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Energy efficiency continues to be the core de-
sign challenge for artificial intelligence hardware
designers. In this paper, we propose a new artificial
intelligence hardware architecture targeting Internet
of Things applications. The architecture is founded
on the principle of learning automata, defined using
propositional logic. The logic-based underpinning
enables low energy footprints as well as high learning
accuracy during training and inference, which are
crucial requirements for efficient artificial intelligence
with long operating life. We present the first insights
into this new architecture in the form of a custom-
designed integrated circuit for pervasive applications.
Fundamental to this circuit is systematic encoding of
binarized input data fed into maximally parallel logic
blocks. The allocation of these blocks is optimized
through a design exploration and automation flow
using FPGA-based fast prototypes and software
simulations. The design flow allows for expedited
hyperparameter search for meeting the conflicting
requirements of energy frugality and high accuracy.
Extensive validations on the hardware implemen-
tation of the new architecture using single and
multi-class machine learning datasets show potential
for significantly lower energy compared with the
existing artificial intelligence hardware architectures.
In addition, we demonstrate test accuracy and
robustness matching the software implementation,
outperforming other state-of-the-art machine learning
algorithms.
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1. Introduction
Advances in sensing devices have enabled a shift towards the fourth industrial revolution [1].
The large volume of the data produced by these devices is pushing the technology front of
a new generation of artificial intelligence (AI) for Internet of Things (IoT) applications. These
applications are expected to infer important decisions in the real world instantaneously rather
than offloading data to the cloud servers [2]. Such a step change in technology requires significant
strides in energy efficiency, which continues to be a primary design challenge for IoT hardware
designers [3–5].

Existing AI systems predominantly follow the principle of neural networks (NNs). Originally
inspired by Rosenblatt’s Neural Automaton in 1957 [6], modern NNs have evolved in complexity
across different application domains. Typically NNs define a learning problem by finding the
weighted sum of all inputs in the training phase, organized in multiple layers. The weight
updates are defined by a normalized activation function and are performed through rigorous
gradient descent exercises. When implemented in hardware, the modular electronic neurons
require arithmetic-heavy circuits, such as multiply-accumulate (MAC) units. The number of these
units can quickly grow with more inputs and added complexity of the learning problem [7]. Given
such a scale of arithmetic complexity, achieving required energy efficiency and performance in
NNs can be daunting, which is exacerbated further by the large volume of data generated by IoT
devices [8].

Over the last two decades, significant progress has been made in energy-efficient NN hardware
research. A vast majority of existing works have considered pruning arithmetic complexity to
save energy by exploiting the natural resilience of AI applications to minor deviations or error.
Examples include precision scaling [9,10], approximate logic designs [11–13], new analog or
mixed-signal circuit designs [14] and hardware/software co-design for NNs [15]. Recently, there
are overwhelming interests in moving away from arithmetic to using binary logic as the core
building blocks. Binarized neural networks (BNNs) are an example of this development. The
key goal is to condense advanced AI workloads with low energy footprints. However, this can
make the learning process (i.e., accuracy and convergence) sensitive to how gradient descent is
designed, which is still arithmetic based [16].

Learning automata, originally defined by Mikhail Tsetlin in 1960s, constitute another class
of machine learning algorithm that reinforces current action using the past history. Each action
follows the trajectory of a probability distribution which is updated based on the environmental
response the automaton obtains by performing a particular action. As the number of actions, and
their probability distribution trajectories can have a very large number of combinations, adopting
learning automata to machine learning (ML) hardware has been challenging [17,18].

Recently the Tsetlin machine has been proposed as a promising ML algorithm based on
learning automata. The Tsetlin machine simplifies the traditional learning automata by discrete-
step action updates through Tsetlin automata, defined as the finite automata with linear tactics.
For action updates, each Tsetlin automaton uses rewards for reinforcing an action and penalties
for weakening the automaton confidence in performing the action. This discretization with linear
step updates allows for formulating the learning problem using powerful propositional logic [19],
and furthermore, simplifies the learning mechanism enabling efficient on-chip learning. The input
data in a Tsetlin machine are encoded in the binarized form as a set of propositional logic
variables, called literals. These literals are used to build the logic expressions corresponding
to inference classes through ensembles of parallel Tsetlin automata, called Clauses, during
training [20]. When training is completed, the inference outputs are described by binarized
classifications.

