Publications

Journal Articles

  1. Rothwell KA, Pentrak MP, Pentrak LA, Stucki JW, Neumann A. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. Environmental Science & Technology 2023, 57, 10231-10241. doi: 10.1021/acs.est.3c01655  
  2. Vasilopanagos C, Carteret C, Hillier S, Neumann A, Brooksbank HJL, Greenwell HC. Effect of Structural Fe Reduction on Water Sorption by Swelling and Non-Swelling Clay Minerals. Minerals 2022, 12, 4, 453. doi: 10.3390/min12040453
  3. Stagg OMorris KLam A, Navrotsky AVelázquez JM, Schacherl B, Vitova T, Rothe J, Galanzew J, Neumann A, Lythgoe P, Abrahamsen-Mills LShaw S. Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite Environmental Science & Technology 2021, 55, 24, 16445–16454. doi: 10.1021/acs.est.1c06197  
  4. