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Abstract—Designing energy-efficient hardware continues to
be challenging due to arithmetic complexities. The problem is
further exacerbated in systems powered by energy harvesters
as variable power levels can limit their computation
capabilities. In this work, we propose a run-time configurable
adaptive approximation method for multiplication that is
capable of managing the energy and performance tradeoffs —
ideally suited in these systems. Central to our approach is a
Significance-Driven Logic Compression (SDLC) multiplier
architecture that can dynamically adjust the level of
approximation depending on the run-time power/accuracy
constraints. The architecture can be configured to operate in
the exact mode (no approximation) or in progressively higher
approximation modes (i.e. 2 to 4-bit SDLC). Our method is
implemented in both ASIC and FPGA. The implementation
results indicate that our design has only a 2.3% silicon
overhead, on top of what is required by a traditional exact
multiplier. We evaluate the efficiency of the proposed design
through a number of case studies. We show that our method
achieves similar image fidelity as in the existing approximate
methods, without a delay penalty. Further, the inclusion of the
dynamic approximation techniques is justified by up to 62.6%
energy savings when processing an image with a multiplier
using 4-bit SDLC and 35% energy savings when using 2-bit
SDLC. In addition, case study results show that the proposed
approach incurs negligible loss in output quality with the worst
PSNR of 30dB when using the 4-bit SDLC multiplier.

Index Terms—Energy efficiency, approximate computing, low
power design, multiplier design.

I. Introduction

The concept of approximate arithmetic involves replacing
system components of normal degrees of complexity with
less complex components, which may provide reduced
accuracy in one way or another. This aims to achieve lower
power consumption, higher performance and lower area, with
acceptable levels of accuracy [1], [2], [3].

Over the years, approximate hardware designs have been
extensively researched. Many studies consider the pruning of
arithmetic complexity leveraged by the inherent
error-resilience of certain real-world applications. Examples
span across various design strategies, such as accuracy
scaling [4], approximation of parallel logical patterns [5], [6]
and hardware/software approximations for NNs [7]. The
commonality among these examples is to achieve power

savings by employing static-configuration methods for
specifying fixed approximate processing units, including
approximate multipliers and adders [8], [9], based on
design-time predictions of environment and data conditions.

In approaches that are aware of the bit-level
precision [10], the more significant blocks are processed
using exact arithmetic units, whilst non-significant blocks are
processed using approximate and low-complexity ones.
Recently, a Significance-Driven Logic Compression (SDLC)
approximation method has been proposed for multipliers,
where complex logic operations are replaced by
low-complexity logic gates for a group of partial product
terms depending on progressive bit significance [1]. This
method allows the computations to operate at different logic
compression levels, designed in different multiplier units. By
suitably choosing the multiplier logic compression level, the
method offers a varying degree of energy efficiency and
performance. To enable this a number of multipliers are
designed with selection circuitry, which is expensive in terms
of area and idle/leakage power.

Emerging ubiquitous systems, in particular systems based
on energy-harvesting, represent a paradigm shift from
traditional systems. The energy supply of such systems can
vary temporally and spatially within a dynamic range,
essentially making computation extremely challenging [5],
[11], [12], [13]. Adaptive hardware approximations with
tunable energy and accuracy trade-offs can present
opportunities in these systems for elastically continuing
computation under varying power levels. Certain real-world
applications rely on approximate computing due to its
inherent error resilience. For instance, around 82% of
run-time is spent on unnecessary computations, which can
alternatively be executed in approximate modes [14] to
reduce energy consumption.

To date, there has been limited research on configurable
hardware designs to operate in different approximation modes
in response to environmental and operating conditions such as
energy availability and data accuracy requirements. This paper
is an attempt to address this need.



A. Contributions

For this work, we extend the SDLC approximation method
further as follows. We design a new configurable multiplier
using adaptive SDLC multiplier architecture. The
architecture leverages a tunable approximation method to
specify the logic compression level depending on the
model-driven energy and accuracy trade-offs. Thus, by
allocating the appropriate configurations during run-time, we
can adjust the computation capability under variable power
or energy budgets. Specifically, in this work, we make the
following contributions:
• propose a new multiplier architecture using variable ap-

proximation, which supports run-time configuration;
• evaluate the impact of the configurability on the output

quality and non-functional metrics;
• show implementations of the proposed architecture in

three case studies, including the design of
Energy-Aware Configuration Algorithm (EACA) that
can determine the right configuration under variable
power or energy budgets during run-time.