The logic-based structure of Tsetlin machines provides opportunities for energy efficient AI
hardware design. This will require addressing the major challenges of systematic architecture
allocation of low-level resources as well as parametric tuning and data binarization, which cannot
be achieved by using high-level synthesis or hardware-assisted acceleration tools. This paper
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provides the first insights into an AI hardware architecture design using learning automata,
addressing the challenges above. Specifically, we make the following contributions:

• a new AI hardware architecture capable of on-chip learning, targeting primarily an
application-specific integrated circuit (ASIC) implementation;
• a binarization method for encoding data for the proposed architecture;
• an exploration and automation design flow for faster hyperparameter search and

hardware optimization using a runtime-reconfigurable FPGA prototype;
• extensive validation experiments using several ML datasets, showing comparative

analysis of performance, energy and learning efficacy.

Our aim is to corroborate the principles of learning automata applied in energy-frugal AI
hardware design. As such, we will validate the efficiency of the hardware architecture using IoT-
scale datasets that are carefully chosen to investigate both single and multi-class applications as
well as to study the impact of noisy inputs on the overall learning efficiency. The remainder of this
paper is organized as follows. Section 2 introduces the core learning automaton algorithm, leading
to the Tsetlin machine. Section 3 presents the design flow and resulting Tsetlin machine hardware
architecture. Section 4 discusses the experimental results using the ASIC implementation, while
Section 5 reports further results from ML experiments conducted on the FPGA platform. Finally,
Section 6 concludes the paper highlighting our future work.

2. Machine Learning using Learning Automata
Figure 1 depicts a schematic of different structural blocks in the learning automaton algorithm.
The algorithm adopts of discrete-step updates using linear tactics, proposed by [19]. This enables
the algorithm to be constrained by a finite number of states, defined by an ensemble of Tsetlin
automata. Input data are defined as a set of binarized features and their complements, called
literals (A, Figure 1). The literals are fed into the learning automaton structure through two
major parts: one responsible for inference (i.e. classification) and the other for reinforcement and
feedback for learning (i.e. training). In the following these parts and their parameters are further
detailed.

(a) Inference
The main inference component is the conjunctive clause (B, Figure 1), which uses propositional
logic expressions for output classification. The composition of each clause is controlled by a team
of Tsetlin automata, each of which has a pre-defined number of states, divided between actions
(see Figure 2). The automata decide whether their associated literal should be included in the
clause or not, following a number of reinforcement steps (see Section (b)).

Each inference class has a set of clauses associated with it. Each clause produces a vote or
no vote for its class. Half of the clauses can vote positively, and half of the clauses can vote
negatively. The inclusion of inhibition in the voting system is what enables non-linearity in the
inference process. The votes are summed to produce a collective result which gives an indication
of confidence. This confidence is used to influence future decisions of the automata (E, Figure 1)

In a single-class inference problem the output layer is a simple thresholding function. If the
votes are positive (or zero), the input data is determined to belong to the class. For a negative
sum the input data is determined to be not in the class. For multi-class problems we replace
thresholding with argmax to determine the output class (D, Figure 1). In this case the class
summation becomes indicative of confidence and argmax chooses the class with the highest
confidence, thus avoiding any ambiguity in classification.
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Figure 1. A schematic diagram of discretized implementation of learning automata proposed
by [19].

(b) Reinforcement
Fundamental to reinforcement are the team of Tsetlin automata (C, Figure 1). Such automata are
also known as automata with linear tactics, to emphasize the fact that they allowed gradual
ascent, or reinforcement, in performing a particular action, and equally gradual descent from
one action to performing another action. A variety of types of such learning automata have been
studied in [21].

In the Tsetlin machine implementation, a two-action Tsetlin automaton is described by the
state diagram in Figure 2. The automaton may be given reward, causing it to reinforce the current
action decision (e.g., action 1) by moving away from the midstate (i.e., state n in Figure 2).
Conversely it may be given a penalty which moves the state towards the decision boundary.

1 2 n· · · n+ 1 n+ 2 2n· · ·

Action 1 (α1) Action 2 (α2)
Penalty
Reward

Figure 2. State diagram for the Tsetlin automaton.

In relation to processing the binarized literal through Tsetlin automata within clauses, the
two actions are include and exclude. The update of the automata requires reinforcement through
penalty, reward and inaction. The decision on whether to update individual automata is
controlled by a number of conditions based on: 1) the values of literals, 2) votes from clauses
described earlier, and 3) current actions of Tsetlin automata in terms of include and exclude. For
further details of how algorithm reinforces these updates, please refer to [19].



5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

(c) Parameters
The efficacy of machine learning using learning automata depends on a number of
hyperparameters, which must be carefully tuned before training. The process of tuning for
accuracy and convergence for a given problem is called hyperparameter search. Table 1 shows the
Tsetlin machine hyperparameters with their associated symbols used throughout this paper. The
numbers of binary inputs and classes are fixed by the problem at hand.

