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ABSTRACT
The emergence of embedded machine learning has enabled the mi-
gration of intelligence from the cloud to the edge and to the sensors.
To explore the practicalities of wide-spread deployments of these
intelligent sensors, we look beyond traditional arithmetic-based
neural networks (NNs) to the logic-based learning algorithm called
the Tsetlin Machine (TM). TMs have not yet been implemented and
explored on general purpose microcontrollers especially that are
intermittently powered. In this paper, we argue that their simple
architecture makes them a promising candidate for batteryless ML
systems. However, in their current form, they are not suitable to
be deployed on resource-constrained sensors because of the sub-
stantial memory footprint of trained models. To tackle this issue,
we propose a lossless compression scheme based on run-length
encoding and evaluate against standard TMs for vision and acoustic
workloads. We show that our encoding can compress the model by
up to 99% without accuracy loss. This translates into lower memory
footprint and better energy efficiency (up to 4.9×) compared to the
original Tsetlin Machine algorithm, and provides promising trade
offs when compared against binary neural networks.

CCS CONCEPTS
• Software and its engineering→ Embedded software; • Com-
puting methodologies → Neural networks; • Hardware →
Analysis and design of emerging devices and systems.
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1 INTRODUCTION
Sensing-based computation is increasingly becoming pervasive in
our lives.With the vision that trillions of devices will be deployed by
2035 [21], there is a growing need for making them battery-free [9].
Batteryless sensors enable autonomous operation by harvesting
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ambient energy from solar, kinetic, radio frequency or other sources,
with the ambition to make edge applications maintenance-free
and long-lived for a sustainable future. However, these devices are
impractical without the pairing of an ML model which can compute
meaningful results directly on the sensor, eliminating the need for
high-energy data transmission to the cloud [7].

Traditional machine learning applications rely on deep neural
networks (DNNs) [7]. DNNs can provide good accuracy but at a
high inference latency and model complexity. The critical challenge
is that energy is scarce and intermittent, as such the device can
suffer one or more power failures during a single inference. To
retain program state in these conditions, the volatile program state
must be stored into non-volatile memory before a power failure and
restored when the sensor comes back online. This has a significant
energy cost and delays the execution of inference tasks [16, 24].

Apart from inadequate energy and compute resources, memory
management of DNNs is the main factor contributing to higher
inference latency [7]. This cannot be easily avoided as memory
containing intermediate results between two layers may be large
and must be handled correctly to avoid memory inconsistencies [7,
24]. In this paper, we address the questions: are there any alternatives
to DNNs offering comparable accuracy but with lower latency and
resource utilisation, and are they suitable for batteryless systems?

The Tsetlin Machine (TM) is an emerging machine learning al-
gorithm utilizing the principles of learning automata and game
theory [8]. The TM’s inference routine uses propositional logic
as opposed to arithmetic operations, which makes it a less com-
putationally intensive and energy frugal alternative to traditional
artificial neural networks (§ 2). The computational simplicity of
TMs results in two main benefits for intermittent systems. First, it
makes writing task-based applications, usually a daunting exercise
for intermittent systems developers [16, 24], significantly simpler,
speeding up the development and in turn deployment of intelli-
gent applications. Second, since the computation of each class is
independent from one another (contrary to the case with neural
networks), no data has to be transferred in-between different com-
putational units back-and-forth. This means that if the execution
is interrupted by a power failure, there is only a small portion of
the memory that needs to be written to the non-volatile memory
and restored after power up. Whereas in DNNs, each layer is typ-
ically computationally heavy and the memory required to store
the intermediate result and pass it to the next layer is significant.
This increases memory requirements adding latency overheads to
intermittently powered applications. Figure 1 highlights the benefit
of TMs over DNNs by showing the memory that would need to be
stored and restored at each power failure.

The memory footprint of TMs is not significant for small prob-
lems [8], but does not scale easily on resource-constrained micro-
controllers (MCUs). For example an MNIST classifier achieving
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Fig. 1: Memory overhead of fully-connected and convolutional BNNs
and TMs for different datasets. Vanilla TM refers to the standard
Tsetlin Machine algorithm as presented in [8].