B. Paper Organization

The rest of the paper is organized as follows: Section II
describes the SDLC method and the motivation of this work.
Section III explains in detail the proposed design method.
Section IV presents error analysis and validates the
configurable architecture by comparing with individual
approximate multipliers. Section V compares the
non-functional metrics such as area, speed and energy with
competing designs. Section VI presents the EACA algorithm
and two cases of real-world problem solving. Finally, Section
VII concludes the paper, highlighting our future work.

II. Existing SDLC Method andMotivation

Recently, Qiqieh et al. [6] proposed an approximate
multiplier design with different levels of logic compression
depending on bit significance, called significance-driven
logic compression (SDLC). Their investigation highlighted
energy-accuracy trade-offs corresponding to these levels. The
principle idea is to combine the partial product terms and
compress them progressively based on significance (i.e. least
significant bits are more compressed compared to more
significant bits) through replacing the AND gates by the OR
gates. Architecturally, this leads to reduction of the carry
propagation chain length and thereby energy efficiency at the
cost of minor accuracy loss.

Figure 1 illustrates the SDLC approach using a dot
notation for (8 × 8) parallel multiplier. This can be explained
in three steps, as follows. To begin, (8 × 8) AND logic gates
are used to generate the partial product matrix (PPM). The
first step aims to form a cluster of several rows in the PPM.
The depth of the clusters may be 2 or 4 bits (2- or 4-bit
SDLC). The idea is to utilize array of OR logic gates to
reduce the number of product terms within each cluster. The
next step describes how OR logic array is used to compress
the terms into a single row of bits leading to a reduction of

the total number of product terms within each cluster in the
PPM to decrease, as seen in step 2. A commutative
remapping of the bit sequence is applied in the third step to
form a decreased number of the partial product rows after
applying the logic compression. The number of the rows is
depending on the depth of the clusters selected in the first
step. The dotted rectangles indicate the critical column’s
height, which is reduced by half in case of 2-bit SDLC and
by quarter for the 4-bit SDLC in step 3 compared to the
exact accumulation tree in step 1.

Partial Product Compressed Bit Resulting from Logic Clusters
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Fig. 1. Two different sizes of logic clusters are used to compress partial prod-
ucts based on their progressive bit-significance in an (8 x 8) parallel multiplier
architecture. (a) clustering a group of bits within two successive rows in the
partial product bit-matrix after bitwise multiplication; (b) generating a reduced
set of product terms after targeting the depth of 2-row logic compression; (c)
ordered matrix after applying commutative remapping of the bit sequence
resulting from the SDLC approach; (d), (e), and (f) the same process when
applying 4-bit depth of logic clusters. The d-bit indicates the depth of logic
cluster.

After these three steps the result accuracy varies
depending on the significant bit sizes. More compression
(i.e. clustering of rows) is performed for bits of lower
significance (compression happens for the square cells) and
progressively less compression is performed for higher
significance bits (no compression for the round cells). The
final product is then generally approximate with its loss of
accuracy under control. Because of shorter carry chain paths
and a reduction of the number of single-bit adders, the
energy is reduced drastically and speed is improved.

Although the SDLC method provides substantial energy
reduction, it lacks run-time configurability. In other words,
the accuracy cannot be adjusted dynamically with variable
compression levels. As a result, the multiplier models
produced can provide only a specific range of performance,
energy and power due to static design.

In certain fields of application, such as artificial
intelligence and signal processing, variable accuracy can be
leveraged in favor of energy savings opportunistically
depending on the power or energy availability. For example,
when power delivery is high it may be possible to tune the
accuracy mode to a higher level, while in low power
situations the accuracy can be scaled down. This is done
with the aim of longer operating lifetime and survivability of
the execution. Section VI includes an exemplar of similar



applications. To facilitate this, we are keen to re-design the
SDLC based multiplier for run-time reconfigurability with
power awareness. Our key hypothesis is as follows: by
designing variable SDLC knobs in a multiplier, it is possible
to leverage the SDLC levels in response to power levels
dynamically and improve adaptability and survivability under
variable power situations. To corroborate our hypothesis, we
design a new configurable and energy-aware multiplier using
three different modes: an exact and two different
approximate levels of 2- and 4-bit SDLC multipliers.