Table 1. Tsetlin machine parameters and their symbols.

Number of binary inputs NInputs
Number of classes NClasses
Number of clauses per class NClauses
Number of automaton states 2n

Automaton decision boundary n

Automaton initialization state φInit
Feedback threshold T

Learning Sensitivity s

For large ML problems, software-based hyperparameter search can be computationally
expensive, requiring several hours to weeks of iterative computation times. Typically, software
based hyperparameter search aims to achieve better accuracy and performance. However,
hardware objectives are marginally different as hyperparameters need to be carefully exercised in
low-level design configurations for energy-frugality, while achieving an acceptable accuracy. To
achieve these objectives as well as for accelerated search, we will use an FPGA-based hardware
prototype on ML problems with different dataset sizes. This prototype will also be used for
automating the process of faster design exploration, while managing the tradeoffs between
power, performance and efficacy.

3. Proposed Hardware Architecture
The hardware architecture inspired by the Tsetlin machine implementation of learning automata
(presented in Section 2) is designed exploiting the principle of maximal parallelism. Update of all
Tsetlin automata and computation of all clauses is executed in parallel. This allows for processing
one datapoint (which is a set of the input features concurrently updating all automata in the
Tsetlin machine) in a single clock cycle. Figure 3 shows the basic Tsetlin machine inference (i.e.
classifier) architecture. This block is duplicated for the number of required classes.

The input to the proposed architecture is a set of binarized Literals. The Literals are organized in
pairs of originally encoded binaries and their inverses (i.e. Literals = {Inputs, Inputs}). The learning
units (Figure 4) are self-contained and include the automata (TA), feedback generation (FB) and
random generation associated with one clause. For inference, only the clause computation itself
and include states previously calculated by the automata are required; the rest of the learning unit
can be omitted or turned off. In the following different architectural components are described
further. For ASIC synthesis, Tsetlin machines parameters are fixed at compile time enabling the
lowest area and power possible. For FPGA prototyping, hyperparameters can be adjusted on-the-
fly for rapid exploration and optimization.

(a) Binarization
The input Literals are encoded in a binarized form before they are compatible in the proposed
architecture’s learning and inference steps (Section 2). This binarization process affects the system
accuracy, therefore to tune the accuracy to the required level, binarization is included in the
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Learning Unit
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Figure 3. The basic architecture of a two-clause Tsetlin machine classifier.

Clause

FB FB FB FB

TA TA TA TA

Random Generator

Learning Unit (LU)

x0
x0
x1
x1

Clause
Output

Figure 4. A two input Tsetlin machine learning unit comprising a clause, Tsetlin automaton (TA),
feedback (FB) and random source.

Binarization TM
Binary
Data

Real
Inputs

Figure 5. A closed-loop binarization method with accuracy feedback.

feedback loop during training as Figure 5 shows. Using a suitably chosen encoding method, the
raw data are encoded with increased binary precision until the required accuracy is achieved.

Existing encoding method uses pre-defined thresholds and precision levels for encoding the
raw dataset [22]. This method ignores the statistical significance of data, which defines how
output inference classes are correlated with the dataset. For example, in a multi-class ML problem,
it is possible that majority of the inference classes are statistically orthogonal and independent.
A data significance-agnostic method will not exploit this orthogonality towards reducing the
binarized encodings, which will lead to over-provisioning of resources (such as the number of
parallel automata and the number of clauses) in the hardware architecture.

Figure 6. A data flowchart of significance-driven binarization method, organised in three stages.
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For resource-frugality considerations, we developed a significance-driven binarization method
consisting of three stages, as shown in Figure 6. In the following, we briefly describe these three
stages.
Stage 1 (Dimensionality Reduction): In the first stage the class labels are stripped off in a
given ML dataset and then Principal Component Analysis (PCA) is carried out. PCA generates
orthogonal transformation of the dataset to linearly uncorrelated components, defined by
eigenvalues that represent their percentage of variance. The outliers in the component definition
are discarded, leading to dimensionality reduction.
Stage 2 (Classification): After reducing dimensions through PCA, it is possible that the
components will still have eigenvalues indicating high correlation between them. At this point,
k-means clustering (kMC) is applied to quantitatively differentiate the data point positions. We
chose kMC as it is a fast and scalable method, which can progressively adapt to cluster centroids
starting with a random datapoint [23]. In our approach, we use hard clustering approach in kMC,
which allocates each PCA point to only one cluster. Since we already know the target class each
point belongs to from the original class labels, kMC allows for validating their true significance
using orthogonality.
Stage 3 (Binary Encoding): With their true reflection of orthogonality and clusters in Stage
2, the distance between the clusters is determined in this stage, leading to our envisioned
binarization method. We use a Clusters to left, Distance from true class, Clusters to the right (CDC)
encoding scheme that can uniquely define a cluster, maximally maintaining the orthogonality and
dimension reductions obtained from PCA. By identifying the cluster distances, threshold points
can be estimated from the raw datasets for binary encoding. For overlapped clusters or higher
accuracy needs, the thresholds are re-adjusted or re-coded considering the one or more cluster
distances, particularly the overlaps to the left (C) and that to the right (C).

