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Abstract—With over 6000 known genetic disorders, genomics
is a key driver to transform the current generation of health-
care from reactive to personalized, predictive, preventive and
participatory (P4) form. High throughput sequencing technolo-
gies produce large volumes of genomic data, making genome
reassembly and analysis computationally expensive in terms of
performance and energy. In this paper, we propose an algorithm-
hardware co-design driven acceleration approach for enabling
translational genomics. Core to our approach is a Pyopencl based
tooL for gEnomic workloaDs tarGeting Embedded platforms
(PLEDGER). PLEDGER is a scalable, portable and energy-
efficient solution to genomics targeting low-cost embedded plat-
forms. It is a read mapping tool to reassemble genome, which
is a crucial prerequisite to genomics. Using bit-vectors and
variable level optimisations, we propose a low-memory footprint,
dynamic programming based filtration and verification kernel
capable of accelerated parallel heterogeneous executions. We
demonstrate, for the first time, mapping of real reads to whole
human genome on a memory-restricted embedded platform using
novel memory-aware preprocessed data structures. We compare
the performance and accuracy of PLEDGER with state-of-the-
art RazerS3, Hobbes3, CORAL and REPUTE on two systems:
1) Intel i7-8750H CPU + Nvidia GTX 1050 Ti; 2) Odroid
N2 with 6 cores: 4×Cortex-A73 + 2×Cortex-A53 and Mali
GPU. PLEDGER demonstrates persistent energy and accuracy
advantages compared to state-of-the-art read mappers producing
up to 11× speedups and 5.9× energy savings compared to state-
of-the-art hardware resources.

Index Terms—OpenCL, embedded genomics, read mapping,
heterogeneous computing, low-memory footprint, energy efficient.

I. INTRODUCTION

Genomics is a crucial application in medicine with the
potential to open up significant opportunities in prognosis and
therapy of over 6000 single-gene genetic conditions and other
diseases. It is a major driver for the next generation of person-
alized, predictive, preventive and participatory (P4) medicine
[1]. Prerequisite to genomics is the availability of genome
which is obtained from the sequencing and assembly pipelines
of the whole genome sequencing (WGS) [2]. Sequencing
process produces fixed-length small subsections of genome,
called reads, which are then reassembled to obtain the original
genome. With the advent of high throughput sequencing (HTS)
technologies, the cost of sequencing has significantly reduced,
however, at the expense of processing massive amounts of data
[3]. Though, HTS has revolutionized WGS, it has contributed
to making it a Big Data application with computational

constraints [3]. The continuous growth in data has strained
the available computational resources, thereby, consumig large
amounts of energy [4]. Indeed, the demand of scaling up the
computational capabilities energy efficiently is hindering the
progress of this crucial and emerging new application [5].

To reassemble genome, a performance-driven read-
alignment approach [6] is used which maps reads to an
existing reference genome (RG) using read mapping tools.
The mapping process engages approximate string matching
and dynamic programming (DP) algorithms in tandem with
the RG, stored in the form of data structures following a tool-
specific preprocessing strategy. Conventionally, most of the
state-of-the-art read mappers, such as [7], [8], have been opti-
mized for CPU and are oblivious to other hardware resources
available in modern heterogeneous systems such as the GPU.
Several FPGA and GPU specific tools have been proposed,
however, they are not flexible to changes in parameters and,
often, require platform-specific programming skills [9].

CORAL [10] demonstrates an OpenCL based heteroge-
neous read mapping scenario where workloads are distributed
on available CPU+GPU for acceleration. It, however, uses
a heuristic filtration methodology. REPUTE [5] proposes a
DP based filtration methodology using OpenCL to improve
performance and demonstrates an embedded implementation,
for chr21, on HiKey970 platform with energy savings of
27× compared to a workstation. Both REPUTE and CORAL,
however, use data structures with large memory footprints
making it unfit to be used with longer chromosomes (e.g. chr1,
chr2) in memory-restricted embedded platforms. Hobbes3 [8]
uses a DP based filtration methodology along with heuristic
schemes to optimize performance on q-gram inverted index for
high-performance. RazerS3 [7] is accuracy focused, commonly
used as gold standard for comparison but it does not employ
any data structures to accelerate read mapping. As such, it is
slower than other read mappers.