III. Proposed Configurable Approximation Hardware

Whilst it is possible to construct a system with copies of
separate exact and approximate (e.g. SDLC) multipliers and
select which one to use depending on the environmental
conditions, such a design is wasteful of silicon and may
cause substantial energy loss through leakage. This method
is therefore not suitable for systems that have to operate
under power and energy uncertainty. In the following
subsections, we present a novel, run-time configurable
multiplier design that allows dynamic approximation needs
in such applications.

A. Configurable Multiplier Architecture

We propose a configurable multiplier, which provides
exact and approximate versions for use under appropriate
conditions. This multiplier only requires an insignificant
additional amount of silicon compared to a regular exact
multiplier. This is realized by maximally re-using the
single-bit adders for different configurations of the multiplier.

Figure 2 shows the difference between the exact and the
proposed multiplier. Generally, the final product of exact
multiplication can be generated after following three main
steps: 1) PPM is formed. 2) PPM is reduced to a height of
two rows using any accumulation method such as Wallace or
Dadda trees, then 3) these two rows are combined by using a
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Fig. 2. Process chart explaining the difference between the main stages
in (a) exact multiplication and (b) the proposed multiplication using SDLC
approach.

carry propagation adder (see Figure 2 (a)). In the proposed
multiplier, the SDLC approach is included after PPM
formation (as shown in Figure 2 (b)), to minimize the
number of rows in PPM using logic compression (see Figure
1). Therefore, this decreases the delay needed for PPM to be
reduced to a height of two rows (i.e. during stage 2). Then,
the minimized PPM is accumulated to a height of two rows
and summed up using CPA similarly in steps 2 and 3 of the
exact multiplier. In this paper, we demonstrate our approach
based on the Wallace tree structure, which, similar to other
multi-stage tree multipliers, achieves high speed due to a
lower logic depth compared to more conventional
designs [15][16].

For this work the Wallace tree serves as an example. Our
method can be applied based on any exact multiplier design
including multi-stage tree structures such as Wallace and
Dadda trees. Fundamentally, adders in the multiplier serving
as the exact configuration are re-purposed through re-wiring
to implement the approximate configurations.

Figure 3 illustrates how the proposed configurable (8 x 8)
multiplier design performs the exact and approximate
multiplication. In this design, each circle represents one
partial-product bit. The necessary half adders are marked by
rectangles spanning columns of two partial product bits and
full adders are marked by rectangles spanning columns of
three bits. The exact configuration in (a) represents a
traditional Wallace tree multiplier which uses the largest
number of half and full-adder units within the reduction
stages. The 2-bit SDLC configuration presented in (b) is
considerably smaller, and the 4-bit SDLC in (c) is the
smallest. It is worth noting that the proposed configurable
design requires a few additional number of adders on top of
the already existing adders needed by the exact
configuration.

By investigating the proposed configurable multiplier
design with its exact and approximate (2 and 4-bit SDLC)
configurations, we identify structural similarities in the
shapes of the SDLC’s and parts of the Wallace tree
multiplier. For instance, in Figure 3, the 2-bit SDLC’s
reduction stages and the carry-propagate addition (CPA)
parts in (b) can be mapped onto stages 3 and 4 and the CPA
of the exact reduction tree in (a), with only ten additional
partial-product bits required (shown in black and
diameter-line circles). Also, the 4-bit SDLC in (c) can be
mapped onto the CPA in (a) with just a single additional bit.
This bit is also shared with the 2-bit SDLC.

Table I may be read in conjunction with Figure 3 to
represent the required single-bit adders in all parts of the
proposed configurable multiplier design. As can be seen
from the table, the exact configuration requires the majority
of half and full adders, and only a very small number of
adders are needed in addition to the exact configuration to
accommodate the SDLC configurations. In Section V the
additional silicon area required by the SDLC’s is calculated.
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Fig. 3. The reduction stages of an (8 × 8) Wallace tree multiplication illustrate the accumulation method for the PPM formed from exact and two different
sizes of logic clusters (shown in Figure 1) (a) four reduction stages are required in case of (8 × 8) traditional Wallace tree multiplier(WTM); (b) two reduction
stages are required by Wallace accumulation method to reduce the PPM generated by 2-bit SDLC( see Figure1 (c); (c) no reduction stages for 4-bit SDLC
as the height of the PPM is only two rows(see Figure 1 (f)), and (d) configurable (8 × 8) Wallace tree multiplication includes the common similarities and
variations shown in (a), (b) and (c).