Figure 7 demonstrates the stage outcomes generated by the proposed binarization method,
when applied to the Iris dataset1. Figure 7(a) shows the graphical representation of the first two
principle components. We can see there is a clear classification of the Iris-setosa but an overlap
with the other two classes. These classes are then clustered according to their variance, which can
be visualised from the Figure 7(b). Note how the points seem to be distributed almost parallel to
the y-axis for each class (particularly for the Iris-setosa class). Figure 7(c) depicts how orthogonal
and overlapped classes are encoded in a binarized form for the Iris dataset.

The impact of using a significance-driven binarization method on the machine size cannot be
understated. This is because the encoding dictates the number of input features, and the number
of automata in the machine scales with 2 ·NInputs ·NClauses ·NClasses. Following on, the number
of automata in the machine is directly proportional to the number of inputs (NInputs). Taking
the Iris dataset as an example, existing thresholding technique may produce a 16-bit encoding
for data. Our proposed encoding with reduced dimensions and the size of dataset generate a 6-
bit encoding with no reduction in inference accuracy, thereby achieving 2.67× reduction of the
machine size.

A full analysis of this method with scalable application to larger ML datasets as well as
accuracy-sensitive online optimization of binarization are considered for future work. In this
paper we use pre-binarized datasets, proposed by [22].

(b) Reinforcement: Tsetlin Automata and Feedback
We implement a specialized version of the original Tsetlin automaton described in Section 2(b).
We use α2 == 1 to indicate include, and α2 == 0 to indicate exclude. We also introduce the notion
of inaction for the Tsetlin automata. This means it is possible for neither penalty nor reward to
be given to the automaton. In our hardware implementation, each Tsetlin automaton is modeled
as a counter. The counter stores an internal state in a register which is tuned based on feedback
from the current machine state. In the case of inaction, the state remains unchanged. For penalty

1https://archive.ics.uci.edu/ml/datasets/Iris
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(a) The first two principle components after Stage 1.

(b) The PCA features in 2 dimensions after Stage 2.

(c) Output binaries generated by the CDC
encoding scheme after Stage 3.

Figure 7. A visual representation of the stage outputs of data significance-aware binarization
method applied to the Binary Iris dataset.
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Table 2. Tsetlin automaton internal state tuning.

Include Not Include

Penalty −1 +1

Reward +1 −1

or reward, the state (φ) is tuned according to Table 2 and saturates according to the bounds 1≤
φ≤ 2n, φ∈Z.

The include output is asserted when the automaton internal state exceeds the decision boundary
such that Include = 0 for φ≤ n and Include = 1 for φ> n. This indicates that the associated literal
will be included in the composition of the associated clause. For our hardware it is preferable for
the number of possible automaton states to be a power of two so the include output becomes the
most significant bit of the state. In other cases a magnitude comparator would be required at the
expense of increased logic area.

Penalty and reward are issued to each automaton based on their associated literal, clause
output, include state, summation output, expected class and feedback threshold (see [19,22] and
Section 2 for further details).

An element of probability is introduced into the state tuning to facilitate diversity of learning
among clauses. The probability element is provided by linear feedback shift registers (LFSRs).
LFSRs produce a random number sequence in each cycle, which is then compared with a pre-
determined sequence to define the probability in the circuit.

After learning is completed in the Tsetlin machine algorithm, the reinforcement logic becomes
redundant and only the Include state is needed to perform inference. For our ASIC this means that
the Tsetlin automaton registers can be clock gated since their contents will not change—that is, the
clock signal will be disconnected in order to prevent wasted switching power in the register.
Additionally, the feedback and LFSR blocks can be power gated, completely removing supply
voltage and therefore reducing their quiescent power to zero [24]. These power saving techniques
are essential for enabling maximum inference power and energy efficiency (see Section 4).