90% accuracy requires 306KB of memory, exceeding the capac-
ity for a MSP430FR5xxx1, a standard series of MCUs for running
intermittently-powered applications.

In this paper, we explore the characteristics of Tsetlin Machines
in a resource-constrained environment with particular focus on
intermittent computing, and propose a compression schememaking
use of run-length encoding (RLE) to compress the TMmodels by up
to 99%, resulting in lower latency and memory footprint without
loss of accuracy.

We evaluate our intermittence-aware compressed TM implemen-
tation on vision and acoustic datasets [13, 22] showing significant
memory and latency improvements over standard TM implemen-
tation - e.g. 98.68% compression with 4.9× speedup for our Key
Word Spotting (KWS) dataset. Additionally, through a comparison
with state-of-the art binary neural networks we uncover interesting
trade offs that could be exploited for the future use of TMs as the
intelligence component on intermittently-powered devices.

In addition to advocating TMs as a good fit for battery-free
inference, we make the following contributions:
• An initial exploration of a new direction for memory and energy-
efficient batteryless TMs.

• Early insights into a first method for compressing TM models
targeted for intermittently-powered systems.

• A detailed comparison of compressed TMs with state-of-the-art
embedded binary neural networks (BNNs).
We begin by providing a background on intermittent comput-

ing and Tsetlin Machines, and then delve into our compression
approach and intermittence-aware TM implementation. We con-
tinue with the evaluation of our approach against the standard TM
implementation and binary neural networks, both with continuous
and intermittent power, before offering concluding remarks

2 BACKGROUND
2.1 Intermittent Computing
The vision of ubiquitous computing will require sensors to harvest
ambient energy to ensure long lifetime and low maintenance cost.
The sporadic availability of harvested energy makes the continuous
execution of the programs impossible [15]. Devices accumulate
energy in a capacitor and run programs only when the level of
charge is sufficient to keep the device operating. When the en-
ergy is depleted the device switches off until the next charging
cycle is complete, resulting in very short uptime periods (e.g., few
milliseconds) and potentially long downtimes (e.g., hours). This
1https://tinyurl.com/MSP430FR5xxx

hampers the use of conventional programming models, designed
for continuously-powered devices, to run correctly on batteryless
sensors as the memory consistency and forward progress is com-
promised due to frequent power failures.

Intermittent computing models preserve forward progress and
ensure memory consistency by inserting checkpoints throughout
the program code. When a power failure approaches, the content
of volatile memory is stored into a non-volatile memory, and the
execution is restored from the same point when the device reboots
after a power outage. Several models exists; from the ones which
operate at compile-time [12], to more dynamic ones which react to
current harvesting conditions [3], to approaches that rely on appro-
priate configuration from the developer [24]. All these techniques
lead to significant memory and latency overhead due to continuous
store/restore operations.

Recently, several works are focusing on bringing complex recog-
nition tasks, based on deep neural networks (DNN), on intermit-
tent systems with the objective of enabling useful applications
(e.g., wild-life conservation [5], healthcare [4] and building man-
agement [1]). Understating sensor data through local inference
running intermittently is crucial for these applications. It enables
the creation of smaller and more cost-effective devices (i.e., without
a battery) and it liberates them from expensive maintenance (e.g.,
periodic battery replacement) when deployed in remote or difficult
to reach locations. Once we remove batteries from sensing devices,
however, streaming raw data for offline processing becomes un-
feasible since the cost of transmitting radio packets would render
the device ineffective in doing any other useful work. For example,
Gobieski et al. [7] found that the energy required to transmit an
MNIST [6] image is approximately 360× greater than the energy
needed to perform local inference intermittently using a neural
network. Similarly, Nardello et al. [20] reported approximately 75x
greater power draw when sending LoRa packets compared to local
CNN inference. Despite the benefit compared to radio transmis-
sions, these DNN workloads come with a significant burden in
terms of resources they require, i.e., memory and energy, especially
in situations where compute is happening on harvested energy.
Hence, initial efforts are considering the dynamic adaptation of
such workloads [2, 10, 18, 19].

