown in Figures 10
and 11. The graphs are normalized to ondemand, and the
tables show actual metric values.

The EPI results show that PARMA run-time is better
suitable for optimizing this metric than ondemand. For full-
domain DVFS, PARMA shows up to 35% improvement; for
per-core DVFS, the improvement is up to 48%.

When optimizing EDP under full-domain DVFS for
bodytrack and swaptions benchmarks, their high and
stable paralellizability requires high numbers of cores and
high frequency, which are provided by both ondemand
and PARMA controls. Hence both run-times show equally
good results. However, PARMA shows better reaction
to variability in parallel behavior and improved over
ondemand for blacksholes and canneal benchmarks.
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Overall, EDP optimization is improved by up to 20% in full-
domain and up to 64% in per-core DVFS modes.

It is important to note that our per-core DVFS
simulations do not take into account the overheads of
switching the cores on and off, hence the results are
optimistic. On the other hand, the PARMA control requires
the minimum of two cores to be active while some optimal
points indicate n = 1. This means that the system is
sometimes running sub-optimally, and this effect is taken
into account in the results.

6.4 Future Work

This paper presents a run-time algorithm based on
monitoring the parallel behavior of an application. It is
strongly tied to Amdahl’s Law and uses the parallel fraction
p as the key determinant of the application properties.

Amdahl’s Law is often criticized to be an idealistic over-
approximation mainly because it views the execution as
either parallel or sequential and also because it assumes
that the parallel fraction is infinitely parallelizable. A more
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precise approach is to represent the workload with a task
dependency graph and, assuming that independent tasks
can be executed in parallel, calculate the instantaneous value
of parallelism [39]. Parallelism is defined as the ratio of
the workload execution time on one core to the workload
execution time on an infinite number of cores [40] and can
be understood as the maximum number of parallel threads.

In theory, the parallelism approach is capable of
producing better parallelization-aware run-time control;
however, it has associated practical difficulties, for instance,
determining the application task graph. [39] describes a
practical method for Android devices, but it still implies
pre-characterizing each individual application.

The presented version of PARMA improves the classical
Amdahl’s model by introducing the notion of variable
instantaneous p, which brings it closer to the concept of
parallelism. The mathematical foundation of the method
makes the models application-independent as long as
the value of p can be determined during run-time. The
experiments confirm the efficacy of the PARMA approach,
but we believe that there is still a possibility for further
improvement.

The plans for future work include properly linking
the notion of parallelism with the run-time monitoring of
parallel behavior. This way it may be possible to benefit
from non-Amdahlian parallelism-based models without
requiring pre-determined application-specific task graphs,
which should improve the optimization result while still
maintaining the practicality of the method.

7 CONCLUSIONS AND DISCUSSIONS

The parallelizability of workloads is an important
characteristic in the era of multi-/many-core processing.
One of the main methods of quantitatively describing
workload parallelizability is the parallel fraction p from
Amdahl’s Law and related models. Making use of this
parameter to derive the optimal run-time control of systems
has, however, not been attempted systematically until now.
This paper describes the PARMA method and its supporting
techniques whereby p is the central parameter in the run-
time optimization of energy/performance tradeoffs.

A new practical method of determining p at run-time
using hardware performance counters is presented. Based
on Amdahl’s workload model and our existing offline
modelling methods, the run-time acquisition of p values
supplies enabling information for run-time optimization.

Parallelization-aware power models for many-core
processors are presented. These take into account both
domain-wide and per-core DVFS assumptions for current
relevance and future usability. The models enable the
optimization of any weighted-product energy/performance
tradeoff metrics, exemplified by EPI and EDP in the analyses
included in this paper.

An implementation of PARMA run-time is presented
in this paper and its efficacy is validated through
a set of experiments using a number of benchmark
applications, on an off-the-shelf multi-core system. The
PARMA method and its supporting techniques enable the
run-time optimization of any metric which has a relation
to workload parallelizability and can be monitored through
the use of hardware performance counters.
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