(c) Inference: Clauses, Voting and Confidence
Figure 8 shows the logic for a two-input clause, implemented following the algorithm (Section 2).
The wide AND operation is implemented as a balanced tree of AND gates for minimum path delay.
Include for each literal is used to mask the literal, forcing the corresponding AND gate input to one
if the literal is to be excluded.

Clause
Output

x0

x0

x1

x1

Include1

Include2

Include3

Include4

Figure 8. Logic implementation of a two-input clause.
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The simplest Tsetlin machine consists of a single class and uses a threshold function to
determine whether the input is in the class or not (see Figure 9a). As discussed in Section 2(a),
a multi-class Tsetlin machine can be implemented by instantiating multiple Tsetlin classifiers
and choosing the class with the greatest confidence using an argmax block (see Figure 9b).
Argmax is built using a tree of comparators with accompanying multiplexers which pass through
the corresponding argument number. Figure 10 shows the logic implementation of a two-input
argmax which is used to build argmax of higher-numbered input. Max and Argmax outputs become
xi and ai inputs for the next stage.

Clause
Sum

Threshold

Class

(a)

Argmax

Clause
Sum 2

Clause
Sum 1

Clause
Sum 3

Class

(b)

Figure 9. Output functions for (a) single class and, (b) multi-class Tsetlin machines.

1

0

1

0

+
−

x0
x1

Max
a0
a1

Argmax

Figure 10. Logic implementation of a two-input argmax.

In Figure 11 we investigate the critical path of the inference hardware—using the hardware
for generated for the Noisy XOR problem specifically. Include states for the clauses are already
calculated by the automata and do not change once learning has ceased. The path is fully
combinational and has a propagation delay of less than one clock cycle.

AND TreeInclude

Input

FA AO222 FA FA FA FA Class

Clause

Summation Threshold

Figure 11. Critical path of the inference hardware.
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(d) Design Exploration and Automation
Typically, software based hyperparameter search aims to achieve better accuracy and
performance [25]. Hardware hyperparameter search is marginally different as it exercises these
parameters in low-level design configurations for energy-frugality, while achieving an acceptable
accuracy. As such, we developed an FPGA-based automation platform that we can use to flexibly
program the hardware to enable accelerated design validations as well as energy frugality and
matching stochasticity using small and readily-available datasets. This will ensure the parameters
can be transferred exactly over to the ASIC design and as such will be especially important once
we develop hardware-centric Tsetlin machine algorithms which further depart from the software
implementation. The FPGA hardware expedites the hyperparameter search process due to high
parallelism of the implementation and is capable of running one training cycle in the order of
seconds, compared to several minutes for the software implementation on a desktop computer.

Figure 12 shows the design flow. Initially there is some heuristic to choose the hyperparameters
based on the number of binary inputs. From there we perform a hyperparameter search which
includes a feedback loop to suitably minimize the hardware resources for energy frugality, while
also maintaining a high level of accuracy. The final hyperparameters are then used for ASIC
synthesis.

An Altera Cyclone V FPGA development board is connected to a host PC through USB
connections. A script on the host PC controls the FPGA hardware via Intel Quartus software.
The script manipulates the FPGA IO to load the dataset and control the runtime-reconfigurable
hyperparameters. After each training cycle the test accuracy is measured and recorded. The
hyperparameter search is exhaustive based on a list of possible hyperparameters provided
by the user. After the hyperparameter search is complete, the user can choose the preferred
hyperparameter configuration based on the accuracy achieved and the resource required for the
specific implementation. Changes to the binarization method can be made at this stage if the users
requirements are not met. After the final hyperparameters are chosen, these can be input into the
final ASIC synthesis by means of Verilog parameters.

Dataset
Hyperparameter

Heuristic

Tweak
Binarization
Algorithm

FPGA-based
Hyperparameter

Search

ASIC Synthesis

Target
Not Met

Figure 12. Design exploration and automation flow using an FPGA.

For hyperparameter optimization we instantiate a parameterizable Tsetlin machine design
on an FPGA and use runtime reconfiguration to disable functional units on-the-fly. This
methodology allows us to test many Tsetlin machine configurations in a short time and without
resynthesizing or reprogramming the FPGA hardware. Clauses can be disabled by forcing their
output to zero, meaning they have no effect on Clause Sum. Their associated automata can be
disabled to reduce power by giving constant inaction. Our future work includes designing the
argmax block that can ignore certain inputs to disable the corresponding class, enabling problems
with varying number of class outputs to be optimized on the same FPGA hardware.
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Clauses are the main building block of the architecture and also determine the number of
automata required in the system. Therefore our main optimization goal for area and power
is to minimize the number of clauses. Overall accuracy of the machine depends heavily on
the interaction between NClauses and T hyperparameters. The T parameter makes almost no
difference to the hardware size or power, and we therefore optimize T in order to retain as much
accuracy as possible with minimum NClauses. By using an iterative heuristics algorithm, we have
been able to reduce the total number of clauses (given byNClasses ·NClauses) in the Tsetlin machine
from 300 to just 60, whilst retaining a test accuracy greater than 92%. This 80% saving in clauses
translates almost directly to the same saving in resources for the ASIC implementation. Figure 13
shows the highest test accuracies achieved for different combination of NClauses and T . It is seen
that the larger the T value, the greater the potential to reach a higher accuracy. However as T
increases, so does the number of clauses needed to achieve the highest accuracy.

