
Runtime Energy Minimization of Distributed
Many-Core Systems using Transfer Learning

Dainius Jenkus, Fei Xia, Rishad Shafik, and Alex Yakovlev
School of Engineering, Newcastle University, NE1 7RU, UK

E-mail: {d.jenkus1, fei.xia, rishad.shafik, alex.yakovlev} @newcastle.ac.uk

Abstract—The heterogeneity of computing resources continues
to permeate into many-core systems making energy-efficiency
a challenging objective. Existing rule-based and model-driven
methods return sub-optimal energy-efficiency and limited scala-
bility as system complexity increases to the domain of distributed
systems. This is exacerbated further by dynamic variations of
workloads and quality-of-service (QoS) demands. This work
presents a QoS-aware runtime management method for energy
minimization using a transfer learning (TL) driven exploration
strategy. It enhances standard Q-learning to improve both
learning speed and operational optimality (i.e., QoS and energy).
The core to our approach is a multi-dimensional knowledge
transfer across a task’s state-action space. It accelerates the
learning of dynamic voltage/frequency scaling (DVFS) control
actions for tuning power/performance trade-offs. Firstly, the
method identifies and transfers already learned policies between
explored and behaviorally similar states referred to as Intra-Task
Learning Transfer (ITLT). Secondly, if no similar “expert” states
are available, it accelerates exploration at a local state’s level
through what’s known as Intra-State Learning Transfer (ISLT).
A comparative evaluation of the approach indicates faster and
more balanced exploration. This is shown through energy savings
ranging from 7.30% to 18.06%, and improved QoS from 10.43%
to 14.3%, when compared to existing exploration strategies.
This method is demonstrated under WordPress and TensorFlow
workloads on a server cluster.

I. INTRODUCTION

The ability to scale and support dynamic user demands
and quality of service (QoS) at minimized energy cost is
an important objective in distributed many-core systems [1].
Coarse-grained resource management, such as compute node
allocation, is provided by a technique referred to as horizontal
scaling [2]. Fine-grained control of intra-node computing
resources, such as the allocation of CPU cores, memory shares,
or dynamic voltage/frequency scaling (DVFS), is known as
vertical scaling. A combination of these techniques provides a
means for optimally tuning energy/performance tradeoffs, but
generates a complex decision space, which can make achieving
energy efficiency challenging [2].

The key to controlling the energy efficiency effectively lies
in understanding the conflicting energy/performance trade-
offs [2]. Low-complexity controls in the form of rule-based
strategies, which depend on historical data (e.g., CPU uti-
lization [3] or workload characteristics [4]), have been ex-
plored by industry [2]. Likewise, model-based techniques
using DVFS have also been widely adopted to minimize power
in server clusters [5]–[7]. To reduce the computational efforts

for solving optimization problems, heuristics are often used
at the expense of compromised optimality of controls [6],
[7]. In many approaches, such as [5], [7], extensive offline
profiling is required to model and exploit power-performance
tradeoffs. However, given the complexity of decision space,
the scalability of controls can be limited as it is challenging
and time-consuming to obtain sufficient modeling data in real
distributed system environments.

As an alternative, model-free reinforcement learning (RL),
e.g., Q-learning, has been used for learning action policies
at runtime with little or no domain- or platform-specific
knowledge [3]. In RL, the state-action relationships are learned
during the exploration and exploitation phases. The action
selection can be random (e.g., the ε-greedy rule [8]), employ
action probabilities (e.g., Softmax [9]) or guided by existing
policies [10]. The ability to balance exploration-exploitation
using metrics such as time, state counters, or temporal-
difference (TD) error [9], plays an important role in managing
the quality of controls. The TD-error strategies coupled with a
probability-based action selection (i.e., Softmax) [9], [11] have
been shown to outperform time-based or state counter-based
methods. However, in practice, often sparse feedback from
the environment and the requirement to perform exploration
for each state and action makes the learning convergence
relatively slow [10]. This negatively impacts QoS [12] and
energy tradeoffs during the exploratory phases.