In this paper we examine Tsetlin Machines as an alternative
recognition algorithm which has the potential to reduce these re-
quirements thanks to its logic-based formulation.

2.2 Tsetlin Machines
The Tsetlin Machine is an ML algorithm that uses a learning au-
tomata called Tsetlin Automata to form logic propositions with
booleanized input features and their complements. These logic
propositions are used to determine the classification. The simplistic
logic-over-arithmetic approach of the TM opens pathways for more
energy efficient embedded and hardware implementations [23].
Booleanization. One fundamental difference separating TMs from
traditional NNs is the need for booleanization of the input data.
This differs from binarization as there is no longer any notion of
place value when each boolean literal is considered in subsequent
computations. Figure 2 demonstrates the data preparation pipeline
on the left side. The raw features (integer or floating point values)
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are booleanized into Boolean Features (1 or 0 values). For simplicity,
in our example, we chose one bit representation for each raw feature,
but this is a design choice that should be made depending on the
application. Boolean features are then converted to Boolean Literals.
This is simply the Boolean feature itself and its complement. These
Boolean literals form the inputs to the TM. Therefore booleanization
of the raw input data allows the user to control the granularity of
the inputs to the TM i.e., the number of boolean literals.
Architectural Building Blocks. The right-hand side of Figure 2
shows two of the fundamental elements of the TM: the Tsetlin
Automata and the Clause. Each Tsetlin Automaton (TA) has a finite
number of states (6 in our figure), half of which correspond to
Exclude and the other half corresponds to Include. The TAs can
either be viewed by their state numbers (1 to 6 as seen in Figure 2)
or by their binary include and exclude decisions (i.e., 0 for exclude
and 1 for include). A TA is instantiated for every Boolean literal
which is composed of each Boolean feature and its complement.
The TA is the learning element that is optimized during training,
much like the weights in a Neural Network. During training, the
current state of each TA changes at each step and settles in near
optimum include/exclude decisions at the end of the process, when
good classification accuracy is reached. The Boolean Literals and
their respective TA include/exclude decisions are then fed to the
clause unit, hence creating the propositional logic.

The clause relates the input data (Boolean Literal) to its respec-
tive learning element (TA). As shown through Figure 2, the in-
clude/exclude decision of the TA is combined with its Boolean
Literal through a simple logic circuit. The output of a clause is
a single bit. The number of clauses is a parameter the user will
configure much like the number of filters or layers in a Neural Net-
work. Typically, higher number clauses result in better accuracy as
there is greater likelihood of the TM finding the right propositions.
The clause highlights why we refer to the data preparation step as
Booleanization rather than binarization, all notion of place value is
lost once the Boolean literal reach the clause proposition logic and
each Boolean literal has equal weighting in the clause expression.

Full TM Model. Figure 3 shows the architecture of the TM for
training. The clauses are grouped together for each class with an
equal number of clauses per class. The one bit clause outputs are
multiplied with a positive or negative polarity (×1 or × − 1) and
summed for each class. The polarity allows each clause to learn
both supporting and opposing propositions for their respective
class. Upon summing the class votes across the whole system, the
classification becomes the class with the most votes. The computa-
tion stops here at inference time. At training time instead, based on
guessed and actual class, Feedback is given to each TA to transition
their state. Feedback is only necessary in the training stage. Once
trained the positions of the TA states are fixed. The process repeats
for all boolean datapoints with the convergence of the TM typically
occurring within few epochs [14]. For an in-depth explanation of
Tsetlin Machines readers are encouraged to review [23] and [8].

In this paper we examine the benefits and challenges of using
TMs for inference on intermittently-powered systems. So far the
only attempts at embedded TMs have simply translated the C based
TM implementation to a MCU [14].

2.3 Benefits and Challenges of Intermittent
Tsetlin Machines

Focusing on the hierarchical architecture of the TM in Figure 3,
we observe how, from an intermittent-execution perspective, TMs
allow for greater choice over task division [16, 24]. The developer
can define tasks at the TA level, clause level or class level depend-
ing on the application scale. Since the computation of each unit
is independent to the other, the data transfer between the units
is minimum, unlike conventional neural networks (as shown in
Figure 1). This flexibility is important for task-based intermittent
systems [16, 24] as it minimizes the overhead, and simplifies the se-
lection of appropriate task division: both crucial aspects to consider
to ensure the application forward progress.

