
Article

Low-Complexity Runtime Management of
Concurrent Workloads for Energy-efficient
Multi-core Systems†

Ali Aalsaud1,† , Fei Xia† , Ashur Rafiev † , Rishad Shafik† *, Alexander Romanovsky‡ and
Alex Yakovlev†

1 School of Engineering, Al-Mustansiriyah University, Baghdad, Iraq; ali.m.m.aalsaud@gmail.com
† School of Engineering, Newcastle University, NE1 7RU, UK; Rishad.Shafik@ncl.ac.uk
‡ School of Computing, Newcastle University, NE1 7RU, UK; Alexander.Romanovsky@ncl.ac.uk
* Correspondence: Rishad.Shafik@ncl.ac.uk
† This paper is an extended version of our paper published in PATMOS, which is [43]: A. Aalsaud, A. Rafiev, F.

Xia, R. Shafik and A. Yakovlev, "Model-Free Runtime Management of Concurrent Workloads for
Energy-Efficient multi-core Heterogeneous Systems," 2018 28th International Symposium on Power and
Timing Modeling, Optimization and Simulation (PATMOS), Platja d’Aro, 2018, pp. 206-213, doi:
10.1109/PATMOS.2018.8464142..

Version August 10, 2020 submitted to Journal Not Specified

Abstract: Contemporary embedded systems may execute multiple applications, potentially1

concurrently on heterogeneous platforms, with different system workloads (CPU- or2

memory-intensive or both) leading to different power signatures. This makes finding the most3

energy-efficient system configuration for each type of workload scenario extremely challenging. This4

paper proposes a novel runtime optimization approach aiming for maximum power normalized5

performance under such circumstances. Based on experimenting with PARSEC applications on6

an Odroid XU-3 and Intel Core i7 platforms, we model power normalized performance (in terms7

of IPS/Watt) through multivariate linear regression (MLR). We derive runtime control methods8

to exploit the models in different ways, trading off optimization results with control overheads.9

We demonstrate low-cost and low-complexity runtime algorithms that continuously adapt system10

configuration to improve the IPS/Watt by up to 139% compared to existing approaches.11

Keywords: Energy-efficient computing; runtime management; machine learning; concurrent12

workoads; multi-core systems.13

1. Introduction14

Modern computing continues to evolve with increasing complexity in both hardware and software.15

More applications of different types are concurrently executed on platforms featuring an increasing16

number and type of parallel computing resources (cores) [1,2]. The advantages are clear, as parallel17

computing can help delay the potential saturation of Moore’s Law and better use the performance and18

energy efficiency opportunities provided by technology scaling [3,4]. However, managing resources19

in this complex space for energy efficiency is proving highly challenging, especially when different20

application scenarios (single or concurrent) need to be taken into account [5,6].21

Contemporary processors, such as those from Arm and Intel, feature dynamic voltage frequency22

scaling (DVFS) as a means of handling the energy and performance tradeoff [7,8]. Power23

governors enable DVFS at the system software level. For instance, Linux includes different power24

governors that can be activated based on the system requirements. These include powersave for25

low-power, low-performance mode, ondemand for performance-sensitive DVFS, performance for higher26

Submitted to Journal Not Specified, pages 1 – 24 www.mdpi.com/journal/notspecified

http://www.mdpi.com
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0001-5444-537X
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
http://www.mdpi.com/journal/notspecified


Version August 10, 2020 submitted to Journal Not Specified 2 of 24

Table 1. Features and limitations of existing methods when compared with the proposed approach.

Approach Platforms WLC Validation Apps Controls Size
[12] [13] homo. No simulation single TM+DVFS P

[14] hetero. No simulation single RT, TM+DVFS P
[15] homo. No practical single RT, DVFS L
[16] hetero. No simulation single OL, TM+DVFS P
[17] hetero. OL practical conc. RT, DVFS NP
[18] not CPUs. RT practical conc. RT, DVFS NP

This work hetero. RT practical conc. RT, TM+DVFS L

performance and userspace for user-specified DVFS. These governors attempt to suitably tune the27

voltage/frequency pairs according to performance and energy requirements and workload variations.28

The voltage/frequency can be tuned to just satisfy the performance requirements according to29

workload, but not more, in order to reduce energy consumption.30

Performance requirements continue to increase, making DVFS alone less effective [9]. As a31

result, DVFS is often coupled with task mapping (TM), which distributes workloads among multiple32

cores [10]. When satisfying the same performance requirement, using more cores means that each33

core has a lighter load and aggressive DVFS can be applied to reduce the overall energy consumption.34

On the other hand, in order to achieve such energy efficiency, it is crucial to understand the synergy35

between hardware and software [11].36

Core allocations to threads (TM) are usually handled by a scheduler, instead of the governor which37

takes care of DVFS [19]. A typical Linux scheduler does load balancing, i.e. it distributes the overall38

workload at any time across all available cores to achieve maximum utilization. Although this objective39

is rational the implementation tends to be crude. For instance, there is usually no discrimination about40

the type of task or thread being scheduled, such as CPU- or memory-intensive [19]. Given particular41

performance requirements, different types of threads should be treated differently for performance42

and energy optimization. Indiscriminate treatment may lead to sub-optimal energy efficiency [17].43

A number of approaches have been reported on the research of using DVFS and TM synergistically44

for energy-efficient multi-core computing [17]. These approaches broadly fit into two types: offline45

(OL) and runtime (RT). In OL approaches, the system is extensively reasoned to derive energy and46

performance models [16,17], which lead to runtime decisions based on these models which stay47

constant. In RT approaches, the models are typically learned using monitored information [15,18].48

Since RT modelling is costly in terms of resources, often a combination of OL and RT are used [17].49

Section 2 provides a brief review of these approaches. A recurring scheme in these approaches is50

that the focus is primarily on single-application workloads in isolation. However, the same application51

can exhibit different energy/performance trade-offs depending on whether it is running alone or52

concurrently with other different workloads. This is because: a) a workload application may switch53

between memory- and CPU-intensive routines, and b) architectural sharing between applications affect54

the energy/performance trade-offs (see Section 7.1.2). Table 1 summarizes the features and limitations55

of existing approaches.56

Table 2. Number of possible core allocations for different multi-application scenarios.

N-apps Brute force Valid
1 20 19
2 400 111
3 8000 309
4 1.6 · 105 471
5 3.2 · 106 405
6 6.4 · 107 185
7 1.28 · 109 35



Version August 10, 2020 submitted to Journal Not Specified 3 of 24

Tackling energy efficiency in concurrent applications considering the workload behavior changes57

highlighted above is non-trivial. When mapping onto heterogeneous multi-core systems, this becomes58

more challenging because the state space is large and each application requires different optimization.59

The hardware state space of a multi-core heterogeneous system includes all possible core allocations60

and DVFS combinations. Here we discuss this using the scenario of multiple parallel applications61

running on one of the example experimental platforms used in this paper, the Odroid XU3 (detailed62

in Section 4.2) which has two types of CPU cores, A7 and A15 organized into two DFVS domains,63

as motivational examples. Here Napps is the total number of concurrent applications running on the64

system; NA7 is the number of A7 cores used and NA15 is the number of A15 cores used. Table 265

shows the number of possible core allocations for a total Napps number of applications running on the66

Odroid with NA7 = 3 and NA15 = 4. The "brute force" value represents (NA7 + 1)Napps · (NA15 + 1)Napps67

combinations, not all of which are actually allowed considering the following rules: 1) each application68

must have at least one thread and 2) no more than one thread per core is allowed. However, there is69

no simple algorithm to iterate through only valid core allocations and an explosion of the search state70

space is inevitable. The number of possible core allocations is then multiplied by the number of DVFS71

combinations, which is calculated as MA7 ·MA15, where MA7 is the number of DVFS points in the A772

domain, and MA15 is the number of DVFS points in the A15 domain.73

In this work, we address these limitations with an adaptive approach, which monitors application74

scenarios at RT. The aim is to determine the optimal system configuration such that the power75

normalized performance can be maximized at all times. The approach is based on profiling single76

and concurrent applications through power and performance measurements. For the first time, our77

study reveals the impact of parallelism in different types of heterogeneous cores on performance,78

power consumption and power efficiency in terms of instruction per second (IPS) per unit power (i.e.,79

IPS/Watt) [20]. In our proposed approach, we make the following specific contributions:80

81

1. using empirical observations and CPU performance counters, derive RT workload classification82

thresholds;83

2. based on the workload classification and multivariate linear regression (MLR) to model power84

and performance tradeoffs expressed as instructions per second (IPS) per Watt (IPS/Watt),85

propose a low-complexity approach for synergistic controls of DVFS and TM;86

3. using synthetic and real-world benchmark applications with different concurrent combinations,87

investigate the approach’s energy efficiency, measured by power-normalized performance in88