Transfer learning (TL), as knowledge transfer from a source
domain (expert) to the target (learner) domain, has been used
to great success by enhancing initial learning performance
under the framework of RL [13], [14]. TL can take different
forms of knowledge transfer, e.g., provide advice rules, bias
exploration using past policies [10], or directly map over the
Q-values and reward functions for the target domain [15].
However, the divergence in knowledge representations (e.g.,
reward functions and state spaces), limited accessibility of
expert knowledge, and sampling cost [13], make it challenging
to apply TL in distributed systems.

A direct transfer of Q-values can perform poorly due to
subtle variations in the dissimilar task domains or differences
in software/hardware architectures. This makes the learning
convergence to a good policy worse as it takes time to
“unlearn” the part of prior policy [15]. Motivated by the
discussed challenges, we apply the principles of TL at an
intra-task level to accelerate learning and improve the system’s

operational optimality through better QoS and energy savings
in the real distributed system environment.

This work presents QoS-aware runtime management for
energy minimization. The proposed approach incorporates Q-
learning, and enhances it with our new TL-based exploration
strategy. It demonstrates two crucial advantages over existing
methods: faster and self-sufficient learning and operational
optimality with better energy efficiency and QoS. These are
achieved by directly addressing the challenges introduced
by the conceptual simplicity of model-free learning and the
exploration-exploitation dilemma [8], such as slow-learning
convergence and sub-optimal action selection during explo-
ration. Core to our approach is multi-dimensional knowledge
transfer across a task’s state-action space. Our intra-task learn-
ing transfer (ITLT) applies TL across the states of a task and
our intra-state learning transfer (ISLT) uses TL locally within
each state. By keeping each of the dimensions straightforward
and well focused, our combined method, intra-state and intra-
task transfer Q-learning (ISIT-TQL) substantially improves the
learning speed and operational optimality of the system whilst
maintaining its scalability. Specifically, the main contributions
of this paper are:
• QoS-aware integrated runtime management of intra-compute

node resources using DVFS, i.e., vertical scaling, which
utilizes Q-learning accelerated by TL-based exploration to
provide elastic controls for minimizing energy.

• TL-based exploration strategy for a multi-dimensional
knowledge transfer across a task’s state space (ISIT-TQL). It
encompasses TL within a local state level and across states.

• Extensive experimental validation and comparative analysis
under different workload scenarios.
The remainder of this paper is organized as follows: Section

II covers system architecture and its components. Section III
presents the proposed runtime management. The experimental
evaluation and discussion of the results are explained in
Section IV. Finally, Section V concludes the paper.

II. SYSTEM ARCHITECTURE

A. Compute Node Cluster

Fig. 1 depicts the system architecture used as a case study
in this work. Our runtime acts as a resource controller of
cluster nodes. The controller and load balancer is implemented
on a hardware separate from cluster nodes. Each node is
configured with an Odroid XU4 platform [16], which features
the Exynos5422 multi-processor SoC. This SoC is based on
the Arm big.LITTLE architecture with four big cores (A15)
and four energy-efficient little cores (A7).

B. Load Balancer, Monitor and Workload Generator

The HAProxy (1.8.23) [17] load balancer is used for
distributing requests across web application instances across
the cluster of compute nodes. It provides metrics including
response time, user sessions, the status of nodes and allows
dynamically disabling/enabling of nodes at runtime. These
metrics are used by our controller for carrying out learning and
guiding runtime controls. A workload generator is developed

user requests

Vertical Scaling

Learning
Transfer

Q-learning

 Load Balancer

 users, response
time, active nodes

DVFS
actions

node
allocation

ISIT-TQL
Node Node

Node Node NodeNode Node Node

Cluster

Workload
Generator

Horizontal Scaling

Monitor

Runtime Controller

Fig. 1: An overview of the system architecture.

to simulate different workload scenarios using Python and is
built using the Wrk 2 load testing tool [18]. It allows to apply
workloads with controllable numbers of concurrent users and
requests.

III. PROPOSED RUNTIME MANAGEMENT

In this section, we first lay down the foundations of Q-
learning (Section III-A) and its exploration strategies (Section
III-B), then present our novel TL algorithms (Section III-C).