Figure 13. Effect of NClauses and T hyperparameters on test accuracy after training for 100 epochs.

4. Performance and Energy Efficiency
We test the hardware Tsetlin machine using both 65 nm ASIC technology with 1V nominal
supply voltage; and FPGA synthesis for Altera Stratix IV. For our validation experiments, we
use widely available ML datasets (also used in [19,22]) to train our hardware (more details follow
in Section 5). The Noisy XOR dataset comprises twelve inputs and one class output. This dataset
illustrates the robustness of the Tsetlin machine learning algorithm and can be used as a first
test to ensure functionality with a modest hardware size. Table 3 presents the Noisy XOR results
post-synthesis (without performing any layout) for ASIC and FPGA constrained to 100MHz clock
frequency. The Binary Iris dataset is a multi-class flower detection task and is representative of IoT
applications. For this test we complete ASIC layout using CADENCE INNOVUS for a 65 nm low
power technology, giving high-effort power and area figures including scan-chain, IO and clock-
tree consumption which we will later compare with other low-power hardware alternatives. We
have observed that the energy consumption figures scale linearly with the number of datapoints
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in the dataset as well as the number of clauses in the Tsetlin machine architecture. More datapoints
require extra compute cycles, while additional clauses increase the spatial data processing needs.

Noisy XOR has a much larger training set (with 5000 datapoints) than Binary Iris (with 120

datapoints). However, as only 2 out of 12 binarized features contribute to the learning formulation
it requires less training epochs to obtain a good accuracy, when compared with Binary Iris.
As the Noisy XOR implementation features ≈ 4× higher clock frequency than Binary Iris, both
datasets exhibit similar training times between them. Binary Iris consumes more area, power and
energy due to its larger Tsetlin machine structure—requiring NClauses = 20 compared to Noisy
XOR’s NClauses = 10. The FPGA implementation for Noisy XOR performs similarly to its ASIC
counterpart, however it suffers from high power mainly due to interconnect overhead.

Table 3. Results of training for ASIC synthesis in 65 nm technology and runtime-reconfigurable
FPGA hardware for two different datasets: a single class Noisy XOR and a multi-class Binary Iris.
As expected, the FPGA prototype implementations return significantly higher energy compared
to that of ASIC.

Noisy XOR Binary Iris

ASIC Synthesis FPGA ASIC Layout

NInputs, NClauses, NClasses 12, 10, 1 16, 20, 3

ASIC Area 0.246mm2 — 0.386mm2

Frequency 118MHz 110MHz 33.3MHz

Training Time 4.24ms 4.55ms 1.80ms

Avg. Power (Training) 16.8µW 1.10W 1.85mW

Energy/Datapoint (Training) 142 fJ 10.0 nJ 55.6 pJ

Energy/Datapoint (Inference) — — 30.6 pJ

The logic based structure in Tsetlin machine allows for low-complexity, energy-efficient
learning and inference. This is a major differentiator when compared with the state-of-the-
art neural network based AI. Table 4 compares the Tsetlin machine energy efficiency with 3
recently reported neural networks approaches: a mixed-signal neuromorphic approach using
time-domain arithmetic organized in a spatially unrolled neuron architecture [26], a low-power
FPGA-based convolutional BNN (CBNN) approach that uses XNOR adder based integer weight
biases to reduce the arithmetic-heavy batch normalization for synchronization between the
deeper layers [27] and finally an in-memory BNN approach using parallel content-addressable
memories (CAMs) to reduce the frequent data movement costs [28]. Our comparative analysis
considered disparities between these approaches in terms of: a) their internal structures both in
combinational and sequential parts, and b) the size of datasets used to validate the efficiencies.
To maximally avoid any bias in the presence of these disparities, we normalize the energy

Table 4. Energy efficiency of the proposed Tsetlin machine architecture compared with NN
implementations.