TABLE I
The number of full and half adders used by the accumulation stages and

CPA for different exact, approximate multipliers and the Proposed
configurable (8 × 8) Wallace tree.

Multiplier → Exact 2-bit SDLC 4-bit SDLC Proposed
Adder type HA FA HA FA HA FA HA FA

Stage 1 4 12 3 9 - - 4 12
Stage 2 3 13 6 6 - - 3 13
Stage 3 4 6 - - - - 3 9
Stage 4 4 7 - - - - 4 8

CPA 10 11 11 11

B. Hardware Knobs for Run-Time Configuration

In the case of the (8 x 8) multiplier, a 3-to-1 Multiplexer
(MUX) is needed for top-level configuration selection. This
switch provides the actuation facility for controlling the
configuration according to whatever rules the designer sets
for the configuration strategy. A configuration signal is
received from the controller and fed to the MUX to select
one of the three configurations accordingly.

The configuration procedure is low-overhead, no more than a
couple of layers of parallel switches. Even after including
the two-bit to three-wire one-hot signal decoding logic, the
entire procedure should fit comfortably within a single clock
cycle for any reasonably modern technology.

In this work, we synthesized the hardware into FPGA to
characterize the energy and power required for executing each
configuration (see Section V). This is because we eventually
implement on FPGA. If other technologies are used in the
implementation, the same characterization can be performed
on the relevant technology. From these characterization data,
it is possible to derive energy thresholds that an energy-aware
configuration algorithm may use to make control decisions.

If the rules of configuration are not determined by energy

availability, different characterization experiments may be
carried out to produce appropriate threshold values in the
alternative physical parameters that are important for the
configuration control. In this paper, we concentrate on
energy-aware configuration. For instance, one of our case
studies, the Energy-Aware Configuration Algorithm (EACA),
which will be presented in Section VI-A, concentrates on
efficient energy usage. As a result, all our experimental work
is focused on energy being the crucial physical parameter.
The hardware facilities that provide the hooks for
configuration described in this section target energy-aware
designs, but are generic enough to need no adjustment or
little adjustment for control based on other parameters.

With three different configurations in total, a configuration
signal produced by the control module consists of two binary
bits. We set 00 for the exact configuration, 01 for the 2-bit
SDLC configuration, and 1x (with x representing "don’t
care", i.e. can be either 0 or 1) for the 4-bit SDLC
configuration. This is shown in Figure 4. Giving the don’t
care to the 4-bit SDLC configuration shows our
energy-centric design priority, as we use the smallest circuit
to select the smallest configuration, which is likely chosen
when energy supply is low. Based on the configuration
selection input signal, the control hooks perform the
following actuation:
• the right groups of adders are included in the

configuration - for the example in Section III-A, the
three selectable groups roughly correspond with the
three parts of the exact Wallace tree: Stages 1 and 2,
Stages 3 and 4, and the CPA. The exact configuration
includes all three groups, the 2-bit SDLC configuration
includes Stages 3 and 4 and the CPA, and the 4-bit
SDLC includes the CPA.



• additional adders are included as appropriate for the
SDLC configurations.

• appropriate re-wiring of the full and half adders
(growing some half adders to full adders and shrinking
some full adders to half adders) for the appropriate
SDLC configurations.
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Fig. 4. Diagrammatic sketch of the proposed hardware architecture of the
configurable (8 × 8) multiplier with exact, 2-bit and 4-bit SDLC modes.

IV. Error Analysis
In this section, the impact on accuracy of the proposed ap-

proach is investigated in the form of error analysis.
Several error metrics have been discussed in [17] and [18]

for evaluating and quantifying errors. The error distance (ED)
is defined as the arithmetic difference between the accurate
(exact) product (P) and erroneous (approximate) product (P′).
The relative error distance (RED) is the ratio of ED over the
accurate output, and it is defined as in [19]:

RED =
ED
P

=
|P − P′|

P
. (1)

Note that we assume that the products are positive, as the
multipliers are for unsigned integers.