A. Background of Q-Learning

Under the framework of RL [8], Q-Learning is formalized
as an off-policy and model-free paradigm. A policy for a set
of actions A and states S, i.e., state-action space (A × S) is
learned through the use of state-action Q-value function as
follows:

Q(s, a) = Q(s, a) + α[R(s, a)+

γmaxQ′(s′, a′)−Q(s, a)],
(1)

where the learning rate α and the discount factor γ are both in
the range of [0, 1], the reward R is given for action a in state
s at each discrete time step. γ determines the weight of future
rewards and scales a Q-value of the new state s′. Finding an
optimal policy involves selecting an action at a particular state
following two phases: exploration and exploitation [8].

B. Exploration Strategies

In the next paragraphs, we provide exploration strategies
used for comparative analysis.

1) Counter ε-greedy (CE): a well-known ε-greedy explo-
ration rule [8] controls these phases as follows:

π(s) =

{
random action from A(s), if p < ε(s),

argmaxa∈A(s)Q(s, a), otherwise,
(2)

where 0 ≤ p ≤ 1 is a uniform random number generated at
each decision step. A random action is chosen (i.e., explored)
if p < ε(s), otherwise the agent selects (i.e., exploits) the
best action from the Q-table to maximize the reward. The
probability of exploration is controlled with a distinct ε(s)
value for each state, estimated as follows:

ε(s) = 1− e−θ/C(s), (3)

where θ is a constant to control epsilon (ε) decay rate, and
C(s) is the number of times a given state has been visited.

2) ε-greedy-Softmax: a probability-based action selection
using Softmax, i.e., Boltzmann distribution function, is com-
bined with the ε-greedy exploration rule, which by default
implies random action selection. This allows to better balance
action selection during the exploration phase than standard ε-
greedy and reduce negative short-term rewards [9] as follows:

π(s) =

Explore:
eQ(s,a)/τ∑N

n=1 e
Q(s,an)/τ

, , if p < ε(s),

Exploit: argmaxa∈A(s)Q(s, a), otherwise,
(4)

where τ >= 0 is the temperature parameter and 0 ≤ p ≤ 1
is a probability following uniform distribution generated at
each decision step. Random actions are explored if p < ε,
otherwise the agent exploits the best action. When τ is high,
all the probabilities are similar, when it is low, it prioritizes
best-rewarded actions, i.e., greedily exploits optimal actions.

3) Adaptive ε-greedy-Softmax (AES): besides knowledge
transfer, our complete ISIT-TQL approach utilizes the adaptive
control of exploration probability (as defined in [9]). It com-
bines temporal-difference (TD) error and ε-greedy-Softmax
rule as given in Eq. (4). In addition, the method estimates
a state dependent exploration probability ε(s) as follows:

ε(s) = δ × 1− e

−|αTDerror|

σ

1 + e

−|αTDerror|

σ

+ (1− δ)× ε(s), (5)

where σ is a positive constant referred as inverse sensitivity,
which at low values provides more exploration even for a
small change in TDerror, whilst at high values gives more
weight to exploration when TDerror is larger. A constant δ
controls the contribution of the given action for exploration,
e.g., for the equally-weighted influence of each action, δ is in-
versely proportional (1/A) to the number of available actions.
Temporal-difference (TD) error indicates learning divergence
from optimal values and is estimated as follows:

TDerror = R(s, a) + γmaxQ′(s′, a′)−Q(s, a). (6)

C. Operation of the proposed TL-based Q-learning
Here, we first present essential components of Q-learning

(i.e., reward, state, action) related to our case study, then
explain the details of our TL-based Q-learning technique.

1) Reward estimation: after a new state (s′) and the
performance, i.e., response time (tperf) are observed from
the monitor, the reward function for a taken action is then
estimated as follows:

R(s, a) =

{
β0 × (Tslack/Tperf), if Tslack < 0,

β1 × (1/Tslack), otherwise,
(7)

where Tslack = Tperf − tperf , β1 is a constant for scaling
positive rewards, and β0 scales negative rewards. A negative
Tslack indicates a QoS violation, while a positive Tslack means
that the QoS constraint (Tperf) is satisfied. The aim is for a
low-positive Tslack, meaning that the system operates neither
too fast (wasting energy) nor too slow (violating the QoS).