IPS/Watt, and implement the low-complexity approach as a Linux power governor and validate89

through extensive experimentation with significant IPS/Watt improvements.90

To the best of our knowledge, this is the first RT optimization approach for concurrent applications91

based on workload classification, refined further with MLR-based modelling, practically implemented92

and demonstrated on both heterogeneous and homogeneous multi-core systems. The rest of the paper93

is organized as follows. Section 2 reviews the existing approaches. The proposed system approach94

is described in Section 3. Section 4 shows the configuration of systems used in the experiments and95

the applications. Workload classification techniques are described in Section 5, where Subsection 5.296

details the runtime implementations. Section 6 deals with combining workload classification with97

multivariant linear regression, with the decision space of the latter significantly reduced by the former.98

Section 7 discusses the experimental results and finally, Section 8 concludes the paper.99

2. Related Work100

Energy efficiency of multi-core systems has been studied extensively over the years. A power101

control approach for multi-core processors executing single application has been proposed in [21].102

This approach has three layers of design features also shown by other researchers: firstly, adjusting103

the clock frequency of the chip depending on the power budget; secondly, dynamically group cores104



Version August 10, 2020 submitted to Journal Not Specified 4 of 24

to run-the same applications (as also shown in [22,23]), and finally, modifying the frequency of each105

core group (as also shown in [11,24]). Among others, Goraczko et al. [12] and Luo et al. [13] proposed106

DVFS approaches with software task partitioning and mapping of single applications using a linear107

programming (LP) based optimization during RT to minimize the power consumption. Goh et al. [25]108

proposed a similar approach of task mapping and scheduling for single applications described by109

synthetic task graphs.110

Several other works have also shown power minimization approaches using practical111

implementation of their approaches on heterogeneous platforms. For example, Sheng et al. [14]112

presented an adaptive power minimization approach using RT linear regression-based modeling of the113

power and performance tradeoffs. Using the model, the task mapping and DVFS are suitably chosen114

to meet the specified performance requirements. Nabina and Nunez-Yanez [15] presented another115

DVFS approach for FPGA-based video motion compensation engines using RT measurements of the116

underlying hardware.117

A number of studies have also shown analytical studies using simulation tools like gem5, together118

with McPAT [16,26] for single applications. These works have used DVFS, task mapping, and offline119

optimization approaches to minimize the power consumption for varying workloads.120

Over the years substantial research has been carried out addressing RT energy minimization121

and/or performance improvement approaches. These approaches have considered a single-metric122

based optimization: primarily performance-constrained power minimization, or performance123

improvement within a power budget [27]. For example, Shafik et al. proposed a RT DVFS control124

approach for power minimization of multiprocessor embedded systems [28]. Their approach uses125

performance and user experience constraints to derive the lowest possible operating voltage/frequency126

points through reinforcement learning and transfer principles. Das et al. presented another power127

minimization approach that models RT workload characterization to continually update the DVFS128

and core allocations through multinomial logic regression based predictive controls [29].129

A RT classification of workloads and corresponding DVFS controls based on similar principles130

is proposed by Wang and Pedram for performance-constrained power minimization [18]. As far131

as performance optimization within a power budget is concerned, Chen and Marculescu proposed132

a distributed reinforcement learning algorithm to model power and performance tradeoffs during133

RT [30]. Using this model the DVFS and core allocations are adapted dynamically using feedback from134

the performance counters. Another power-limited performance optimization approach is presented135

by Cochran et al. showing programming model based power budget annotations and corresponding136

controls [31].Based on application requirements, Nabina and Nunez-Yanez [15] presented a DVFS137

approach for FPGA-based video motion compensation engines. Santanue et al. [32] and Tiago et138

al. [33] suggested a smart load balancing technique to improve energy efficiency for single applications139

running on heterogeneous systems. This technique depends on the sense-predict-balance process140

through the variation of workload and performance/power trade-offs.141

Gem5 with McPAT have been used to demonstrate four different core types, each core operated142

in a fixed frequency. Petrucci et al. [16] proposed a thread scheduling algorithm called (lucky),143

which is based on lottary scheduling. This algorithm is implemented by using Linux 2.6.34 kernel144

with performance monitor to optimize the thread-to-core affinity. Matthew et al. [34] proposed a145

DVFS approach with different core allocated for controlling concurrent applications exercised on146

homogeneous systems at RT.147

Numerous studies have focused on using classification-based techniques in dynamic power148

management with DVFS together at runtime [9,35–40]. For instance, Gupta et al. [9] proposed a149

new runtime approach based on workload classification. To build this classifier extensive offline150

experiments are made on heterogeneous many core platforms and Matlab is used to determine the151

classifier parameters offline. Pareto function is used to determine the optimal configuration. However,152

this classification is heavily based on offline analysis results, and assigns an application a fixed type,153



Version August 10, 2020 submitted to Journal Not Specified 5 of 24

regardless of its operating context. It also requires the annotation of applications by application154

programmers through using a special API.155

Dey et al [41] suggested a new management technique for a power and thermal efficiency agent156

for mobile MPSoC platforms based on reinforcement learning. Fundamental to this approach is157

the use of software agent to explore the DVFS in mobile CPU and GPU based on user’s interaction158

behaviour. This approach has been validated on Galaxy Note 9 smartphone utilizing Exynos 9810.159

The experimental results show that this new management technique can increase performance while160

reducing temperature and power consumption.161

A model-free RT workload classification (WLC) approach with corresponding DVFS controls is162

proposed by Wang and Pedram [18]. This approach employs reinforcement learning, with the action163

space size a big concern for the authors, even though for only homogeneous systems at much higher164

granularity than CPU cores. WLC has also been used OL, but this produces a fixed class for each165

application [17] and cannot deal with workload behavior changes during execution.166

Table 3. Qualitative summary of the inherent key characteristics of PARSEC benchmarks[42].

Program Application
Domain

Type Parallelization
Model Granularity Working

Set

Data Usage
Sharing Exchange

bodytrack Computer
Vision

CPU+mem data-parallel medium medium high medium

ferret Similarity
Search

CPU pipeline medium unbounded high high

fluidanimate Animation mem data-parallel fine large low medium
canneal Engineering CPU unstructured medium unbounded high high
freqmine Data Mining CPU data-parallel fine unbounded high medium
streamcluster Data Mining mem data-parallel medium medium low medium

For a comprehensive survey on the wider related field of energy management in energy-critical167

systems, see [43]. This paper is based on our previous work published in PATMOS 2018 [44] with168

substantial extensions.169

3. Proposed Methodology170

Our method studies concurrent application workloads being executed on various hardware171

platforms with parallel processing facilities, and attempt RT management decision optimization from172

the results of this analysis.173

The RT management (RTM) decisions consist of TM and DVFS, which influence system174

performance and power dissipation [11]. The RTM takes as input information derived from system175

monitors including hardware performance counters and power monitors, available from modern176

multi-core hardware platforms. Based on this information, the RTM algorithms attempt to increase177

power normalized performance by tuning the TM and DVFS outputs. The general architecture of178

this system view is shown in Figure 1. We develop a simple RTM algorithm based on workload179

classification (WLC) which classifies each workload by its usage of CPU and memory (Section 5). This180

minimal-cost algorithm may be used on its own, or be optionally augmented and refined with an MLR181

procedure to further optimize the power normalized performance of the execution at an additional182

cost (Section 6). The WLC procedure significantly reduces the decision space of any additional MLR183

step making the total overhead much lower than implementing the entire optimization process purely184

with MLR [6] (Section 7).185

4. System Fundamentals186

In this section, we describe the platforms, workload applications and performance counters used187

in this investigation. We study a homogeneous and a heterogeneous parallel processing platform,188

which both provide all the performance counters and power monitors we need for the methodology. We189



Version August 10, 2020 submitted to Journal Not Specified 6 of 24

Task1

Task2

Task3

Taskm

RTM

Control
Algorithm

Control
Decisions

Hardware

Core1

Core2

Coren

Monitors 
(PCs, PMs)

Actuators 
(DVFS, TM)

Figure 1. RTM architecture showing two-way interactions between concurrent applications and
hardware cores.

chose standard benchmark application workloads which provide a variety of degrees of concurrency190

and memory access and CPU usage scenarios. The two hardware platforms, PARSEC workload191

applications and performance counters are further detailed below.192

4.1. Homogeneous System193

The homogeneous experimental platform is a PC based on an Intel Core i7 Sandybridge CPU194

which contains no on-chip GPU facility. This CPU is chosen because it has a reasonable number of hard195

(4) and soft (8) cores, has no on-chip GPU to complicate the power consumption and communications,196

and has a relatively large number of possible operating frequencies and voltages. The operating system197

is Ubuntu Linux.198

Runtime power monitoring is developed for the experimental platform for validation purposes.199

This is done by inserting a precision shunt resister into the earth side of the power connection to the200

CPU. As high-precision current meters tend to have a 1A upper limit, which many CPU operations201

will exceed, the shunt resister allows the inference of current via measuring voltage.202

The performance and power utility Likwid [45] is used to obtain the majority of the experimental203

data. Likwid makes use of on-chip performance counters (sensors) in Intel CPUs to collect performance204

and power data. For instance, the Running Average Power Limit (RAPL [46]) counters are accessed205

to infer power dissipation. The form factor of the platform allows the actual measurement of CPU206

power by way of an inserted shunt resister into the CPU power supply circuit, and readings from these207

measurements were used in initial experiments to build confidence on the RAPL readings.208