While the logic based clause propositions offer both complex-
ity reduction and energy efficiency potential, in order to achieve
sufficiently high accuracy we must increase the number of clause
instances in the system, consequently increasing memory cost [8].
Much like the weights in DNNs, the number of TAs contribute
to the main memory footprint of TM models. The size of a TM is
defined as the number of TAs, also written as number of classes ×
number of clauses × number of Boolean literals. An increase in any
one of these terms will result in substantial increase in the number
of TAs. For example, increasing the number of clauses for better
accuracy, increasing the number of classes for larger problems, or
increasing the number of boolean literals for problems that require
more granular feature representation will all have a significant
effect on the model size. There is no clear trade-off formulation to
this problem and the design choices for the number of clauses and
number of Boolean literals is always application dependent.

3 INTERMITTENTLY-POWERED TM
Wenow shift our attention to the application of TM in an intermittent-
power setting. This demands careful strategies to 1) encode the
TA states to fit into the limited memory of MCUs common in
intermittently-powered systems, and to 2) determine appropriate
intermittent execution models. We reflect on these aspects below.
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3.1 Encoding TM Models
Wehave seen that thememory requirement to store the state of each
TA increases when the classification task becomes more complex
(i.e., number of classes and input dimension increases) or when the
classification capacity of the model needs to be increased (i.e., more
clauses). However, we notice two intrinsic properties of the TM: 1)
there is no need to store the actual value of each TA state but just
their binary include/exclude decision, and 2) typically the number
of exclude decisions far outnumber that of the include decisions.
This implies that if we represent exclude with 0 and include with
1, we will observe very large runs of 0s separated by a single 1.
Hence we propose to use Run Length Encoding (RLE) to compress
the TAs after training. With this approach, long sequences of the
same value (e.g., 0) are replaced by its count. The ratio of exclude
to include TA decisions can be attributed to the granularity of the
boolean inputs, a richer input feature representation may result in
the TM selecting more include features, this may result in better
accuracy but at the cost of a lower compression ratio.

Figure 4 shows the full pipeline for the embedded RLE-TM we
propose. Through discretisation of the actual TA states followed
by tallying the runs of 1s and 0s we are able to significantly reduce
the model’s memory requirements. Notice that this is a lossless
compression since the original include/exclude sequence can al-
ways be recovered, resulting in zero accuracy loss at inference
time. The Extracted TAs blocks show the TA states post-training,
plotted in Figure 4 to visually demonstrate the ratio of include to
exclude decisions. Note that the middle state separating includes
from excludes here is 100, the number of states in the TA is a design
choice. Using a greater number of states leads to more fine-grained
decision-making but will also require more epochs for the TAs to
settle into optimum include/exclude positions. In Figure 4 the TM
shows each TA has 200 states and there are 45240 TAs altogether,
only 84 TAs are include decisions for an example Key Word Spot-
ting (KWS) application. The substantial imbalance between the
include and exclude decisions allow for very large runs of excludes
separated by one include enabling significant compression ratios
to be achieved through RLE encoding.

When considering intermittently-powered systems, this com-
pression approach not only reduces the memory requirement of a
TM-based classification task but improves also its latency. Infact,
the FRAM—used to store program code and non-volatile program
state—on MSP430FR5xxx MCUs, is much slower than the on-chip
SRAM and the compiler inserts wait cycles if there is a mismatch
between system clock and FRAM max speed. Hence, compression
ratios of up to 99% implies that memory operations are reduced

Model Structure
MNIST CIFAR KWS

FC BNN
L1-512
L2-256
(96.97%)

L1-512
L2-256
L3-128
(80.91%)

L1-256
(81.70%)

Conv. BNN
L1-10

(95.55%)
L1-10

(85.39%)

L1-10
L2-10

(71.53%)

Table 1: BNNs model structure and accuracy for the three datasets.
LX-Y indicates layer number X, and Y neurons for FC models and
filters for conv. models, respectively.

by almost 99% too. This substantial reduction in memory accesses
translates, on such architecture, to significant improvements in
latency and energy efficiency compared to vanilla TMs. However,
some of the improvement is sacrificed on decoding TAs. We discuss
this speedup in § 4.