Neuromorphic [26] CBNN [27] BNN [28] Proposed

Technology 65 nm 65nm 65nm 65nm

Voltage 1.0V 1.1V 1.1V 1.0V

Features Time-domain No normalization Parallel CAMs Logic based
Architecture Spatially unrolled XNOR based Pipelined Clause selection
Infer. Energy 48.2Top/J 25.2Top/J 88.5Top/J 62.7Top/J

Train. Energy — — — 34.6Top/J
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efficiency figures in terms of the number of atomic data operations (a set of multiply-additions
in the case of NNs and AND logic followed by argmax in the case of Tsetlin machine) per
unit energy, expressed as Tera operations per Joule, Top/J. The Tsetlin machine (TM) energy
efficiency is estimated by dividing the post-synthesis energy per datapoint (Table 3) by the
product (2 ·NInputs ·NClauses ·NClasses) and then normalizing that to Top/J. As can be seen,
the inference Tsetlin machine (which is fully digital) outperforms the highly specialized BNN
approaches by up to 2.5× (62.7Top/J). This efficiency is enabled by the lean propositional logic
within Tsetlin automaton followed by majority voting between clauses as well as power gated
reinforcement blocks, such as random generation and Tsetlin automaton update circuits. Power
gating the key reinforcement circuits causes the slack times to increase significantly, which makes
it possible to either improve the inference performance by scaling the operating frequencies up or
increase the energy efficiency further by aggressive voltage scaling. The NN approaches depend
on parallel binary operations in multiple layers with a set of pre-trained weights and their biases
and as such their arithmetic and data movement operations contribute to higher complexities
during inference.

The training energy efficiency of Tsetlin machine is lower (34.6Top/J) than its inference energy
efficiency (Table 4). This is because the reinforcement building blocks, such as random generation
and Tsetlin automaton update circuits, are now powered on and crucial. Worth noting here, the
Tsetlin machine training energy efficiency is still considerably high (although no training energy
efficiency figures were reported for the NN implementations for comparisons). The complexity
of Tsetlin machine reinforcement building blocks is significantly lower than the NN approaches
which depend on parallel multiply-add operations in multiple layers followed by gradient-
descent based weight updates. This efficiency during training in Tsetlin machine can be exploited
for emerging IoT applications where continuous on-chip learning is crucial for adapting to
environmental changes at the microedge. Our future research includes architectural support for
on-chip continuous learning.

Among other comparative examples, Hirtzlin et. al. [29] achieves 524 fJ per clock cycle in
28 nm technology for the basic cell which makes up their BNN architecture including MRAM and
registers. This compares with our clause building block which achieves 0.661 fJ per clock cycle
in 65 nm technology, which however does not contain any memory elements. Another example
of work in this area is [8] which claims 0.4 pJ per operation for their NN MAC implemented in
28 nm FD-SOI technology. It should be noted that this specialized low-power technology gives
a significant advantage over the 65 nm node used in our work. In the area of hyperdimensional
computing, Karunaratne et. al. [30] demonstrate a system in 65 nm silicon capable of 430 nJ per
query. Here, a query is a unit of inference datapoint comprising a natural language sentence. The
data structure of each query is organized in the form of hypervectors for parallel in-memory
interfaces.

In Figure 14 we illustrate the immense power and time advantages of the ASIC Tsetlin machine
implementation, compared to more off-the-shelf embedded platforms. We run the same Iris
dataset benchmarks across the three platforms: software Tsetlin machine running on a Raspberry
Pi 3 (featuring ARM Cortex-A53 cores with 1GB LPDDR2 memory), hardware implemented on
a low-power FPGA development board (Digilent Cmod A7-35T), and finally our custom ASIC
hardware. For accuracy measurements with a high degree of confidence, we run the training over
100 epochs for all Tsetlin machine implementations. For each experiment, the training times are
calculated as the latency per epoch. We measure the power consumption of the software and
FPGA-based Tsetlin machine implementations using a precision DC power analyzer (Keysight
Tech. model: N6705C).

As can be seen from Figure 14(a), the test accuracy of the software is slightly higher than
the hardware. This is attributed to the differences in random number generation between the
platforms. Software random number generation uses significantly higher precision than that
in the hardware implementation which manifests a more well-defined stochasticity [31]. Both
hardware platforms utilize the same psuedo-random number generation technique (LFSR) and
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Figure 14. Comparison of software (Raspberry Pi) and hardware (FPGA, ASIC) platforms for (a)
test accuracy, (b) training power and, (c) training time.

therefore exhibit equal accuracy. According to Figure 14(b), the FPGA platform shows improved
power and time over the Raspberry Pi since it is free from operating system and extraneous
peripheral overheads. The ASIC however, shows several orders-of-magnitude lower power
consumption again. The ASIC has no reconfiguration overhead or unused logic to leak power.
Additionally, logic gates are free to be placed close to each other in order to optimize critical
logic path lengths, allowing higher speed computation and faster training/inference times (see
Figure 14(c)). In contrast, the FPGA must configure internal wires to connect the already-placed
logic gates.