Before the main experiments, Likwid was first confirmed to be accurate for the experimental209

platform through cross-validation with physical power measurements using the shunt resister,210

described above. The use of performance counters rather than external power measurement in211

most of the experiments is motivated by the desire of developing an RTM, which for practicality and212

wide applicability can only rely on built-in sensors and not shunt resisters.213

4.2. Heterogeneous System214

The popularity of heterogeneous architectures, containing two or more types of different CPU215

cores continues to grow [47]. These systems offer better performance and power tradeoff flexibility,216

however it may be more complicated to ensure optimal energy consumption. The Odroid-XU3 board217

supports techniques such as DVFS, affinity and core disabling, commonly used to optimize system218

operation in terms of performance and energy consumption [48] [49].219

The Odroid-XU3 board is a small eight-core computing device implemented on energy-efficient220

hardware. The board can run Ubuntu 14.04 or Android 4.4 operating systems. The main component of221

Odroid-XU3 is the 28nm System-on-Chip (Soc) Exynos 5422. This SoC is based on the ARM big.LITTLE222

heterogeneous architecture and consists of a high performance Cortex-A15 quad core processor block,223



Version August 10, 2020 submitted to Journal Not Specified 7 of 24

Table 4. Performance Counter Events.

perf_eventt_name Description

INST_RETIRED Instruction architecturally executed.
BUS_CYCLE Bus cycle
MEM_ACCESS Data memory access.
L1I_CACHE Instruction Cache access.
L1D_CACHE_WB Data cache eviction.
L2D_CACHE Level 2 data cache access
L2D_CACHE_WB Level 2 data cache refill
L2D_CACHE_REFILL Level 2 data cache write-back.

a low power Cortex-A7 quad core block, Mali-T628 MP6 GPU cluster and 2GB DRAM LPDDR3.224

The board contains four real time current sensors that give the possibility of power measurement on225

the four separate power domains: big (A15) CPUs, LITTLE (A7) CPUs, GPU cluster and DRAM. In226

addition, there are also four temperature sensors for each of the A15 CPUs and one sensor for the GPU227

cluster. This work only concerns the CPU blocks and the other parts of the SoC may be investigated in228

future work.229

On the Odroid-XU3, for each CPU power domain, the supply voltage (Vdd) and clock frequency230

can be tuned through a number of pre-set pairs of values. The performance-oriented Cortex-A15231

block has a range of frequencies between 200 MHz and 2000 MHz with a 100 MHz step, whilst the232

low-power Cortex-A7 quad core block can scale its frequencies between 200 MHz and 1400 MHz with233

a 100 MHz step.234

4.3. Workload Applications235

The PARSEC [42] benchmark suite attempts to represent both current and emerging workloads236

for multiprocessing hardware. It is a commonly used benchmark suite for evaluating concurrency and237

parallel processing. We therefore use PARSEC on the Odroid-XU3 platform, whose heterogeneity can238

be representative of different design choices that can greatly affect workloads. PARSEC applications239

exhibit different memory behaviours, different data sharing patterns, and different workload partitions240

from most other benchmark suites in common use. The characteristics of applications, according241

to [42], which are used in this paper can be seen in Table 3.242

Whilst we experimented with all PARSEC applications at various stages of work, six applications243

from the suite are selected for presentation in the paper to represent CPU-intensive, memory-intensive,244

and a combination of both. Such a classification reduces the effort of model characterization for245

combinations of concurrently running applications (Section 5. We found no surprises worth reporting246

in the accumulated experimental data with regard to the other PARSEC applications.247

4.4. Performance Counters248

In this work, we use performance counters to monitor system performance events (e.g. cache249

misses, cycles, instruction retired) and at the same time capture the voltage, current, power, and250

temperature directly from the sensors of Odroid-XU3. For the Intel Core i7, real power measurements251

with a shunt resister were used to establish confidence in the RAPL power counters initially whilst252

the majority of experiments are based on performance counter readings once the confidence has been253

achieved. The performance counter consists of two modules: kernel module and a user space module.254

For the Odroid, the hardware performance counter readings are obtained using the method255

presented by Walker et al. [50], with similar facilities used throughLikwid for the Core i7.256

Here we describe the Odroid case in more detail. In the user space module the event specification257

is the means to provide details of how each hardware performance counter should be set up. Table 4258

lists notable performance events, some of which are explained as follows:259



Version August 10, 2020 submitted to Journal Not Specified 8 of 24

1. INST_RETIRED is the retired instruction executed, and is part of the highly reported instruction260

per cycles (IPC) metric.261

2. Cycles is the number of core clock cycles.262

3. MEM_ACCESS is Memory Read or Write operation that causes a cache access to at least the level263

of data.264

4. L1I_CACHE is level 1 instruction cache access.265

5. Workload Classification RTM266

This section makes use of both heterogeneous and homogeneous systems in its investigations,267

but mainly concentrates on the heterogeneous Odroid XU3 in its discourse unless otherwise noted.268

Different types of cores are especially useful for demonstrating the advantages of the approach.269

5.1. Workload Classification Taxonomy270

The taxonomy of workload classes chosen for this work reflects differentiation between271

CPU-intensive and memory-intensive workloads, with high- or low-activity. Specifically, workloads272

are classified into the following four classes:273

• Class 0: low-activity workloads274

• Class 1: CPU-intensive workloads275

• Class 2: CPU- and memory-intensive workloads276

• Class 3: memory-intensive workloads277

Extensive exploratory experiments are run in this work to investigate the validity of these general278

concepts.279

START

END

...

Create N threads

Join threads

Pin to Core C1

Loop work_size times

Loop 1000·M times

Write to a random memory location

Loop 1000·(1 – M) times

Do a simple integer calculation

T
h

re
a

d
 1

 o
n

 C
o

re
 C

1

T
h

re
a

d
 2

 o
n

 C
o

re
 C

2

T
h

re
a

d
 N

 o
n

 C
o

re
 C

N

Figure 2. Flowchart of mthreads synthetic benchmark. M and N are controlled parameters.

The experiments are based on our synthetic benchmark, called mthreads [51], which attempts to280

controllably re-create the effect of memory bottleneck on parallel execution. The tool accomplishes281

this by repeatedly mixing CPU-intensive and memory-intensive operations, the ratio of each type282

is controlled by the parameter M. The CPU-intensive operation is a simple integer calculation. The283



Version August 10, 2020 submitted to Journal Not Specified 9 of 24

memory-intensive operation is implemented by randomly writing to a 64MB pre-allocated array. The284

randomization helps reduce the effect of caching. Parameter M = 0 gives CPU-intensive execution,285

M = 1 leads to memory-intensive execution; the values in between provide a linear relation to the286

number of memory accesses per instruction. The execution is split into N identical parallel threads,287

each pinned to a specific core. Figure 2 presents the flowchart of the tool.288

Figure 3. IPS/Watt for different memory use rates (0 ≤ M ≤ 1).

Figure 3 shows the energy efficiency of mthreads running on 2-4 A7 cores (one of the A7 cores289

may have a heavy operating system presence - if C0 is turned off the operating system stops, hence290

this data does not include the single core case, which would be skewed by this system behavior) with291

M values ranging from 0 to 1. It can be seen that it is better to use fewer cores for memory-intensive292

tasks (larger M), but it is better to run more cores in parallel for CPU-intensive tasks (smaller M).293

Characterization results sweeping through the frequency ranges and core combinations with mthreads294

confirm the validity of the classification taxonomy and establish a TM and DVFS strategy based on295

relative CPU and memory use rates. The full set of mthreads data, supported by experiments with296

applications other than mthreads including the entire PARSEC suite, is used to generate our runtime297

management (RTM) presented in subsequent sections.298

5.2. Runtime Management based on Workload Classification299

Figure 1 presents the general architecture of RTM inside a system. In this section we explain the300

central RTM functions – classification and control actions based on performance monitors and actuators301

(e.g. TM and DVFS). The general approach does not specify the exact form of the taxonomy into which302

workloads are classified, the monitors and actuators the system need to have, or the design figure of303

merit. Our examples classify based on differentiating CPU and memory usages and the execution304

intensiveness, try to maximize IPS/Watt through core-allocation and DVFS, and get information from305

system performance counters [44].306

The governor implementation is described in Figure 4, which refines Figure 1. At time ti task i307

is added to the execution via the system function execvp(). The RTM makes TM and DVFS decisions308

based on metric classification results, which depends on hardware performance counters and power309

monitors to directly and indirectly collect all the information needed. This helps avoid instrumenting310

applications and/or special API’s (unlike e.g. [52]), providing wider support for existing applications.311

The TM actuation is carried out indirectly via system functions. For instance, core pinning is done312

using sched_affinity(pid), where pid is the process ID of a task. DVFS is actuated through the userspace313

governor as part of cpufreq utilities.314

5.3. Workload classification315

Real applications do not have precisely tuneable memory usage rates, unlike mthreads. They may316

also have phases during which they may appear to be one class or another during their execution317

therefore attempts at classifying each application as a whole offline (as seen in [17]) may be of limited318



Version August 10, 2020 submitted to Journal Not Specified 10 of 24

Concurrent 
Apps

Task1
Task2

.