3.2 Intermittence-Aware Implementation

Booleanization:Weusewell known and commonly used booleaniza-
tion methods for the datasets evaluated. This is done through either
pre-defined functions such as Adaptive Thresholding available in
the OpenCV library, quantile binning based on the distributions
of each feature or simply creating equally spaced fixed thresholds
between the maximum and minimum input values [14, 23].

Execution Model:We use a popular intermittent execution model:
InK [24]. In InK, applications consist of atomic tasks—inside a task
thread—that can do computation, sensing, or other actions, and have
access to shared memory. InK schedules these tasks and maintains
memory consistency and progress of computation across power
failures. Tasks within a thread communicate with each other by
manipulating task-shared variables. InK allocates these variables
in the non-volatile memory and keeps them double-buffered to
preserve data consistency. Before running any task, the scratchpad
buffer is initialized by the content of the original buffer, and then
buffer pointers are swapped at task completion. This happens before
the execution of each task even if only one variable in the buffer
is modified, thus leading to significant overhead. However, the
overhead is much lower than other systems [24]—making it the
main reason for choosing this over other state-of-the-art works.

Implementation: For intermittent execution, the program code
needs to be broken down into small chunks, tasks, that can be
executed atomically. The simple architecture of TMs makes task
division easy without putting burden on developers. Leveraging the
fact that the compute of one class is independent of other classes, we
choose an intuitive task division strategy and put all the operations
related to one class in one task. This ensures minimal overhead for
storing and restoring intermediate task buffers.

4 EVALUATION
4.1 Methodology
Datasets:We evaluate our RLE TM using three datasets.

MNIST [6] is a standard benchmark dataset composed of 70k
28x28 pixel images of handwritten digits.

CIFAR-2 is a 2-class variation of the commonCIFAR-10 dataset[13]
where we group all the vehicle images into one class and all the
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animal images into another class. The dataset consists of 60k 32x32
colour images which we convert to grayscale for our evaluation.

Speech Commands [22] includes 105k 1-second long utter-
ances of 35 spoken words. We use 6 keyword classes yes, no, up,
down, left, right and the booleanization pipeline from [14].

We use MNIST to establish a baseline for our evaluation models
as typically done in the machine learning community. The other
two datasets instead, represent image and audio recognition tasks
that could potentially be achieved by low-power devices as first
classification stage before triggering a more powerful system.
Models: Firstly, our evaluation focuses on comparing our RLE
Tsetlin Machine against the vanilla TM. Since the number of clauses
is one of the main hyperparameters for TM models, we train 10
models with an increasing number of clauses. This allows to study
how the model’s performance changes in relation to its capacity.

For the baselines, we use deep neural networks (DNN) which are
the state of the art for image and audio classification. In particular,
given that TMs use booleans for the input data and the internal
representations, we select binary neural networks (BNN) as the
closest model to a TM. For our evaluation we use the optimised
implementation and models provided by McDanel et al. [17] and
given the difficulty in splitting DNN workloads into tasks, we use
task-tiling as done by Gobieski et al. [7]. Task-tiling splits loop
iterations into tasks executing a fixed number of iterations. In our
implementation, we compute one neuron and apply one filter per
task in fully-connected (FC) and convolutional BNNs, respectively.
This division might not be ideal as its optimisation depends on
the characteristics of each model (e.g., number of layers and neu-
rons/filters), deployment environment, harvester, and the size of
capacitor. However, as we did for our TM implementation, we opted
for an intuitive task split that allows application developers—having
less domain specific knowledge—to write programs that can run
intermittently without any memory inconsistencies. Table 1 reports
the BNNs details for each dataset with their respective accuracy.

Performance metrics:We use model size, model accuracy, run-
time memory, latency and energy per inference as metrics to com-
pare the vanilla TM, our RLE TM and the BNN baselines, both with

continuous and intermittent power. For the on-device evaluation
we use the MSP430FR5994 equipped with 256KB of memory.