In this paper, we propose a Pyopencl based tooL for gE-
nomic workloaDs tarGeting Embedded platforms (PLEDGER)
to enable translational genomics. It employs a novel prepro-
cessing scheme to generate memory-aware data structures on
platforms with available RAM capacity of 3.6 GB. PLEDGER
uses DP based filtration and verification kernel akin to RE-
PUTE with improvements to use memory-aware data struc-



Fig. 1. (a) Demonstration of proposed low memory footprint (LMF) tally matrix along with the tally offset array. (b) Visualization of bit-vector operation to
obtain the desired element of the tally matrix using tally LMF matrix and tally offset array during filtration in O(1) time.

tures, which affects the performance as a trade-off. To im-
prove performance, we use bit-vector operations and localized
variable optimizations to minimize the memory footprint of
the kernel. In CORAL and REPUTE, the mapping process
needs to be repeated for each chromosome while PLEDGER
is capable of mapping to all or user selected chromosomes:
1-22, X and Y, automatically, enhancing its portability. It is a
stand-alone embedded tool capable of mapping entire genome
on any CPU or GPU with over 3.6 GB available RAM. It, also,
opens up new opportunities for embedded cluster acceleration
for genomic workloads.

We compare PLEDGER with RazerS3, Hobbes3, CORAL
and REPUTE by mapping 1 million (M) real human reads of
lengths 100 and 150 each, to chromosomes 1-22, X and Y.
We execute read mappers on two systems 1) Intel i7-8750H
CPU, 16GB RAM + Nvidia GTX 1050 Ti, 4GB RAM; 2)
Odroid N2 with quad-core ARM Cortex-A73 + dual core
Cortex-A53, 4GB RAM. Among state-of-the-art read mappers,
only Hobbes3 and RazerS3, although oriented towards CPU,
ran successfully on HiKey970 (6GB RAM) for comparison
in REPUTE [5]. However, with just 4GB RAM on Odroid
N2, only Hobbes3 and PLEDGER could be benchmarked. We
demonstrate up to 11× speedup with similar accuracy. Our
embedded implementation consumes 5.9× less energy than
state-of-the-art computing resource. The PLEDGER source
code can be found at: https://github.com/nclaes/pledger.

II. METHODOLOGY

The read mapping process consists of three stages: Prepro-
cessing, Filtration and Verification. RG is preprocessed and
stored as data structures suitable to the filtration scheme. It
assists with rapid pruning of RG while searching for possible
candidate locations for a read. These candidate locations are
then verified(aligned) against the RG to find it’s position of
origination in the original genome during sequencing, if it
exists. Verification is performed for δ error or edit distance,
using a widely used variant of the semi-global DP algorithm,

the Myer’s bit vector algorithm [7], [11]. In the following
subsections, we focus on the proposed preprocessing and
filtration methodologies.
A. Memory-aware preprocessing

We store the RG as FM-Index [12] and suffix array [13]
based data structures. FM-Index backward search offers O(n)
time complexity to search a string of length n, making it one of
the fastest approximate string matching algorithm. These data
structures have been, previously, used in many mappers includ-
ing BWA-MEM, CORAL and REPUTE. Fig. 1(a) visualizes
the construction of FM-Index data structure for the string
GAAATCGZATCATZACCGTG$. It involves the formation of
tally matrix (TM) using F and L arrays obtained by applying
the Burrows-Wheeler transform, refer [10] for more details.
The length of TM is same as that of the genome and is
the major bottleneck to low-memory implementations. For
example, TM for chr1 requires about 4GB memory.

To reduce the size of TM, we can store a limited number
of rows at fixed intervals. However, this necessitates avail-
ability of L array, which will be scanned during run-time,
to reconstruct the missing rows by counting the number of
occurrences of bases: A C G T. This count will be added
to the previous available row to obtain the values of the
desired row. The DP based filtration methodology used in
this paper would require repetitive looping (O(n)) over the
L array which will significantly increase the filtration time.
We eliminate looping by encoding the L array as bit-vectors
in an additional tally offset array. It is followed by a single
bit-vector operation (O(1)) to obtain the value of the desired
row in TM, as shown in Fig. 1(b). We store every 16th row in
the TM and store the number of occurrences of A C G T for
the, corresponding, missing 15 rows in the L array using 4-bits
each, resulting in a 16-bit unsigned integer. As preprocessing
is one-off task, it does not affect the run-time and prevents
looping. The proposed preprocessing scheme reduces the size
of tally matrix by ≈ 5.5×, bringing 4 GB down to 746.9 MB
for chr1.



TABLE I
MAPPING TIME(IN SECONDS) FOR 1M REAL READS,, OF LENGTH n = 150 AND ERROR δ = 7,, TO CHROMOSOME (CHR) 1-22, X AND Y ON SYSTEM - 1

(CPU+GPU). PLEDGER-ALL DISTRIBUTES WORKLOAD OVER CPU AND GPU IN 4:1 RATIO WHILE OTHERS EXECUTE ONLY ON THE CPU.