.

.

Taskm

RTM

Metric Classifier

Control Decisions:

Hardware

C0
C1
C2
C3

A7 Power

C4
C5
C6
C7

A15 Power

Monitors

Userspace

Execvp()

OS scheduler

TM

DVFS
sched_setaffinity (pid)

Perf Counters

Power 
Monitors

Figure 4. Governor Implementation based on RTM.

value (See Section 7.1.1 for detailed discussions). In this work, information from performance counters319

is used to derive the classes of all applications running on the system for each control decision cycle.320

The assumption is that during a control decision cycle, the class of an application is unlikely to change.321

This assumption requires that the length of control cycles is sufficiently short relative to the rate of322

class change of the applications (according to the Nyquist/Shannon sampling principle). The choice of323

control cycle length therefore depends on expected application scenarios and what happens when/if324

Nyquist/Shannon is violated should be carefully considered by the designer. This point will be325

discussed in detail in Section 7.1.2 with the help of system design case studies.326

The classification using performance counter readings is based on calculating a number of metrics327

from performance counter values recorded at set time intervals, and then deriving the classes based on328

whether these metrics have crossed certain thresholds. Example metrics and how they are calculated329

are given in Table 5.330

Table 5. Metrics used to derive classification.

Metrics Definitions
nipc (InstRet/Cycles)(1/IPCmax)
iprc InstRet/ClockRe f

nnmipc (InstRet/Cycles−Mem/Cycles)(1/IPCmax)
cmr (InstRet−Mem)/InstRet
uur Cycles/ClockRe f

Normalized instructions per clock (nipc) measures how intensive the computation is. It is the331

instructions per unhalted cycle (IPC) of a core, normalized by the maximum IPC (IPCmax). IPCmax can332

be obtained from manufacturer literature. Cycles is the unhalted cycles counted. Normalization allows333

nipc to be used independent of core types and architectures.334

Instructions per reference clock (iprc) contributes to determining how active the computation is.335

ClockRef is the total number of clock cycles given by ClockRe f = Freq/Time with Freq and Time from336

the system software.337

Normalized non-memory IPC (nnmipc) discounts memory accesses from nipc, indicating CPU338

activity. From experiments with our synthetic benchmark, this shows an inverse correlation to the339

memory use rate.340

CPU to memory ratio (cmr) relatively compares CPU to memory activities.341

Unhalted clock to reference clock ratio (urr) determines how active an application is.342

The general relationship between these metrics and the application (workload) classes are clear,343

e.g. the higher nnmipc is, the more CPU-intensive a workload will be. A workload can be classified344

by comparing the values of metrics to thresholds. Decision-making may not require all metrics. The345

choice of metrics and thresholds can be made by analyzing characterization experiment results for each346



Version August 10, 2020 submitted to Journal Not Specified 11 of 24

Figure 5. CPU to memory ratio (cmr) and Normalized non-memory IPC (nnmipc) metrics for different
memory use rates (0 ≤ M ≤ 1).

platform. From studying the relationship between M and the list of metrics from mthreads experiments347

on the Odroid XU3, we find that nnmpic and cmr show the best spread of values with regard to348

corresponding to different values of M (See Figure 5). Whichever one of these to use depends on349

designer preferences on the range of threshold values between different application classes to use.350

Referring to the declared classes in PARSEC applications - (ferret is claimed to be CPU-intensive, for351

instance [53]) - this hypothesis is confirmed (See Table 7. As a result, we choose nnmipc to differentiate352

CPU and memory usage rates and urr for differentiating low and high activity. Then thresholds353

(Table 6) are determined based on our mthreads characterization database. The other metrics may work354

better on other platforms and are included here as examples of potential candidates depending on355

how a mthreads-like characterization program behaves on a platform with regard to the relationships356

between M values and the metrics.357

Table 6. Classification details for Odroid XU3.

Metric ranges Class
urr of all cores [0, 0.11] 0: low-activity

nnmipc per-core [0.35, 1] 1: CPU-intensive
nnmipc per-core [0.25, 0.35) 2: CPU+memory

nnmipc per-core [0, 0.25) 3: memory-intensive

Table 7. PARSEC Appications and Their Performance Counter Metrics on XU3

Applications nnmipc nipc iprc cmr urr
Bodytrack 0.306 0.417 0.503 0.754 0.603

Ferret 0.384 0.560 0.978 0.739 1.01
Fluidanimate 0.206 0.317 0.690 0.723 1.08
Streamcluster 0.166 0.286 0.570 0.465 0.995

To confirm our approach, another set of experiments were carried out on the Intel Core i7 platform358

as can be seen in Table 8. These results agree with those found from the Odroid XU3. Based on359

these experiments we also choose nnmipc to differentiate CPU and memory usage rates and urr for360

differentiating low and high activity. Threshold values are established from Core i7 characterization361

experiments and are different from those for Odroid XU3.362

In principle, for each hardware platform, based on the available performance counters, the choice363

of metrics and the classification threshold values should both be based on classification results obtained364

from that platform.365



Version August 10, 2020 submitted to Journal Not Specified 12 of 24

Table 8. PARSEC Appications and Their Performance Counter Metrics on Intel i7 Processor.

Applications iprc nnmipc cmr
Bodytrack 0.727449908 0.573472873 0.788333

Caneal 0.71442 0.58642 0.750138
Fluidanimate 0.6949938 0.50526088 0.727001

Freqmine 0.867086053 0.629553377 0.726056
Streamcluster 0.370102144 0.248135025 0.67045

5.4. Control decision making366

This section presents an RTM control algorithm that uses application classes to derive its decisions.367

The behaviour is specified in the form of two tables: a threshold table (Table 6), used for determining368

application classes, and a decision table (Table 5), providing a preferred action model for each369

application class.370

The introduction of new concurrent applications or any other change in the system may cause371

an application to change its behaviour during its execution. It is therefore important to classify and372

re-classify regularly. The RTM works in a dedicated thread, which performs classification and decision373

making action every given time frame. The list of actions performed every RTM cycle is shown in374

Algorithm 1.

Table 9. RTM control decisions.

Class frequency A7 A15
0 min single none
1 max none max
2 min max max
3 max max none

unclassified min single none

375

In Algorithm 1 Tcontrol is the time between two RTM control cycles. The RTM determines the TM376

and DVFS of power domains once each control cycle, and these decisions keep constant before the377

next control cycle. The data from the system monitors (performance counters and power meters) is378

collected asynchronously. Every core has a dedicated monitor thread, which spends most of its time379

in a sleep state and wakes every Tcontrol to read the performance counter registers. The readings are380

saved in the RTM memory. This means that the RTM always has the latest data, which is at most381

Tcontrol old. This is mainly done because ARM performance counter registers can be accessed only382

from code on the same CPU core. In this case, asynchronous monitoring has been empirically shown383

to be more efficient. In our experiments we have chosen Tcontrol = 500ms, which has shown a good384

balance between RT overhead and energy minimization. The time the RTM takes (i.e. RT overhead)385

is negligible compared to 500ms for the size of our system. This interval can be easily reduced with386

slightly higher overheads, or increased with less energy efficiency tradeoffs.387

Algorithm 1 Inside the RTM cycle.

1: Collect monitor data
2: for each application do
3: Compute classification metrics . Section 5.3
4: Use metric and threshold table to determine application class . Table 5
5: Use decision table to find core allocation and frequency preferences . Table 6
6: Distribute the resources between the applications according to the preferences
7: Wait for Tcontrol . Section 5.4
8: end for
9: return



Version August 10, 2020 submitted to Journal Not Specified 13 of 24

Ev
er

y 
T c

o
n
tr
ol

Collect monitor data

Compute classification metrics (Table 5)

Determine task/app class  (Table 6)

TM and DVFS  decisions (Table 9)

Distribute resources between 
tasks/apps (Algorithm 2)

Figure 6. Flow chart of the RTM cycle

The RTM uses monitor data to calculate the classification metrics discussed in Section 5.2. These388

metrics form a profile for each application, which is compared against the thresholds (Table 6). Each389

row of the table represents a class of applications and contains a pre-defined value range for each390

classification metric. Value ranges may be unbounded. A metric x can be constrained to the range391

[c, +∞), equivalent to x ≥ c. An application is considered to belong to a class, if its profile satisfies392

every range in a row. If an application does not satisfy any class, it is marked as “unclassified” and393

gets a special action from the decision table. An application is also unclassified when it first joins the394

execution. In that case it goes to an A15 core for classification.395

The decision table (Table 9) contains the following preferences for each application class, related to396

system actuators (DVFS and core allocation decisions): number of A7 cores, number of A15 cores, and397

clock frequencies. Number of cores can take one of the following values: none, single, or maximum.398

Frequency preference can be minimum or maximum. The CPU-intensive application class (Class399