5. Machine Learning Experiments
To observe learning and inference behavior closely, we ran a number of experiments on the
proposed hardware architecture using ML datasets: XOR, Noisy XOR and Binary Iris.

The Noisy XOR dataset contains 12 binary inputs—two of which are related by XOR with the
remaining 10 inputs randomized. The training set provides 5000 examples and has 40% of the
outputs inverted for added noise, and for this reason, training accuracy is limited to 60%. More
details of the noise immunity of the TM are available in [32]. The test set provides a further
5000 examples, this time without output inversions, meaning 100% test accuracy is theoretically
possible. Figure 15a shows the Tsetlin machine achieving 58.8% and 95.8% accuracy in training
and test sets respectively after only 10 epochs.

In Figure 15b we explore how the number of states affects inference accuracy. There is a lower
bound on the number of action states (2n) for each dataset below which the Tsetlin automata do
not provide enough state space to be able to distinguish features of the dataset.

Figure 15c shows how the number of clauses per class influences the inference accuracy. For
successful learning, the number of clauses must be sufficient to capture the features of the input
data and enable an ensemble learning effect. The turning point for learning of the Noisy XOR

dataset is at 12 clauses. As we increase the number of clauses further the accuracy increase tends
toward 100% with some variation which is attributed to the stochastic nature of Tsetlin automata
feedback.

Table 5 shows that the ASIC Tsetlin machine can replicate the training and test accuracy of
the software Tsetlin machine when using the same configuration (16, 100, 3). This validates the
hardware, allowing it to act as a basis for future hardware-specific Tsetlin machine architectures.



16

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

0 10 20 30

60

80

100

Training Epochs

Te
st

A
cc

ur
ac

y
(%

)
Noisy XOR Training
Noisy XOR Test

(a)

0 50 100

60

80

100

States, 2n
Te

st
A

cc
ur

ac
y

(%
)

Binary Iris
XOR

Noisy XOR

(b)

10 20 30 40

60

80

100

No. Clauses, NClauses

Te
st

A
cc

ur
ac

y
(%

)

Noisy XOR

(c)

Figure 15. (a) Learning convergence of the Tsetlin machine, (b) Tsetlin automaton action states vs.
inference accuracy after 10 epochs, (c) Number of clauses per class vs. inference accuracy after 10
epochs.

Table 5. Comparison of hardware- and software-based Tsetlin machines and XGBOOST in the Iris
dataset. Here, both hardware and software Tsetlin machines use the same configuration (16, 100,
3).

Tsetlin machine Accuracy (%)

Implementation Train Test

Software (Desktop PC) 97.3 95.7

Software (RPi) 96.2

ASIC (This Work) 96.3 97.0

XGBOOST 98.3 96.7

All Tsetlin machine implementations are theoretically capable of the same accuracy, however
variances in the stochasticity of each implementation result in variations in system accuracy. All
Tsetlin machine implementations exceed the test accuracy of XGBOOST [33], a renowned lean and
high-accuracy tree boosting ML system, proving that the Tsetlin machine algorithm is competitive
with other state-of-the-art ML algorithms.

6. Conclusions
The paper presents the first ever AI hardware design method using the principles of learning
automaton. The method leverages the natural ability of an ensemble of Tsetlin automata to learn
from a set of training data. The overall framework of a collective of Tsetlin automata lends itself
to energy frugality (cf. the principle of a least action!) for inferences based on boolean fabric
used for solving classification problems. This was the initial hypothesis for our research and this
paper corroborates that through our proposed AI hardware architecture for IoT-scale applications.
We also demonstrated the advantages of our hardware design method by comparing power,
accuracy and performance figures with software Tsetlin machine implementations on a number
of embedded platforms as well as recently reported BNN implementations.

Our hardware implementations in the form of an ASIC benefited from a fast design flow
using an FPGA prototype. The design flow facilitated hyperparameter search to achieve energy
efficiency, while also retaining a high level performance and learning efficacy. We believe that the
proposed AI hardware architecture is a crucial step towards packing complex AI systems with
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on-chip learning capability, particularly suitable for applications that require continuous learning.
Future work includes the development of a scalable hardware architecture to enable larger ML
problems using advanced architectural allocations and VLSI design techniques.
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