Start

Record perf. point

Estimate a
reward (Eq. 7)

Update Q-values
(Eq. 1)

Update exploration
probability (Eq. 5)

Identity explored
states within a range

Select an action
(Eq. 4)

ITLT is not applied and ISLT
is not applied or active?

Yes

Yes

Estimate weights and
initial Q-values

No

No

Yes

Enough actions
explored for ISLT?

Derive state's initial
Q-values

Select the next
action for ISLT

exploration

Yes

ISLT active for a
current state?

Yes

No

No

Learning
Transfer

ITLT

ISLT active for a given
state?

No

ISLT

Q-learning

Step 2

Are enough explored
states available?

Observe system's
performance

Step 1

Fig. 2: The workflow of proposed TL-based Q-learning.

2) Definition of state and action: in the multi-
process/thread server architectures, a thread-per-connection
model is employed to deal with requests from new user
connections [19]. This provides scalability but increases the
context switching resulting in longer response times as more
users connect. The throughput of servers, i.e., requests/sec,
is usually much higher than users, and requests per user
are often limited at the load balancer. Therefore, rather than
individual requests, a state is defined as the number of
concurrent user connections since it drives the response time.

Control actions, as DVFS, are simultaneously applied across
enabled nodes to A15 cores in a range from 0.6 to 2.0 GHz
with a step of 0.2 GHz. A7 cores run at 1.5 GHz to avoid per-
formance degradation and the lower system energy-efficiency
observed when running workloads at lower frequencies.

3) The workflow of ISIT-TQL: Fig. 2 shows the learning
workflow of our controller with Q-learning (step 1) and the
proposed knowledge transfer (step 2). At each control interval,
the method starts by going through a standard Q-learning
workflow (step 1). In step 2, exploration progress is assessed
and a suitable TL method is applied or initiated (Fig. 2).
Step 2 begins by examining conditions for applying ITLT,
i.e., identifying explored states Mε within Srange. If enough
explored states are available, weighted Q-values are estimated
as later described in Algorithm 1. If not, ISLT is considered
due to the limited availability of explored states. ISTL guides
exploration and records performance at selected exploration
points. Once ISLT exploration is completed, initial Q-values
are derived as later explained in Algorithm 2.

4) Intra-Task Learning Transfer (ITLT): ITLT is defined in
Algorithm 1. It uses TD-error based exploration probability
ε(s) (see Eq. (5)) for identifying explored states Mε. Both
lower (sl) and higher (sh) states in reference to the current
state (s) are considered within Sdst distance, which is a pos-
itive integer (see Fig. 3). A state is explored when ε(s) < Cε,
where Cε ∈ [0, 1] is a threshold of exploration (line 2).

After explored states are identified, the Mcond condition is
evaluated requiring both lower and higher Smin states within

States

Actions s0 s1 s2 s3 ... sN-1

a0 (amin) - - -

a1 - - -

... - - -

aN-1 (amax) - - -

for sN

Explored Optimal Unexplored-

higher
?expert? state

(sh) = (s3)

Relative distance to s1 | Rdst (s3) = 2Rdst (s0) = 1 |

lower
 ?expert? state

 (sl) = (s0)

Weighted
policy of s3Weighted

policy of s0

ITLT
state s1 ISLTITLT

ISLT
exploration

points

Deriving policy
from explored

actions

Fig. 3: An overview of multi-dimensional knowledge transfer within
state-action space (Q-table) using ISLT and ITLT methods.

Algorithm 1: Intra-Task Learning Transfer (ITLT)
1 Get explored states Mε from Srange:
2 Mε = {Srange | ε(s) < Cε}
3 if Exploration requirement Mcond(s) is met? then
4 foreach sε ∈ Mε do
5 Get relative distance of sε: Rdst = |s− sε|
6 if sε > s then
7 Set weight: Wε(sε)← e−Rdst/θh

8 else
9 Set weight: Wε(sε)← e−Rdst/θl

10 end
11 foreach sε ∈ Mε do
12 Normalize the weight of explored state:

Ŵε(sε)←
Wε(sε)∑length(Mε)

n Wε(sn)

13 foreach a ∈ sε do
14 Add weighted Q-value of explored action:

15 Q(s, a) += Ŵε(sε)×Q(sε, a)
16 end
17 end

Sdst distance in order to provide a balanced estimation of Q-
values. In line 5, a relative distance Rdst between the current
state (s) and explored states (sε) is then found. Both Smin

and Rdst are positive integers below or equal to Sdst. A
weight Wε(s) is assigned to each explored state, which is
exponentially weighted using Rdst (lines 7, 9).