1) runs on the maximum number of available A15 cores at the maximum frequency as this has400

shown to give the best energy efficiency (in terms of power normalized performance) in our previous401

observations [7].402

Tables 6 and 9 are constructed OL in this work based on large amounts of experimental data, with403

those involving PARSEC playing only a supporting role. For instance, although ferret is regarded as404

CPU-intensive, it is so only on average and has non CPU-intensive phases (see Section 7.1.1 ). Therefore405

Table 9 is obtained mainly from analyzing experimental results from our synthetic benchmark mthreads406

(which has no phases), with PARSEC only used for checking if there are gross disagreements (none407

was found). Because of the empirical nature of the process, true optimally is not claimed.408

In this work, we assume that the RTM does not have to deal with more threads than the number409

of cores in the system - if there are more threads than cores some will not get scheduled by the system410

scheduler, which is outside the domain of the RTM. Our experiments therefore do not feature more411

concurrent applications than the number of cores in the system. The RTM attempts to satisfy the412

preferences of all running applications. In the case of conflicts between frequency preferences, the413

priority is given to the maximum frequency. When multiple applications request cores of the same414

type, the RTM distributes all available cores of that type as fairly as possible. When these conflicting415

applications are of different classes, each application is guaranteed at least a single core. Core allocation416

(TM) is done through the following algorithm.417

Algotirhm 2 shows the procedure APPLYDECISION for mapping the RTM decisions to the418

core affinity masks. RTM provides a decision for each app and for each core type dj,i ∈419

{NONE, MIN, MAX}, where j ∈ {A7, A15} is the core type and 1 ≤ i ≤ m is the app index, given420



Version August 10, 2020 submitted to Journal Not Specified 14 of 24

Algorithm 2 mapping the RTM decisions to the core affinites

1: procedure APPLYDECISION(DA7, DA15)
2: (rA7,1, . . . , rA7,m)← REQCORES (DA7, nA7) . Get per-app number of little cores
3: (rA15,1, . . . , rA15,m)← REQCORES (DA15, nA15) . Get per-app number of big cores
4: for 1 ≤ i ≤ m do
5: Ci,A7 ← (next rA7,i elements from CA7)
6: Ci,A15 ← (next rA15,i elements from CA15)
7: Ci ← Ci,A7 ∪ Ci,A15 . Use Ci to set core affinity mask for the app i.
8: end for
9: end procedure

10: function REQCORES((d1, . . . , dm) , n)
11: kMIN ← count (di = MIN) for 1 ≤ i ≤ m
12: kMAX ← count (di = MAX) for 1 ≤ i ≤ m
13: if kMAX > 0 then
14: v← b(n− kMIN) /kMAXc . v is the MAX number of cores
15: w← (n− kMIN) mod kMAX . w is the remainder
16: end if
17: for 1 ≤ i ≤ m do
18: if di = MAX then
19: if w > 0 then . Distribute the remainder
20: ri ← v + 1
21: w← w− 1
22: else
23: ri ← v
24: end if
25: else if di = MIN then
26: ri ← 1
27: else
28: ri ← 0
29: end if
30: end for
31: return (r1, . . . , rm)
32: end function



Version August 10, 2020 submitted to Journal Not Specified 15 of 24

the total number of apps m. The decisions are arranged in arrays DA7 = (dA7,1, . . . , dA7,m) and421

DA15 = (dA15,1, . . . , dA15,m). Additional constants used by the algorithm are: nA7, nA15 are the total422

number of little and big cores respectively, and the IDs of cores by type are listed in the pre-defined423

CA7 =
(
cA7,1, . . . , cA7,nA7

)
, CA15 =

(
cA15,1, . . . , cA15,nA15

)
. The complexity of the algorithm is linear to m.424

The result of the algorithm is the set of core IDs Ci, which can be used to call the sched_setaffinity425

function for the respective app i.426

6. Low-Complexity Runtime with WLC and MLR427

Although an RTM purely based on workload classification is low-cost, its coarse granularity may428

affect its optimality and further improvement may be possible with an additional MLR step to refine429

the control decisions. Figure 7 shows the algorithm with which workload classification may be used430

to reduce the decision space of the subsequent MLR step to achieve a right balance of complexity431

reduction and optimization quality.432

The first step is to update the application queue - during the preceding interval new applications433

may have joined the queue. If so, Algorithm 1 is used to determine the application class of each new434

interval, as explained in Subsection 5.1. This may reduce the state space of the subsequent search for435

optimality. For example, for Class 0 the search of optimal configuration for Odroid XU-3 is reduced436

from 4× 13× 4× 19 = 4004 different frequency and core configurations (four A7 cores with 13 DVFS437

points and four A15 with 19 different DVFS points) to one by using C0 (or the first available A7 core)438

and F = 200MHz as the optimal configuration. For class 1 the search for optimal configuration is439

reduced by more than 75% because we used the A15 cores at high frequencies (800-2000MHz), and the440

state space is reduced by more than 80% for Class 3 because we used the A7 cores at high frequencies441

(800-1400MHz). After this reduction of search space, MLR is used to determine the optimal frequency442

and core allocations for each class type using the method described in [6].443

A
p

p
ly

 t
h

e 
o

p
ti

m
al

 c
o

n
tr

o
l 

Detect WL type

Learn the IPC models with MLR

Max IPS/Watt control decision

Detect new task/app

WL classified already?
No

WL class = 0?

WL IPC models exist?

No

No

Yes

Yes

Yes

Figure 7. Flow chart for MLR with WL Classification

7. Experimental Results444

Extensive experiments have been carried out with a large number of application scenarios running445

on the XU3 platform, with additional confirmatory explorations on the Intel i7 platform. These446

experiments include running single applications on their own and a number of concurrent applications.447

In the concurrent scenarios, multiple copies of the same application and different applications of the448

same class and different applications of different classes have all been tested.449



Version August 10, 2020 submitted to Journal Not Specified 16 of 24

7.1. Workload Classification-Only Results450

7.1.1. A Case Study of Concurrent Applications451

An example execution trace with three applications is shown in Figure 8. Parts at the beginning452

and end of the run contain single and dual application scenarios. The horizontal axis is time, while the453

vertical axis denotes TM and DVFS decisions. Cores C0-C3 are A7 cores and C4-C7 are A15 cores. The454

figure shows application classes and the core(s) on which they run at any time. This is described by455

numbers, for instance, “2/3” on core C1 means that App 2 is classified as of Class 3 and runs on C1 for456

a particular time window. “1/u” means that App 1 is being classified. The lower part of the figure457

shows the corresponding power and IPS traces. Both parameters are clearly dominated by the A15458

cores.459

0 Time (mSec)

1/u

App1

624 2983

App1

1(2)

1(1)

1(3)

1(3)

1(3)

1(3) 1(2)

1(1)

1(1)

1(3)

1(2)

1(1)

1(1)

1(1)

1(3)

11768

3(3)

3(1)

3(1)

3(2)

3(2)

3(2)

3(1)

3(1)

3(1)

3(1)

3(1)

2/u

2(3)

2(3)

2(1)

2(1)

2(1)

2(1)

2(1)

2(2)

2(2)

2(3)

2(3)

2(3)

2(3)

2(1)

2(1)

2(2)

2(2)

2(3)

2(1)

2(1)

2(1)

2(3)1(3)

2(0)

3(3)

3(3) 2(3)1(2)

15144

1(1)

1(1)

1(3)

3(1)

Po
w
er

IP
S

C0

C1

C2

C3

C4

C6

C5

C7

Figure 8. Execution trace with TM and DVFS decisions and their effects on performance and power.

As can be seen, initial classifications are carried out on C4, but when C4 is allocated to an460

application, C7 is reserved for this purpose. The reservation of dedicated cores for initial classification461

fits well for architectures where the number of cores is greater than the number of applications as in462

the case of modern multi-core systems, such as Odroid XU3.463

Re-classification happens for all running applications at every 500ms control cycle, according to464

Algorithm 1. Each application is re-classified on the core where it is running. Figures 8 and 9 show465

the motivation for this. The same application can belong to different classes at different times. This466

proves that an OL classification method, which gives each application an invariable class, is unusable467

for efficient energy minimization.468

Figure 9 shows example traces of the PARSEC apps ferret and fluidanimate being classified469

whilst running as single applications. It can be seen that the same application can have different470

CPU/memory behaviours and get classified into different classes. This is not surprising as the same471

application can have CPU-intensive phases when it does not access memory and memory-intensive472

phases where there is a lot of memory access. In addition, it is also possible for an application to behave473

as belonging to different classes when mapped to different numbers of cores. The classification can also474

be influenced by whether an application is running alone or running in parallel with other applications,475

if we compare Figure 8 and Figure 9. These are all strong motivations for RT re-classification. The476

result of classification affects an application’s IPS and power (see Figure 8).477



Version August 10, 2020 submitted to Journal Not Specified 17 of 24

7.1.2. RTM stability, robustness and control decision cycle selection478

Figure 9. Fluidanimate (left) and ferret (right) classification and power traces.