4.2 Memory Usage
We first compare the model size of vanilla TM with RLE TM. Fig-
ure 5 shows that as clauses increase, the vanilla TM model grows
linearly while the encoded model size increases at a much lower
rate. This means the compression ratio gets better when the number
of clauses increases. RLE achieves maximum 97.42%, 99.31%, and
98.68% compression ratio for MNIST, CIFAR, and KWS, respectively.
However, for MNIST, where the ratio of exclude to include decisions
is lower than CIFAR and KWS, there is poor compression at lower
clauses. One interesting point to note is that for MNIST between
20 to 60 clauses the RLE-TM model size seems to decrease despite
an increase in clauses. This is due to the spreading of the include
decisions among the clauses. This results in larger runs of 0s and 1s
and thus better compression. This effect is not noticeable in CIFAR
or KWS as these are harder problems to learn and therefore the
number of includes is relatively small even at low clauses. Our
results show how the model size of RLE TM is much lower than
the total available memory in MSP430FR5994, paving the way for
the development of more accurate and realistic models with higher
number of clauses that would not have been possible without RLE.

We also examine the overall memory footprint of vanilla TMs,
RLE TMs and BNNs. This includes: .text (code), .const (model), and
.persistent (non-volatile buffer and runtime management) sections
of the memory. For BNNs, we use the models shown in Table 1.
For TM, we use 50, 400 and 100 clauses for MNIST, CIFAR and
KWS, respectively, as they offer comparable accuracy to the BNNs.
Figure 6 highlights the effectiveness of RLE TM against the vanilla
TM, which is too large for the MCU. We observe that for datasets
with a higher ratio of exclude to include decisions, such as CIFAR
and KWS, the RLE TM memory footprint is smaller than both BNN
benchmarks. In the case of MNIST, where the dataset contains a
lower ratio of exclude/include, the RLE TM still outperforms the
FC BNN but less sparse includes lead to a larger encoded model,
resulting in higher memory usage compared to the Conv. BNN.

4.3 Continuous Power Evaluation

RLE TM vs Vanilla TM: As mentioned earlier, the RLE is a loss-
less compression. Figure 7 shows that both vanilla and RLE TMs
have the same accuracy since the encoded models can be extracted
completely at run-time. It can also be observed that the latency and
energy of vanilla TM is much higher than RLE TM. This is expected
because of the reduced memory accesses, as mentioned in § 3.

RLE TM vs FC BNN: Figure 7 shows that TMs offer similar accu-
racy within 5% of BNNs. FC BNNs offer better accuracy for MNIST
and KWS, however, we have shown in Figure 6 that this comes
with a larger memory cost. The FC BNN does however offer better
energy efficiency and latency compared to the RLE TM. This comes
from the cost of decoding the RLE during inference. Through ex-
ploration into more efficient decoding procedures we can remedy
the energy and latency figures. We leave this for future work.

RLETMvsConvBNN:When comparing accuracy, TMs arewithin
± 5% of Conv. BNNs. However it is worth noting the accuracy
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Fig. 7: Accuracy, latency and energy per inference for vanilla and
encoded TMs, and BNN baselines. Vanilla TM exceeded the limited
memory of MSP430 for increasing number of clauses. (Note broken
y-axes in latency/energy plots.)

Dataset Duty
Cycle (%)

Latency (s) / Energy (mJ)
FC. BNN Con. BNN Vanilla TM RLE TM

50 1.74 / 5.61 24.00 / 73.58 ✖ / ✖ 2.49 / 9.22MNIST 75 1.16 / 5.51 16.22 / 72.88 ✖ / ✖ 1.63 / 8.92

CIFAR 50 2.13 / 7.29 31.58 / 97.01 ✖ / ✖ 4.14 / 15.27
75 1.46 / 7.00 20.00 / 90.12 ✖ / ✖ 2.79 / 15.14
50 0.49 / 1.57 100.00 / 307.2 ✖ / ✖ 1.30 / 4.79KWS 75 0.33 / 1.53 60.00 / 270.0 ✖ / ✖ 0.87 / 4.71

Table 2: Latency and energy per inference for BNNs and TMs on
different intermittent power settings

advantage of the Conv. BNN comes at the cost of larger latency
and energy where TMs perform better across all three datasets.
We have already seen that if a given application presents a very
high exclude to include ratio, the TM will have better latency and
smaller memory footprint.