ITLT Q-value transfer allocates higher weights to explored
states with the closest proximity as the probability of states
being behaviorally similar decays as Rdst increases. As opti-
mal actions, i.e., DVFS points vary continuously with a state
value, ITLT exploits these relationships to transfer Q-values.

Constants θl and θh control QoS-energy tradeoffs. Lower
states are scaled by θl, while higher states are scaled by θh.
When θh > θl, TL is more conservative prioritizing higher
optimal actions and lowering the probability of violating QoS.
If θh < θl, TL increases the probability of operating closer to
QoS constraint (Tperf), but at a lower energy footprint.

Next, the obtained weight (from line 7 or 9) is normalized
by the sum of weights of all explored states (line 12). Then
each Q-value of the explored state (sε) is scaled by Ŵε(sε)
and assigned to a new corresponding Q-value of an unexplored
state. This is repeated until all weighted Q-values are collected
from explored states in order to obtain final Q-values.

Algorithm 2: Intra-State Learning Transfer (ISLT)

1 if exploration points (Aep) are not defined? then
2 Sort control actions A from min to max
3 if at least Amin actions are available? then
4 Assign initial points: Aep ← [amin, amax]
5 idmax ← index.max(A)
6 idhigh ← Askip + 1
7 while idhigh < idmax do
8 if A[idhigh] ̸= amax? then
9 Add action: Aep.append(A[idhigh])

10 idhigh ← idhigh + (Askip + 1)
11 end
12 else
13 Assign min/max actions: Aep ← [amin, amax]
14 if all actions in Aep(s) explored Ntimes? then
15 Given perf(s, a) points, where a ∈ Aep(s):
16 estimate linear model fperf (s, a)
17 foreach a ∈ A(s) do
18 Find slack time: Tslack ← Tperf - fperf (s, a)
19 Estimate initial Q(s, a) values using Eq. 7
20 end
21 else if action (a ∈ Aep) is not explored Ntimes then
22 Set the next action from Aep for the exploration

5) Intra-State Learning Transfer (ISLT): ISLT is shown
in Algorithm 2. When ISLT is presented to an unexplored
environment with undefined exploration points (Aep), the first
step is to identify actions for directed ISLT exploration. The
algorithm starts by sorting control actions from the lowest to
the highest (line 2), i.e., CPU frequencies in our work. There
are two types of action assignments for ISLT exploration.
Provided that at least Amin actions are available, the first
type assigns amin and amax actions by default. Then, it
iterates through action space (A) appending actions to Aep

every Askip (line 7) and dividing ISLT action space into
smaller regions. Larger Askip values, e.g., Askip > 2, exclude
more actions, while lower values include more actions for
exploration. For example, Askip = 1, Amin = 5 and A has
at least Amin actions, exploration points with indexes of 0, 2
and 4 would be included in Aep. The second type assigns only
amin and amax actions for ISLT exploration (line 13).

After actions are identified, ISLT is guided through explo-
ration points at least Ntimes (see line 14, 21 and Fig. 2). Larger
Ntimes values, (e.g., Ntimes > 2), improve the confidence
level of estimated Q-values, but also increase the exploration
requirements. For each exploration point, a temporary record
of performance perf(s, a) is stored for the derivation of the
state’s performance-action model (fperf), which is required to
estimate initial Q-values. ISLT reduces the complexity of mod-
els (e.g., with higher degree polynomials) for applications with
non-linear performance-action behavior. It estimates fperf as a
linear model using the closest exploration points. For instance,
given 7 exploration points (actions), where actions indexed 0,
3, 6 are explored, the performance of action 2 using fperf is
estimated when a linear model of fperf is derived using actions
with indexes of 0 and 3. This allows maintaining an acceptable
level of accuracy at low complexity. Then, for each unexplored
action within a state, the initial Q-value is calculated based on
reward function (from Eq. (7)) and an estimated Tslack using
a linear fperf model (lines 18-19).