Algorithm 1 can oscillate between two different sets of classification and control decisions in479

alternating cycles. This may indicate the loss of stability of the RTM approach. The reasons for such480

oscillations have been isolated into the following cases:481

• The control cycle length coincides with an application’s CPU and memory phase changes.482

• An application’s behaviour takes it close to particular threshold values, and different instances483

of evaluation put it on different sides of the thresholds.484

• An application is not very parallelizable. When it is classified on a single core, it behaves as485

CPU-intensive, but when it is classified on multiple cores, it behaves as low-activity. This causes486

it to oscillate between Class 0 and Class 1 in alternating cycles.487

We address these issues as follows. Case 1 rarely happens and when it happens it disappears488

quickly, because of the very low probability of an application’s phase cycles holding constant and489

coinciding with the control cycle length. This can be addressed, in the rare case when it is necessary,490

by tuning the control cycle length slightly if oscillations persist. In general, if the Nyquist/Shannon491

sampling frequency requirement is not violated, this is not a worry.492

Case 2 also happens rarely. In general, increasing the number of classes and reducing the distances493

between control decisions of adjacent classes reduce the RTM’s sensitivity to threshold accuracy, hence494

Case 2 robustness does not have to be a problem, and thresholds (Table 6) and decisions (Table 9) can495

be tuned both OL and during RT.496

Case 3 is by far the most common. It is dealt with through adaptation. This type of oscillation is497

very easy to detect. We put in an extra class, “low-parallelizability”, and give it a single big core. This498

class can only be found after two control cycles, different from the other classes, but this effectively499

eliminates Case 3 oscillations.500

Empirically, the PARSEC applications used in this paper as examples tend to have relatively501

stable periods during which their classes do not change. These periods can run from hundreds of ms502

to multiple seconds. We chose a control decision cycle of 500ms such that it may, on rare occasions,503



Version August 10, 2020 submitted to Journal Not Specified 18 of 24

violate the Nyquist/Shannon sampling principle for some applications, in order to expose potential504

oscillatory behaviour and test the effectiveness of our mitigating methods. The experimental results505

confirm the validity of our methods of dealing with the different cases of oscillatory behaviour.506

7.1.3. Comparative evaluation of the WLC-only RTM507

Complexity: Our RTM has a complexity of O(Napp*Nclass+Ncore), where Napp is the number of508

applications (tasks) running, Nclass is the number of classes in the taxonomy, and Ncore is the number509

of cores. Nclass is usually a constant of small value, which can be used to trade robustness and quality510

with cost. The RTM’s computation complexity is therefore linear to the number of applications running511

and the number of cores. In addition, the basic algorithm itself is a low-cost, lookup-table approach512

with the table sizes linear to Nclass.513

Schemes found in existing work, with e.g. model-based [6], machine-learning [54],514

linear programming [13], or regression techniques [6][14], have a decision state space size of515

O((NA7DVFS*NA15DVFS)* (NA7 ∗ NA15)Napp ) , where NA7 and NA15 are the numbers of A7 and A15516

cores and NA7DVFS and NA15DVFS are the numbers of DVFS points of the A7 and A15 power domains,517

for this type of platform. This NP complexity is sensitive to system heterogeneity, unlike our approach.518

Overheads: We compared the time overheads (OH) of our method with the linear-regression (LR)519

method found in e.g. [14] and [6]. For each 500ms control cycle, our RTM, running at 200MHz, requires520

10ms to complete for the trace in Figure 8. Over 90% of this time is spent on monitor information521

gathering. In comparison, LR requires 100ms to complete the same actions. It needs a much larger set522

of monitors. The computation, also much more complex, evenly divides its time in model building523

and decision making. In addition, a modelling control such as LR requires multiple control intervals524

to settle and the number of control decision cycles needed is combinatorial with NA7, NA15, NA7DVFS525

and NA15DVFS.526

Scalability: Our RTM is scalable to any platform as it is a) agnostic to the number and type527

of application running in concurrently, and b) independent of the number or type of cores in the528

platform, and their power domains. This is because the complexity of the RTM only grows linearly529

with increased number of concurrent applications and cores. Our experiments on the Intel i7 platform530

confirms this.531

7.2. Comparative results between our three RTM types532

In this section, we compare the IPS/Watt results from MLR-only, workload classification-only,533

and the combined workload classification plus MLR RTM types.534

7.2.1. MLR-only RTM Results535

We previously explored an MLR-only RTM with PARSEC applications on the Odroid XU3 in536

comparable experimental conditions [6]. This power governor/RTM aims to improve IPS/Watt, the537

same as the RTM’s developed in this paper. The results from [6] are compared to those obtained from538

this work in Table 10.539

7.2.2. WLC-only and WLC combined with MLR RTM results540

In this work we propose two new power governors (RTMs). The first is the light-weight WLC-only541

approach described in Section 5. The second is the more sophisticated approach of combining WLC542

with a further step of MLR-based optimization, described in Section 6.543

Figure 10 shows the results obtained from running the WLC-only RTM on the Odroid XU3,544

comparing the IPS/Watt metric obtained with the performance of the Linux ondemand governor [55].545

These results show IPS/Watt improvements of 24 127% over the benchmark ondemand governor in the546

application scenarios included in the figure.547

Experiments with the combined WLC+MLR approach demonstrate that it is possible to further548

improve IPS/Watt by supplementing the WLC method with additional MLR optimization. Figure 11549



Version August 10, 2020 submitted to Journal Not Specified 19 of 24

Figure 10. IPS/Watt between the proposed WLC-only power governor and the ondemand governor on
Odroid XU3.

show the IPS/Watt comparisons between this method and the Linux ondemand governor on the Odroid550

XU3. It can be seen from these results that further improvements over Figure 10 are evident.551

Figure 11. IPS/Watt Comparison between the proposed WLC+MLR and ondemand [55] governors on
Odroid XU3 .

This combined method is also applied to the Intel Core i7 platform and the IPS/Watt results552

obtained are compared with those from running the Linux ondemand governor in Figure 12. The553

improvements on IPS/Watt range from 20% to 40%.554

In general, it is found that the heterogeneous Odroid XU3 platform demonstrates the methods555

proposed in this paper better than the Intel Core i7 platform. This is mainly because the latter is not556

specifically designed for CPU power efficiency and there is a limited scope for IPS/Watt improvement557

by tuning TM and DVFS. There is a comparatively high background power dissipation whatever the558

TM and DVFS decisions are. On the other hand, the Odroid platform, based on ARM big.LITTLE559

architecture, has CPU energy efficiency at the core of its hardware design philosophy and provides a560

much wider scope of IPS/Watt improvements via TM and DVFS decisions.561

As a result, we concentrate on comparing the different RTM methods based on data obtained from562

the Odroid XU3 experiments. Table 10 compares the results of all three RTMs against the ondemand563

governor on the Odroid XU3 platform.564



Version August 10, 2020 submitted to Journal Not Specified 20 of 24

Figure 12. IPS/Watt comparison between the proposed WLC+MLR and ondemand [55] governors on
Intel i7, with all cores allocated to the tasks/apps.

Table 10. PERCENTAGE IPS/WATT IMPROVEMENTS OF THE RTM OVER THE Linux ondemand
GOVERNOR, all with Odroid XU3

Application Scenarios Workload
Classification
(WLC)

multivariate linear regression (MLR) MLR+WLC

Fluidanimate alone 127% 127% 139%
Two different class applications 68.60% 61.74% 128.42%
Three different class applications 46.60% 29.30% 61.27%
Two Class 3 applications 24.50% 19.81% 40.33%
Three Class 3 applications 44.40% 36.40% 58.25%
Two Class 1 applications 31.00% 26.53% 41.74%

From Table 10, it can be seen that the improvements in IPS/Watt obtained by the combined WLC565

with MLR approach is higher than the WLC-only and MLR-only methods.566

The main problem with the MLR-only approach is that it does not take changes of application567

behavior in each control decision cycle into account. An MLR model typically takes multiple control568

cycles to settle and after it settles, it may no longer be optimal.569

The WLC-only approach improves on this by re-classifying every control cycle and this improves570

the optimality of the control decisions and reduces the controller overhead at the same time. However,571

because of its coarse-grain nature the decisions tend to be sub-optimal leaving further improvements572

possible.573

By combining WLC and MLR modelling, the WLC+MLR method makes use of the WLC technique574

to provide a coarse-grain pre-decision which is then potentially refined through MLR modelling for575

further IPS/Watt improvements. This results in quick decisions, vastly reduced MLR learning space576

and more up to date MLR model results that approximate true optima much better.577

By comparing with the ondemand governor, we seek a vehicle for indirect comparisons with a578

relatively broad range of existing and upcoming research, as this governor is popular target for result579

comparisons in most related types of work. To demonstrate the efficacy of this approach, we look580

at the following example. Gupta [56] proposed a runtime approach consisting of a combination of581

offline characterization and runtime classification. The thesis describes experimental results showing582

an average increase of 81% in IPS/Watt compared to the ondemand governor for memory intensive583

applications running alone. Results such as this can be compared with our results listed in Table 10.584