4.4 Intermittent Power Evaluation
We emulate intermittent power by generating a square wave (10s
pulse-width) with different duty cycles using a Teensy 3.52 and a
transistor, to compare the energy-efficiency of TMs and BNNs on
different power levels. This approach has been used for evaluating
recently developed systems [11, 24].

Table 2 shows the latency and energy per inference. for the
models reported in Table 1. Note that vanilla TM versions of these
configurations cannot fit in the 256KB FRAM of MSP430FR5994.
With increasing duty cycle, the latency and energy decreases as
more power leads to less downtime and less store/restore operations.
Once again, we see that the RLE TM offers a good middle ground
between the FC BNN and the Conv BNN for both energy and latency,
with the RLE decoding overhead leading to poorer performance
compared to FC BNNs. For our initial exploration, we used 50% and
75% duty cycle only. However, we aim to provide an in-depth and
in-the-wild evaluation with actual harvesters in future work.

2https://www.pjrc.com/store/teensy35.html

From Table 2 we observe that the energy consumption using
our encoding scheme is only a few milli-joules which is much
lower than state-of-the-art convolutional BNNs and is quite low
for batteryless devices. For comparison, SONIC & TAILS report
between 40mJ and 30mJ of energy for a single inference on the
MNIST dataset [7], while our approach requires less than 10mJ. This
is only the energy used for the model inference. Energy consumed
during sensor data acquisition needs to be added regardless of the
model used (i.e., DNN-based or TM-based).

5 OUTLOOK
This paper presented an initial exploration of the logic-based, Tsetlin
Machines learning algorithm in the context of batteryless sensors.

Key Takeaways: We have found TMs to be particularly suited for
intermittent computing thanks to their simple architecture, which
alleviates the burdensome duty of splitting computation into tasks;
and thanks to the limited memory overhead used for intermediate
results. However, the overall memory requirement for a TM model
is still prohibitive for systems characterised by limited memory.

As proposed in this paper, RLE represents a promising approach
to compress a vanilla TM up to 99%, without loss in accuracy, and
resulting in latency speed ups of up to 4.9×. This results in small
TM models which fit into typical batteryless HW platforms and
consume significantly less energy than DNN-based counterparts.
When evaluated against state-of-the-art BNNs the TMs can pro-
vide a middle ground between FC and convolutional models in
terms of offering better memory utilisation and similar latency for
applications where a slight drop in accuracy is acceptable. The
FC BNN offers better accuracy and energy/latency but at a cost
of higher memory footprint, the TM offers similar accuracy and
energy expenditure but at a much lower memory footprint.

Future Directions: In our approach we have exploited the natural
imbalance between include and exclude decisions at the TA level
to compress the model representation. The key to exploiting RLE
relies on manipulating the exclude to include ratio of the TAs to find
a balance between compression and accuracy. This include/exclude
ratio is a by-product of both input boolean granularity and hy-
perparameter choice. These two factors determine the number of
state transitions that happen in the Feedback stage during training.
Future work will explore the impact of both booleanization and the
hyperparameters that control the Feedback on the include/exclude
ratio and subsequently the RLE performance. This would enable
the creation of models that are amenable to RLE-based compression
directly from the training process.

Despite the high compression rates we achieve with RLE, one
drawback is manifested when there are sequences of alternating 0s
and 1s. In this case RLE cannot compress the sequence further. More
sophisticated encoding techniques could be explored with the aim
of reducing this inefficiency, resulting in even higher compression
and potentially lower latency due to fewer memory accesses.

Finally, an in-depth analysis of RLE TM is needed on other HW
platforms with different memory architectures. This additional
exploration would assess if the befits of TMs and the compression
technique we propose in this paper, could be applied to a larger set
of devices, which are not necessarily intermittently powered.

https://www.pjrc.com/store/teensy35.html
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