IV. EXPERIMENTAL RESULTS

A comparative evaluation of ISIT-TQL and existing methods
discussed in Section III-B is carried out firstly in terms of
energy and cumulative rewards [8] of the learning agent. Ad-
ditional metrics are also defined to better understand achieved
QoS and relationships between the performance of the learning
agent and energy-efficiency. These are defined as follows:
• QoS Success Rate (QSR) – a ratio of control cycles with

satisfied QoS (i.e., tperf > Tperf) and total cycles, which
quantifies the achieved level of QoS.

• Power Normalized QSR (PNQ) – a ratio of QSR and
average power, i.e., QSR/Watt. Maximum PNQ indicates
the highest QoS achieved per Watt. It allows to identify the
best QoS-energy tradeoffs in the observed experiments.

• Power Normalized Reward (PNR) – a metric quantified as
Reward/Watt. PNR relates energy-efficiency and received
rewards of the Q-learning agent.
1) Workloads for comparative analysis: two workloads are

applied on cluster nodes for comparative evaluation. The first,
called TensorFlow-serving (later referred as TensorFlow) [20],
is the inference server of machine learning models used in pro-
duction environments. The results are provided when serving
a popular MobileNet [21] model for image classification. The
second, is a blog website based on WordPress [22] framework.

Scenarios with gradual and sudden variations in service
demands are applied to investigate a dynamic range of web
traffic activity, i.e., user requests. In the experiments, the QoS
constraint (Tperf) is set to 80 ms and 300 ms for WordPress
and TensorFlow workloads, respectively. The selected values
are aligned with hardware capabilities and QoS requirements
allowing to exercise workloads with available control actions.

2) Experimental setup and parameters: an offline analysis
is carried out for tuning parameters used in the experiments
to provide satisfactory and robust behavior of the Q-learning
agent as follows:
• common parameters include: learning rate α = 0.3, the

discount factor γ = 0.4. Reward constants β1 = 1 and
β0 = 10. Among ISIT-TQ and AES, the temperature
parameter (τ) and the inverse sensitivity constant (σ) are
set to 1.5 and 10, respectively. This provides a balanced
ratio of exploration/exploitation when performing action
selection based on TDerror (see Eq. (5)). Also, δ parameter
is inversely proportional (1/A) to the number of actions.

• ITLT-related parameters: minimum explored states Smin =
1, state distance Sdst = 2. A state is considered to be
explored when Cε < 0.4. Scaling factors of lower and higher
states are set to the same value (θl = θh = 1).

• ISLT-related parameters include: the number of explorations
per action Ntimes = 2 and skipped actions Askip = 1.

• The exploration decay rate (θ) used in CE is set to 3.
3) Learning agent performance: Fig. 4 displays the perfor-

mance of the Q-learning agent, shown as cumulative rewards,
when running: a) WordPress, and b) TensorFlow workloads.
The results demonstrate that our ISIT-TQL method receives
the highest cumulative reward at observed control intervals,

b) TensorFlow

C
u

m
u

la
ti

v
e

R
e

w
a

rd

Control Interval Control Interval

C
u

m
u

la
ti

v
e

R
e

w
a

rd

a) WordPress

Fig. 4: Cumulative rewards under two different workloads.

and selected control actions lead to operation closer to the level
set by QoS constraint (Tperf). This indicates that the system
operates neither too fast (wasting energy) nor too slow provid-
ing the required QoS. In addition, higher cumulative rewards
demonstrate better learning speed as the method is capable to
identify optimal control actions at the early exploration stage.
ISIT-TQL adapts to the dynamics of workloads by balancing
the learning using ISLT and ITLT. For example, ISLT receives
the highest cumulative rewards for the WordPress workload
since ISLT is predominantly initiated due to more continuous
explorations of state space. In contrast, TensorFlow workload
involves more sparse exploration of the state space. This
provides opportunities for exploiting the knowledge of similar
states and applying ITLT. CE receives the least amount of
rewards as it lacks adaptive controls of exploration probability,
ε(s), and utilizes a randomized action selection.