Although the experimental scenarios may not be entirely like-for-like, much can be inferred as to the585

effectiveness of different methods from this kind of indirect comparison. In this specific case, the586



Version August 10, 2020 submitted to Journal Not Specified 21 of 24

Gupta improvement figure of 81% is most appropriately compared with the Fluidanimate alone figure587

in Table 10, where our approaches obtain over 120% of improvements.588

Data collected from our large number of validation runs shows the RTM out-performing the589

Linux ondemand governor by considerable margins on IPS/Watt, as shown in Table 10. The method590

can be generalized to other optimization targets, such as throughput, energy-delay product, and any591

energy and throughput tradeoff metric. It is also possible to switch targets at RT. This will require592

constructing multiple decision tables and switching between them during RT. This is a subject for593

future work.594

8. Conclusion595

An optimization scheme targeting power-normalized performance has been developed for596

controlling concurrent application executions on platforms with multiple cores.597

In the first instance, models are obtained off-line from experimental data. Explorations with598

model simplification are shown to be successful as by and large optimal results are obtained from599

using these models in RT control algorithms compared with existing Linux governors. In many cases600

the improvements obtained are quite significant.601

A runtime workload classification management approach is proposed for multiple concurrent602

applications of diverse workloads running on heterogeneous multi-core platforms. The approach603

is demonstrated by a governor aimed at improving system energy efficiency (IPS/Watt). This604

governor classifies workloads according to their CPU and memory signatures and makes decisions605

on core allocation and DVFS. Due to model-free approach, it leads to low RTM complexity (linear606

with the number of applications and cores) and cost (lookup tables of limited size). The governor607

implementation does not require application instrumentation, allowing for easy integration in existing608

systems. Experiments show the governor provides significant energy efficiency advantage compared609

to existing approaches. Detection of low-parallelizability improves the stability of the governor. A610

synthetic benchmark with tunable memory use supports the characterization process.611

This method is further improved with tuning the results of workload classification by a612

learning-based optimization using multivariant linear regression. With the workload classification613

having drastically reduced the modeling space the regression-based learning has been shown to work614

effectively. This RTM is demonstrated on both heterogeneous and homogeneous platforms.615

For experimental purposes of homogeneous and heterogeneous systems, we demonstrated a616

novel RT approach, capable of workload classification and power-aware performance adaptation617

under sequential and concurrent application scenarios in heterogeneous multi-core systems. The618

approach is based on power and performance models that can be obtained during RT by multivariate619

linear regression based on low-complexity hypotheses of power and performance for a given operating620

frequency. The approach is extensively evaluated using PARSEC-3.0 benchmark suite running on the621

Odroid-XU3 heterogeneous platform.622

A selection of experimental results was presented to illustrate the kinds of tradeoffs in a variety623

of concurrent application scenarios, core allocations, and DVFS points, highlighting an improvement624

of power normalized performance which produced IPS/Watt improvements between 26% and625

139% for a range of applications. It is expected that modern embedded and high-performance626

system designers will benefit from the proposed approach in terms of a systematic power-aware627

performance optimization under variable workload and application scenarios. Our future work will628

include investigating the scalability of the approach to more complex platforms and higher levels of629

concurrency.630

Acknowledgment631

This work is supported by the EPSRC (project PRiME, grant EP/K034448/1 and Project STRATA,632

EP/N023641/1). The first author is also supported by studentship funding from the Ministry of Iraqi633

Higher Education and Scientific Research.634



Version August 10, 2020 submitted to Journal Not Specified 22 of 24

635

1. Prakash, A.; Wang, S.; Irimiea, A.E.; Mitra, T. Energy-efficient execution of data-parallel applications on636

heterogeneous mobile platforms. Computer Design (ICCD), 2015 33rd IEEE International Conference on.637

IEEE, 2015, pp. 208–215.638

2. Plyaskin, R.; Masrur, A.; Geier, M.; Chakraborty, S.; Herkersdorf, A. High-level timing analysis of639

concurrent applications on MPSoC platforms using memory-aware trace-driven simulations. VLSI System640

on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP. IEEE, 2010, pp. 229–234.641

3. Shafik, R.; Yakovlev, A.; Das, S. Real-power computing. IEEE Transactions on Computers 2018, 67, 1445–1461.642

4. Borkar, S. Design challenges of technology scaling. IEEE micro 1999, 19, 23–29.643

5. Orgerie, A.C.; Assuncao, M.D.d.; Lefevre, L. A survey on techniques for improving the energy efficiency of644

large-scale distributed systems. ACM Computing Surveys (CSUR) 2014, 46, 47.645

6. Aalsaud, A.; Shafik, R.; Rafiev, A.; Xia, F.; Yang, S.; Yakovlev, A. Power–aware performance adaptation646

of concurrent applications in heterogeneous many-core systems. Proceedings of the 2016 International647

Symposium on Low Power Electronics and Design, 2016, pp. 368–373.648

7. Mittal, S. A survey of techniques for improving energy efficiency in embedded computing systems.649

International Journal of Computer Aided Engineering and Technology 2014, 6, 440–459.650

8. Intel Corporation, "Timeline of Processors," Intel, 2012.651

9. Gupta, U. Power-Performance Modeling and Adaptive Management of Heterogeneous Mobile Platforms.652

PhD thesis, Arizona State University, Tempe, USA, 2018.653

10. Rafiev, A.; Al-Hayanni, M.; Xia, F.; Shafik, R.; Romanovsky, A.; Yakovlev, A. Speedup and Power Scaling654

Models for Heterogeneous Many-Core Systems. IEEE Transactions on Multi-Scale Computing Systems 2018.655

11. Shafik, R.A.; Al-Hashimi, B.M.; Kundu, S.; Ejlali, A. Soft Error-Aware Voltage Scaling Technique for Power656

Minimization in Application-Specific Multiprocessor System-on-Chip. JOLPE 2009, 5, 145–156.657

12. Goraczko, M.; Liu, J.; Lymberopoulos, D.; Matic, S.; Priyantha, B.; Zhao, F. Energy-optimal software658

partitioning in heterogeneous multiprocessor embedded systems. Proceedings of the 45th annual design659

automation conference. ACM, 2008, pp. 191–196.660

13. Luo, J.; Jha, N.K. Power-efficient scheduling for heterogeneous distributed real-time embedded systems.661

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 2007, 26, 1161–1170.662

14. Yang, S.; Shafik, R.A.; Merrett, G.V.; Stott, E.; Levine, J.M.; Davis, J.; Al-Hashimi, B.M. Adaptive energy663

minimization of embedded heterogeneous systems using regression-based learning. PATMOS. IEEE, 2015,664

pp. 103–110.665

15. Nabina, A.; Nunez-Yanez, J.L. Adaptive voltage scaling in a dynamically reconfigurable FPGA-based666

platform. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2012, 5, 20.667

16. Petrucci, V.; Loques, O.; Mossé, D. Lucky scheduling for energy-efficient heterogeneous multi-core668

systems. Proceedings of the 2012 USENIX conference on Power-Aware Computing and Systems. USENIX669

Association, 2012, pp. 7–7.670

17. Reddy, B.K.; Singh, A.K.; Biswas, D.; Merrett, G.V.; Al-Hashimi, B.M. Inter-cluster Thread-to-core Mapping671

and DVFS on Heterogeneous Multi-cores. IEEE Transactions on Multi-Scale Computing Systems 2017.672

18. Wang, Y.; Pedram, M. Model-Free Reinforcement Learning and Bayesian Classification in System-Level673

Power Management. IEEE Transactions on Computers 2016, 65, 3713–3726.674

19. Torrey, A.; Cleman, J.; Miller, P. Comparing interactive scheduling in Linux. Software-Practices & Experience675

2007, 34, 347–364.676

20. Wang, A.; Chandrakasan, A. A 180-mV subthreshold FFT processor using a minimum energy design677

methodology. IEEE Journal of solid-state circuits 2005, 40, 310–319.678

21. Ma, K.; Li, X.; Chen, M.; Wang, X. Scalable power control for many-core architectures running679

multi-threaded applications. ACM SIGARCH Computer Architecture News 2011, 39, 449–460.680

22. Xu, Z.; Tu, Y.C.; Wang, X. Exploring power-performance tradeoffs in database systems. Data Engineering681

(ICDE), 2010 IEEE 26th International Conference on. IEEE, 2010, pp. 485–496.682

23. Rafiev, A.; Iliasov, A.; Romanovsky, A.; Mokhov, A.; Xia, F.; Yakovlev, A. Studying the Interplay of683

Concurrency, Performance, Energy and Reliability with ArchOn – An Architecture-Open Resource-Driven684

Cross-Layer Modelling Framework. ACSD, 2014, pp. 122–131.685



Version August 10, 2020 submitted to Journal Not Specified 23 of 24

24. Wong, H.; Aamodt, T.M. The Performance Potential for Single Application Heterogeneous Systems. 8th686

Workshop on Duplicating, Deconstructing, and Debunking, 2009.687

25. Goh, L.K.; Veeravalli, B.; Viswanathan, S. Design of fast and efficient energy-aware gradient-based688

scheduling algorithms heterogeneous embedded multiprocessor systems. Parallel and Distributed Systems,689