The mean RED (MRED) is one more error metric for any
(N × N) approximate multiplier, it is defined as:

MRED =

∑22N−1

i=0 REDi

22N . (2)

MRED is the mean value of RED across all possible
different operand pairs of the multiplication. Without

knowing the application, here we assume that each unique
pair of operand values has exactly the same probability of
happening (uniform distribution).

For comparing multipliers of different degrees and methods
of approximation, we use the normalized MRED (NMED):

NMED =
MRED
Pmax

=

∑22N−1
i=0 REDi

22N

Pmax
, (3)

where Pmax is the maximum product that can be obtained
from an (N x N) accurate multiplier, i.e. Pmax = (2N−1)2.
We perform simulation studies in Matlab by incorporating a
functional model of the proposed multiplier using different
logic clusters with (8 × 8) Wallace tree accumulation.

TABLE II
MRED and NMED for different approximate configurations in an (8 × 8)

configurable multiplier.

Multiplier ↓ MRED (%) NMED(%) Difference from [6]
2-bit SDLC 1.9883 0.3527 0 (%)
4-bit SDLC 10.5836 3.2723 0 (%)

Table II lists the error trade-off when changes between the
two degrees of approximation (2- and 4-bit SDLC) in the new
design. As can be seen, the MRED is only minimal for the
2-bit SDLC type. The 4-bit SDLC also records a small error.
A similar observation can be made in the case of the NMED
metrics. Moreover, the table includes the difference between
the approximation parts in this new design and the previous
work [6], in order to investigate if by moving to a configurable
design, a price is paid in errors. The results show that the
differences are 0%, and there is no error overhead.

For more extensive analysis involving error metrics, for
instance in the case study in Section VI-B, different
configurations of the proposed configurable multiplier are
used in calculating the Gaussian blur algorithm. We use such
metrics as Peak Signal to Noise Ratio (PSNR). PSNR is a
fidelity metric used to measure the quality of the output
images. PSNR is expressed as:

PS NR = 20log10
255
√

MS E
, (4)

where MSE is the mean squared-error measured with respect
to the reference pixel [20]. We can find the total MSE of the
image as the sum of all sub-image MSE values as follows:

MS Ek
B =

1
m · n

m∑
i=1

n∑
j=1

(
Bk(i, j) − B′k(i, j)

)2
. (5)

These PSNR analysis methods are used in Section VI-B.

V. Comparative Evaluations

In this section, we compare the area, delay and power
tradeoffs of our multiplier design with recently proposed
approaches, considering two hardware implementations:
ASIC and FPGA. These implementations are included in
order to achieve a wider insight of comparative evaluations



as some of the compared implementations are in ASIC,
while others are in FPGA.

A. Area, Delay & Power Tradeoffs in ASIC Implementations

For ASIC comparisons, a generic System-Verilog code is
used to generate synthesizable modules for the proposed
configurable multiplier. Mentor Graphics Questa Sim is used
to compile the System-Verilog code and run the associated
testbenches. Synopsys Design Compiler is used for
synthesizing the multiplier configurations, and the circuits
are implemented in the Faraday 90nm technology library.
The compared methods are implemented in exactly the same
way, so that comparisons can be performed on the same
implementation technology node and library.

Table III presents area, delay and power tradeoff figures
when compared with [6]. As can be seen, the configurable
hardware is larger in terms of area than the exact multiplier
alone. A delay overhead is also expected in the configurable
design because of the increased number of adders.

TABLE III
Comparing existing multiplier designs and the proposed configurable design in

terms of power(P), area (A) delay(DL) and Power-delay product (PDP).