4) Energy reduction: Table I includes results of evaluated
methods showing: a) raw values of metrics, and b) percentage
difference of each method against ISIT-TQL. The method
called default, corresponding to Linux Ondemand DVFS con-
trols, is additionally included in Table I. When compared to
default, ISIT-TQL reduces energy by 28.67% for TensorFlow
and by 19.06% for WordPress workloads. ISIT-TQL improves
over CE by 7.3% and AES by 4.51% considering WordPress
workload. TensorFlow workload is more compute-intensive
and has higher energy requirements than WordPress. This
makes the effect of sub-optimal control actions more pro-
nounced in energy figures, where ISIT-TQL outperforms CE
and AES by 18.06% and 14.16%, respectively.

5) QSR, PNQ and PNR metrics: with ISIT-TQL, the QSR
metric, indicating QoS, is enhanced by up to 14.30% for
TensorFlow and up to 10.43% for WordPress when compared
to other exploration strategies. PNQ and PNR metrics given
in Table I (a) are shown as non percentage values. ISIT-TQL
significantly improves QoS achieved per unit of power, i.e.,
PNQ, by 38.41% over default and up to 24.93% over CE. The
power normalized rewards of the learning agent, i.e, PNR, is
drastically improved over CE by up to 85.94%.

6) Control interval and overheads: in the investigated
applications, the performance obtained from the load balancer
is a moving average of the last 1024 user requests. The delayed
feedback environment allows defining a control interval in a

TABLE I: Comparative ISIT-TQL performance using different metrics under two different workload scenarios.

a) Metrics b) Percentage Change (%)
Workload TensorFlow WordPress TensorFlow WordPress

Method Energy
(J x 10ˆ3) QSR (%) PNQ PNR Energy

(J x 10ˆ3) QSR (%) PNQ PNR Energy QSR PNQ PNR Energy QSR PNQ PNR

ISIT-TQL 51.289 98.245 0.115 0.097 34.906 97.378 0.127 0.482 N/A N/A N/A N/A N/A N/A N/A N/A
ISLT 55.585 96.153 0.104 0.064 35.132 95.737 0.124 0.457 -8.38 2.14 9.70 33.30 -0.65 1.69 2.32 5.22
ITLT 55.169 98.245 0.107 0.083 35.294 96.944 0.125 0.411 -7.56 0.00 7.04 13.90 -1.11 0.45 1.54 14.84
CE 60.554 84.210 0.086 0.013 37.454 87.218 0.106 0.264 -18.06 14.30 24.93 85.94 -7.30 10.43 16.53 45.36

AES 58.551 91.228 0.090 0.015 36.479 92.629 0.115 0.316 -14.16 7.24 21.44 83.86 -4.51 4.88 8.98 34.43
Default 65.993 77.860 0.070 N/A 41.559 82.630 0.090 N/A -28.67 20.76 38.41 N/A -19.06 15.15 28.73 N/A

range of tens of seconds. We set the control interval to 20s as it
provides sufficient adaptability to be used with a wide range of
workloads. A typical control cycle takes no more than 25ms to
complete when running ISIT-TQL on Intel’s i5-8250U CPU,
which is a negligible control overhead.

7) Scalability and Portability: our runtime is not platform-
specific, only requiring industry-standard monitors and control
actions, e.g., CPU frequencies to be specified accordingly
to a given system. This allows ISIT-TQL to be scaled onto
existing server architectures with minimal adjustments in the
configuration of the learning agent.

The instances of ISIT-TQL agent scale together with a
number of managed applications deployed on virtual private
servers (VPS), containers, or bare-metal servers. The key
requirement is that a given application has dedicated resources
to ensure robust learning enabling it to avoid re-explorations
due to performance variations caused by resource sharing.
ISIT-TQL dynamically scales the state space and does not
require to specify its dimensions in advance.

8) Application-suitability of the method: ISIT-TQL is suit-
able for applications deployed in multi-process/thread server
architecture environments exercised through a typical request-
response communication model [19]. As the observable per-
formance, i.e., response time is the key to learning state-action
relationships rather than the servable content of applications
itself, our method is generally applicable to various applica-
tions. For example, multiple instances of ISIT-TQL agent can
be assigned to manage workloads of different machine learning
models served by the TensorFlow server [20].