IEEE Transactions on 2009, 20, 1–12.690

26. Ben Atitallah, R.; Senn, E.; Chillet, D.; Lanoe, M.; Blouin, D. An efficient framework for power-aware691

design of heterogeneous MPSoC. Industrial Informatics, IEEE Transactions on 2013, 9, 487–501.692

27. Hankendi, C.; Coskun, A.K. Adaptive power and resource management techniques for multi-threaded693

workloads. Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013694

IEEE 27th International. IEEE, 2013, pp. 2302–2305.695

28. Shafik, R.A.; Yang, S.; Das, A.; Maeda-Nunez, L.A.; Merrett, G.V.; Al-Hashimi, B.M. Learning transfer-based696

adaptive energy minimization in embedded systems. IEEE Transactions on Computer-Aided Design of697

Integrated Circuits and Systems 2016, 35, 877–890.698

29. Das, A.; Kumar, A.; Veeravalli, B.; Shafik, R.; Merrett, G.; Al-Hashimi, B. Workload uncertainty699

characterization and adaptive frequency scaling for energy minimization of embedded systems. Design,700

Automation & Test in Europe Conference & Exhibition (DATE), 2015. IEEE, 2015, pp. 43–48.701

30. Chen, X.; Zhang, G.; Wang, H.; Wu, R.; Wu, P.; Zhang, L. MRP: mix real cores and pseudo cores for702

FPGA-based chip-multiprocessor simulation. Proceedings of the 2015 Design, Automation & Test in703

Europe Conference & Exhibition. EDA Consortium, 2015, pp. 211–216.704

31. Cochran, R.; Hankendi, C.; Coskun, A.K.; Reda, S. Pack & Cap: adaptive DVFS and thread packing under705

power caps. Proceedings of the 44th annual IEEE/ACM international symposium on microarchitecture.706

ACM, 2011, pp. 175–185.707

32. Sarma, S.; Muck, T.; Bathen, L.A.; Dutt, N.; Nicolau, A. SmartBalance: a sensing-driven linux load balancer708

for energy efficiency of heterogeneous MPSoCs. 2015 52nd ACM/EDAC/IEEE Design Automation709

Conference (DAC). IEEE, 2015, pp. 1–6.710

33. Mück, T.; Sarma, S.; Dutt, N. Run-DMC: runtime dynamic heterogeneous multicore performance and power711

estimation for energy efficiency. Proceedings of the 10th International Conference on Hardware/Software712

Codesign and System Synthesis. IEEE Press, 2015, pp. 173–182.713

34. Travers, M.; Shafik, R.; Xia, F. Power-Normalized Performance Optimization of Concurrent Many-Core714

Applications. 2016 16th International Conference on Application of Concurrency to System Design (ACSD).715

IEEE, 2016, pp. 94–103.716

35. Kyrkou, C.; Bouganis, C.S.; Theocharides, T.; Polycarpou, M.M. Embedded hardware-efficient real-time717

classification with cascade support vector machines. IEEE transactions on neural networks and learning718

systems 2015, 27, 99–112.719

36. Reddy, B.K.; Merrett, G.V.; Al-Hashimi, B.M.; Singh, A.K. Online concurrent workload classification for720

multi-core energy management. 2018 Design, Automation & Test in Europe Conference & Exhibition721

(DATE). IEEE, 2018, pp. 621–624.722

37. Cochran, R.; Hankendi, C.; Coskun, A.K.; Reda, S. Pack & Cap: adaptive DVFS and thread packing under723

power caps. 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,724

2011, pp. 175–185.725

38. Bitirgen, R.; Ipek, E.; Martinez, J.F. Coordinated management of multiple interacting resources in chip726

multiprocessors: A machine learning approach. 2008 41st IEEE/ACM International Symposium on727

Microarchitecture. IEEE, 2008, pp. 318–329.728

39. Van Craeynest, K.; Jaleel, A.; Eeckhout, L.; Narvaez, P.; Emer, J. Scheduling heterogeneous multi-cores729

through performance impact estimation (PIE). 2012 39th Annual International Symposium on Computer730

Architecture (ISCA). IEEE, 2012, pp. 213–224.731

40. Wen, Y.; Wang, Z.; O’boyle, M.F. Smart multi-task scheduling for OpenCL programs on CPU/GPU732

heterogeneous platforms. 2014 21st International Conference on High Performance Computing (HiPC).733

IEEE, 2014, pp. 1–10.734

41. Dey, S.; Singh, A.; Wang, X.; McDonald-Maier, K. User Interaction Aware Reinforcement Learning for735

Power and Thermal Efficiency of CPU-GPU Mobile MPSoCs 2020.736

42. Bienia, C.; Li, K. PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors. Proceedings of the 5th737

Annual Workshop on Modeling, Benchmarking and Simulation, 2009.738



Version August 10, 2020 submitted to Journal Not Specified 24 of 24

43. Pasricha, S.; Ayoub, R.; Kishinevsky, M.; Mandal, S.K.; Ogras, U.Y. A Survey on Energy Management for739

Mobile and IoT Devices. IEEE Design Test 2020, pp. 1–1.740

44. Aalsaud, A.; Rafiev, A.; Xia, F.; Shafik, R.; Yakovlev, A. Model-free runtime management of concurrent741

workloads for energy-efficient many-core heterogeneous systems. 2018 28th International Symposium on742

Power and Timing Modeling, Optimization and Simulation (PATMOS). IEEE, 2018, pp. 206–213.743

45. likwid - light weight performance tools, [Online]:. http:////github.com/RRZE-HPC/likwid/wiki.744

46. Hähnel, M.; Döbel, B.; Völp, M.; Härtig, H. Measuring energy consumption for short code paths using745

RAPL. ACM SIGMETRICS Performance Evaluation Review 2012, 40, 13–17.746

47. Kumar, S.; Djie, M.; van Leuken, R. Low Overhead Message Passing for High Performance Many-Core747

Processors. Computing and Networking (CANDAR), 2013 First International Symposium on, 2013, pp.748

345–351. doi:10.1109/CANDAR.2013.62.749

48. Odroid XU3. http://www.hardkernel.com/main/products.750

49. Skalicky, S.; Lopez, S.; Lukowiak, M.; Schmidt, A.G. A Parallelizing Matlab Compiler Framework and751

Run time for Heterogeneous Systems. High Performance Computing and Communications (HPCC), 2015752

IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International753

Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on. IEEE,754

2015, pp. 232–237.755

50. Walker, M.J.; Diestelhorst, S.; Hansson, A.; Das, A.K.; Yang, S.; Al-Hashimi, B.M.; Merrett, G.V. Accurate756

and stable run-time power modeling for mobile and embedded cpus. IEEE Transactions on Computer-Aided757

Design of Integrated Circuits and Systems 2017, 36, 106–119.758

51. mthreads benchmark. https://github.com/ashurrafiev/PThreads.759

52. Gupta, U.; Patil, C.A.; Bhat, G.; Mishra, P.; Ogras, U.Y. Dypo: Dynamic pareto-optimal configuration760

selection for heterogeneous mpsocs. ACM Transactions on Embedded Computing Systems (TECS) 2017,761

16, 1–20.762

53. PARSEC benchmark suite. https://parsec.cs.princeton.edu/.763

54. Singh, A.K.; Leech, C.; Reddy, B.K.; Al-Hashimi, B.M.; Merrett, G.V. Learning-based run-time power764

and energy management of multi/many-core systems: current and future trends. Journal of Low Power765

Electronics 2017, 13, 310–325.766

55. Pallipadi, V.; Starikovskiy, A. The ondemand governor. Proceedings of the Linux Symposium. sn, 2006,767

Vol. 2, pp. 215–230.768

56. Gupta, U. Power-Performance Modeling and Adaptive Management of Heterogeneous Mobile Platforms.769

PhD thesis, Arizona State University, Tempe, USA, 2018.770

Sample Availability: Samples of the compounds ...... are available from the authors.771

c© 2020 by the authors. Submitted to Journal Not Specified for possible open access772

publication under the terms and conditions of the Creative Commons Attribution (CC BY) license773

(http://creativecommons.org/licenses/by/4.0/).774

https://doi.org/10.1109/CANDAR.2013.62
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Methodology
	System Fundamentals
	Homogeneous System
	Heterogeneous System
	Workload Applications
	Performance Counters

	Workload Classification RTM
	Workload Classification Taxonomy
	Runtime Management based on Workload Classification
	Workload classification
	Control decision making

	Low-Complexity Runtime with WLC and MLR
	Experimental Results
	Workload Classification-Only Results
	A Case Study of Concurrent Applications
	RTM stability, robustness and control decision cycle selection
	Comparative evaluation of the WLC-only RTM

	Comparative results between our three RTM types
	MLR-only RTM Results
	WLC-only and WLC combined with MLR RTM results


	Conclusion
	References