Multiplier ↓ P(µW) A(um2) DL( ns) PDP( f J)
Fixed Configs [6] 158.39 3495.71 7.82 1238.6
Proposed Exact 66.20 1450.40 2.66 176.1

Exact [1] 62.42 1417.47 2.63 164.2
Proposed 2-bit SDLC 39.21 904.56 2.11 82.7
Proposed 4-bit SDLC 25.42 501.37 1.35 34.32

It can be seen from Table III that the area overhead,
comparing the configurable multiplier (Proposed Exact) to
the exact multiplier on which it is based (Exact [1]), is 2.3%.
The power overhead is 6%, the latency overhead is 1.1%,
and the power-delay product overhead is 7.2%. However, the
proposed model saves more than 82.73% of area compared
with the solution proposed in [6], which includes separate
exact and SDLC multipliers for runtime selection. This large
area reduction implies significant power savings because of
leakage power, leading to large PDP reductions.

The competitive figures obtained on these non-functional
metrics mean that this configurable design would also compare
favourably against the other designs in [1] and [6].

B. Area, Delay & Power Tradeoffs in FPGA Implementations

For a more flexible design, the configurable multiplier is
also implemented in FPGA using Xilinx Vivado Design
Suite for the Ultra96-V2 platform [21]. The compared
existing designs, originally also on FPGA, are
re-implemented on this same platform for fair comparisons.

A previous study includes different designs of exact
multipliers on FPGA (see Table IV), focusing on
performance [22]. These are compared with our three
configurations for non-functional parameters. Table IV lists
the results for each design in terms of area, delay, and power.
It can be seen that the proposed configurable multiplier, in
its different configurations (between exact to 4-bit), is
competitive in terms of area, delay, and power compared to

Modified Radix2 Booth Multiplier (MRBM) and WTM. It is
noteworthy that our exact configuration is competitive in
delay with these multipliers, which were designed for speed.

TABLE IV
Comparing non-functional metrics with Kumar et al [22].

Multiplier ↓ Area (LUT’s) Power (W) Delay (ns)
MRBM [22] 137 1.010 6.721
WTM [22] 96 1.061 6.102

Proposed Exact 91 1.22 6.102
Proposed 2-bit SDLC 65 0.32 4.1
Proposed 4-bit SDLC 42 0.23 3.8

VI. Case Studies

In this section, first we illustrate an example configuration
selection algorithm. This algorithm attempts to find the
maximum usage of available energy by selecting the least
approximate configuration. Later, we present two more case
studies for the configurable multiplier in real-world
problems. These case studies demonstrate the capabilities of
the proposed configurable multiplier as well as the validity
of the configuration selection algorithm.

A. Energy-Aware Configuration Algorithm (EACA)

In order to have a design that can survive under unreliable
power supply (non-deterministic fluctuations in power levels)
and guarantee reliable computation, we need to build a
system with survival instincts. We design a configuration
controller taking advantage of the three-mode configurable
multiplier architecture to implement energy-aware execution.
The EACA model, which fits into the "Selection Model" box
in Figure 4, is shown in Algorithm 1.

Algorithm 1 Energy-aware configuration algorithm
1: Initialize with energy figures
2: const: k = number of different approximation configura-

tions
3: for i = 1 to k do
4: E (i) = energy required for the ith configuration
5: end for . i = 1 is exact and i = k is the min config
6: begin EACA
7: while true do
8: Eia = 0 . instantaneous available energy
9: j=1 . initialize index

10: wait control cycle time length
11: while Eia < E(k) do
12: obtain Eia from energy supply
13: end while . until enough energy for min config
14: while Eia < E(j) do
15: j = j+1
16: end while . find the least approx config for Eia
17: select the jth configuration
18: end while
19: end EACA

EACA assumes the existence of energy supply information
at run-time, which is not uncommon among well-designed
energy harvesting systems [23],[24],[25]. The available



energy is then compared with the required energy to execute
the least energy-hungry configuration. If the available energy
is insufficient, the multiplier is not executed whilst the
monitoring of incoming energy continues. Once the available
energy is confirmed to be enough to execute at least the
configuration with the smallest energy requirement (in the (8
× 8) multiplier example in this work, this is the 4-bit SDLC
configuration), EACA continues to the configuration
selection stage. In this stage, EACA progressively tests the
available energy against the energy required by the different
configurations one by one, starting from the heaviest
configuration with the smallest approximation, and moving
towards the lightest configuration, which has the greatest
degree of approximation.

In principle, EACA attempts the following optimization
problem: Treating the available energy as a constraint,
maximize the multiplication accuracy (or minimize the
multiplication approximation) by selecting the correct
configuration that fits the available energy.