V. CONCLUSIONS

This work concentrates on energy minimization for dis-
tributed many-core systems under QoS constraints. The pre-
sented method, called ISIT-TQL, leverages Q-learning ac-
celerated by proposed multi-dimensional knowledge transfer
to achieve the learning of DVFS controls at higher levels
of QoS. It enhances exploration by extracting knowledge of
behaviorally similar states and transferring them to unexplored
states known as ITLT. When “behaviorally similar” states
are not available with reference to a current state, a reduced
exploration at a local state’s level is applied known as ISLT.
The proposed method achieves energy saving of 28.67% (com-
pared to default system) and 18.06% (compared to counter ε-
greedy). The increased optimality of controls is demonstrated
through improved QoS by up to 14.3%-20.76%. ISIT-TQL is
self-sufficient and can learn the dynamics of a task’s workload
for both dynamic and static QoS requirements.

REFERENCES

[1] C. Gu, Z. Li, H. Huang, and X. Jia, “Energy efficient scheduling of
servers with multi-sleep modes for cloud data center,” IEEE Transactions
on Cloud Computing, vol. 8, no. 3, pp. 833–846, 2020.

[2] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, pp. 559–592, Dec 2014.

[3] S. Horovitz and Y. Arian, “Efficient cloud auto-scaling with sla objective
using q-learning,” in 2018 IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud), pp. 85–92, 2018.

[4] B. Simmons et al., “Managing a saas application in the cloud using paas
policy sets and a strategy-tree,” in 2011 7th International Conference
on Network and Service Management, pp. 1–5, 2011.

[5] A. Monteiro et al., “Qmapper: Dynamic power and performance man-
agement in virtualized web servers clusters,” in Eighth Latin-American
Symposium on Dependable Computing (LADC), pp. 37–46, 2018.

[6] L. S. Sousa et al., “Green data centers: Using hierarchies for scalable
energy efficiency in large web clusters,” Inf. Process. Lett., vol. 113,
p. 507–515, July 2013.

[7] V. Petrucci et al., “Optimized management of power and performance
for virtualized heterogeneous server clusters,” in 11th IEEE/ACM Int.
Symposium on Cluster, Cloud and Grid Computing, pp. 23–32, 2011.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, second ed., 2018.

[9] M. Tokic and G. Palm, “Value-difference based exploration: Adaptive
control between epsilon-greedy and softmax,” in KI 2011: Advances
in Artificial Intelligence (J. Bach and S. Edelkamp, eds.), (Berlin,
Heidelberg), pp. 335–346, Springer Berlin Heidelberg, 2011.

[10] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-
ment learning agent,” vol. 2006, pp. 720–727, 01 2006.

[11] A. D. Tijsma et al., “Comparing exploration strategies for q-learning
in random stochastic mazes,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8, 2016.

[12] T. Brys et al., “Policy transfer using reward shaping,” in Proceedings of
the 2015 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’15, (Richland, SC), p. 181–188, International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

[13] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey,” 2021.

[14] R. A. Shafik et al., “Learning transfer-based adaptive energy minimiza-
tion in embedded systems,” IEEE Trans on CAD of Integrated Circuits
and Systems, vol. 35, no. 6, pp. 877–890, 2016.

[15] J. L. Carroll and T. Peterson, “Fixed vs. dynamic sub-transfer in
reinforcement learning.,” in ICMLA, pp. 3–8, 2002.

[16] Hardkernel, “Odroid-XU4.” [Online]. Available: http://www.hardkernel.
com. [Accessed: 10-Sep-2021].

[17] “HAProxy Load Balancer.” [Online]. Available: http://www.haproxy.org.
[Accessed: 10-Sep-2021].

[18] “Wrk 2 Load Test Tool.” [Online]. Available: https://github.com/giltene/
wrk2. [Accessed: 10-Sep-2021].

[19] B. Erb, “Concurrent programming for scalable web architectures,”
diploma thesis, Institute of Distributed Systems, Ulm University, April
2012.

[20] C. Olston et al., “Tensorflow-serving: Flexible, high-performance ML
serving,” CoRR, vol. abs/1712.06139, 2017.

[21] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[22] WordPress.org, “Blog tool, publishing platform and CMS.” [Online].
Available: https://en-gb.wordpress.org/. [Accessed: 10-Sep-2021].