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

RazerS3 487 434.2 359.5 321 318.5 319 253 237.9 259.3 244.8 272.4 162.6
Hobber3 40.6 34.4 32.4 30.8 31.3 31.4 32.4 30.6 30.5 31.1 31.4 31.7
CORAL 123.8 115.1 106.8 96.7 93 100.9 113.8 100.3 100.7 104.4 93.7 100
REPUTE 79 70.8 62.9 56.5 62.6 58.8 65.9 57.2 56.2 58.3 55.6 60.2

PLEDGER-cpu 72.4 71.4 66.9 61.8 63.4 63.8 65.6 58.8 58.5 60.5 58.7 61.8
PLEDGER-all 61.5 56.4 51.9 47.9 49.1 48.9 50.7 45.3 44.8 46.5 45.7 48.1

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

RazerS3 162.6 175.4 177.8 175.9 231.5 129 210.4 137.9 71.8 105.7 280.9 43.5
Hobber3 28.5 29.4 29.6 29.8 31 28 30.1 28.1 26.4 27.4 31.4 25.5
CORAL 75.4 89.8 91 98.6 105.3 74.4 102.6 80.4 51.3 75.7 102.6 31.7
REPUTE 40.3 48.1 48.8 53 60.3 39.6 56.8 41.9 29.9 75.7 102.6 31.7

PLEDGER-cpu 48.4 51.8 52.4 54.1 58 41.4 55.1 44.9 34.9 41.7 57.4 28.6
PLEDGER-all 37.7 39.6 40.7 43.3 46.3 34.6 44.8 36.1 28.3 33.6 46.3 23.6

B. Filtration for memory-aware data structures

Read alignment approach widely uses the pigeonhole prin-
ciple [7] which states that if a read, with δ error, is divided into
non-overlapping δ+1 sections, then one section would be left
error-free and match exactly at its place of origination. Each
non-overlapping section of length k are called k-mers, which
are pruned through the RG using backward search to find the
candidate locations. Filtration aims to identify suitable δ+1 k-
mers in a read to minimize the total candidate locations leading
to reduced mapping time as there are fewer DP-based verifica-
tion cycles. We improve over DP-based filtration method used
in [5]; to use proposed memory-aware data structures with
fixed bit-vector operations to obtain the desired value of TM
as shown in Fig. 1(b). Both filtration and verification are done
in situ in the same work-item (or thread).

III. EXPERIMENTAL SETUP

The host code of PLEDGER is written in Python and
the kernel in C. Python enables easy handling of strings
and fast prototyping. We compare PLEDGER with CORAL,
REPUTE, RazerS3 and Hobbes3. We use RazerS3 as the
gold standard and use a method similar to any-best scenario
of the Rabema benchmark [14] for accuracy comparison.
For the same read, each reported location by the mapper is
compared to those reported by RazerS3 and if any location
and strand matches to the gold standard, we report it as an
accurate match. All mappers map 1M real reads each from
NCBI databases: ERR012100 1 and SRR826460 1, with read
lengths n = 100 and 150, respectively, to chromosome 1-22,
X and Y (GRCh38/hg38) [15]. We map reads with 5% error
rate (δ) on the following two platforms:

System 1: Intel i7-8750H CPU, 16GB RAM + Nvidia
GTX 1050 Ti, 4GB RAM.
System 2: Odroid N2 with 4×Cortex-A73 + 2×Cortex-
A53 and Mali-G52 GPU, 4GB RAM.

We use OpenCL 1.2 standard for cross-platform portability.
OpenCL 1.2, however, does not allow dynamic memory allo-
cation and the maximum memory that can be allocated to one
variable cannot exceed (1/4)th of the RAM capacity. This had
earlier restricted floating of large tally matrices in CORAL

and REPUTE on memory restricted platforms. Similar to
CORAL and REPUTE, PLEDGER reports the first-n mapping
locations. We compare the mapping times of different mappers
with their recommended settings and all mappers have been
configured to report 100 mapping locations per read.

IV. RESULTS AND DISCUSSION

In all our experiments, we have found that all mappers pro-
duced over 99% accuracy in reporting locations in comparison
to the gold standard, as mentioned in Section III.