B. Gaussian Blur Filter

In this case study, we evaluate the efficacy of the proposed
technique with a real life image processing application,
which consists of additions and multiplications using our
three multiplier configurations. Our analysis considers the
Gaussian blur filter [26] since it is widely used in graphics
software, typically to reduce image noise and artifacts (e.g.
Moiré effects) by acting as a low-pass filter.

We constructed the multiplier in Matlab covering 2-, and
4-bit depth clustering in the case of (8 × 8) multiplication.
The Gaussian kernel is (3 × 3) with a 1.5 standard deviation
value, and it uses 8-bit fixed point arithmetic and is applied
to 8-bit gray-scale input images of a size of (500 × 500)
pixels. We approximate Gaussian blur by replacing the
standard multiplication in the Gaussian filter with the
aforementioned approximate multipliers.

Exact Multiplier bit SDLC bit SDLC �� ���

Reference Image
Energy Saving/Image

PSNR = ����

������
PSNR = ��

������

Fig. 5. Output quality and energy consumption for Gaussian blur filtering
using the three different configurations of the proposed (8 × 8) multiplier.

Figure 5 illustrates the impact of different configurations on
the image quality after applying the Gaussian blur filter. As
shown in Figure 5 the use of the SDLC approach can yield
reasonable results.

The PSNR values for the case of 2-, and 4-bit logic
clustering for (8 × 8) SDLC are 50.2dB and 30dB
respectively. The values of PSNR are computed compared to
the reference image, obtained from applying Gaussian blur
filtering using the exact configuration, according to (4).

To calculate the consumed energy in the multiplier when
processing an input image, we follow

Energy = Power ∗ Delay ∗ N, (6)

where Power and Delay are obtained for one multiplier
design from the synthesis tool. N is the number of
multiplications necessary to treat the input image by
Gaussian filter. The energy savings are then calculated
compared to the conventional exact multiplier.

The energy savings and PSNR results obtained, shown in
Figure 5, demonstrate that the proposed approach can
provide significant dynamic energy savings with acceptable
image qualities. The quality-energy tradeoff is clear across
the three configurations.

C. Energy-Aware Approximation

Figure 6 shows an example execution trace where the
supply energy is variable within a wide range with time. The
highest amount of energy available is shown to be 250 fJ
and the lowest amount of energy available is shown to be
35 fJ. EACA’s energy-aware configuration helps the system
achieve reasonable PSNR figures in the execution for the
available energy at any time. The priority is survival of the
continuous execution by optimizing PSNR whilst satisfying
energy constraints. This trace confirms that this configurable
multiplier supports EACA’s sustainability focus. In this
experiment, the extra overheads used in the configuration
circuits prove to be negligible compared to the multiplier’s
costs. EACA itself is assumed to be run on an outside
processor whose energy is external to the shown energy
budget, without losing generality. A future work would be
the simplified realization of EACA on low-cost hardware.
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Fig. 6. Different scenarios for the EACA model operate at run-time under
highly variable energy conditions while sustaining execution.



VII. Conclusions

We present a configurable multiplier design with the
ability to dynamically tune the approximation in the
multiplier through logic compression control. We
implemented the System-Verilog design on an ASIC, using
Synopsys Design Compiler and Xilinx Vivado Design Suite.
The synthesized results show that up to 43.75% of energy
savings and almost 38.03% of reduction in critical path delay
can be achieved. We also implement the proposed multiplier
on the Ultra96v2 Evaluation FPGA Platform. The results
show that the proposed approach can provide significant
energy and area savings with negligible loss in output quality
(the worst PSNR is 30dB for the 4-bit SDLC multiplier).

We demonstrate the capabilities of the configurable
multiplier by introducing the EACA method of finding the
optimal configuration of the multiplier depending on the
available energy. The results show that the EACA model
allows the proposed design to operate at run-time under
highly variable energy conditions while sustaining execution.

The highlight of this configurable multiplier is the sharing
of the same adders between different configurations, saving
both silicon and leakage energy.

We believe that the proposed multiplier architecture
leverages arithmetic approximation to support
energy-efficiency for applications where detailed accuracy
may not be important, such as machine learning.

However, scaling up the current architecture to a higher level
of complexity is a non-trivial topic and promising direction for
future work.
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