A. System 1 - CPU+GPU

We conduct two experiments on System 1, where we com-
pare PLEDGER with RazerS3, Hobbes3, CORAL and RE-
PUTE: first, using only the CPU and, second, using both CPU
and GPU. The memory requirements prohibit CORAL and
REPUTE from running on GPU, however, PLEDGER can map
all chromosomes on both CPU and GPU. We obtained results
for both n = 100 and n = 150, both showing similar trends,
but for the sake of brevity we present results, only, for n = 150
and δ = 7 as shown in Table I. PLEDGER-cpu uses just the
CPU while PLEDGER-all uses CPU+GPU by distributing
workload in the ratio 4:1. The ratio was chosen upon empirical
observation, heuristically, to give the best mapping times. We
can see that PLEDGER-cpu and PLEDGER-all outperforms
RazerS3 and CORAL for all chromosomes, producing 1.6-
11× speedups. CORAL is slower due to its heuristic filtration
methodology. PLEDGER performance is comparable to RE-
PUTE while PLEDGER-all outperforms it by offloading the
workload to GPU. Hobbes3 has outperformed PLEDGER in
performance. The performance gap, however, narrows when
PLEDGER distributes workload on available GPU using its
parallel heterogeneous execution capabilities. For chromosome
Y in Table I, we see that PLEDGER-all outperforms Hobbes3.
Chromosome Y is the smallest of all chromosomes and we
observe that PLEDGER’s performance improves for smaller
chromosomes.

B. System 2 - Odroid N2

Among existing read mappers, only Hobbes3 and
PLEDGER could run on a memory restricted Odroid N2. From



TABLE II
MAPPING TIME(IN SECONDS) FOR 1M REAL READS, OF LENGTH n = 100 AND ERROR δ = 5, TO CHROMOSOME (CHR) 1-22, X AND Y ON SYSTEM - 2,

ODROID N2 PLATFORM.

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

Hobber3 88.5 82.1 73.63 69.8 75.5 62.8 65.1 57.5 56.5 59.3 56.8 59.8
PLEDGER 168.8 162.8 151.2 148.2 146.7 144 147.4 137.4 134.7 140.7 135.7 138.7

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

Hobber3 48.1 63.6 50 52 58 48.4 50.9 45.9 37.3 40.8 59.8 35.4
PLEDGER 119.6 123.2 122.7 125.9 128.5 111.1 119.8 113.8 91.8 99.7 140.4 79.2

Table II, we can see that Hobbes3 outperforms PLEDGER in
all cases. Even though PLEDGER is capable of using the Mali
GPU but we did not find any additional performance gains.
This is because of the on-board architecture, shared RAM and
kernel design. Mali has low operational frequency (950 MHz)
compared to Nvidia GPU (1392 MHz). Although, PLEDGER
is slower compared to Hobbes3 it provides portability to
OpenCL conformant devices and scalability for implementa-
tion on an embedded cluster to accelerate genomic workloads.

C. Power and energy consumption
We compare the power and energy utilization of Hobbes3

and PLEDGER on system 1 and 2. We measure the average
power consumption and deduct the idle power to measure the
run-time power consumption. To measure energy consumption,
we multiply the run-time power with the total mapping time
for 24 chromosomes. From Table III, we observe that using
embedded platform can lead to 4.34-5.93× energy savings
compared to general purpose computers. It is, also, evident
that high performance can directly yield huge energy savings
in the embedded scenario.

TABLE III
ENERGY CONSUMPTION IN ACCORDANCE WITH SECTION IV-C.

n = 100, δ = 5 n = 150, δ = 7

P(W) E(J) P(W) E(J)

System 1 - 20 W (Idle power)

Hobbes3 79 20006.9 80 44028
PLEDGER-cpu 78 41035 79 78605.7
PLEDGER-all 113 51205.8 114 98859.8

System 2 - 3 W (Idle power)

Hobbes3 6.6 4611.8 6.6 7422.69
PLEDGER 6 9396 6.1 18404.7

V. CONCLUSIONS AND FUTURE WORK

We present a Pyopencl based tooL for gEnomic workloaDs
tarGeting Embedded platforms (PLEDGER). It is a stand-
alone tool capable of completing entire mapping process to
the whole human genome in a memory-restricted (≥ 3.6
GB) embedded environment. It’s portable, scalable and en-
ables parallel heterogeneous executions on both CPU and
GPU. It uses memory-aware data structures and algorithm-
hardware co-design to target embedded scenarios for energy
efficiency. It uses bit-vector operations and memory opti-
mized dynamic programming based algorithm to accelerate
the mapping process. We compare PLEDGER with state-of-
the-art read mappers and demonstrate significant performance

gains and energy savings. PLEDGER, however, has scope of
significant improvements in performance as it verifies 3-5×
more locations per read compared to state-of-the-art Hobbes3.
In our future work, we intend to append our filtration scheme
with post-filtration optimizations to increase the specificity of
selection of candidate locations.
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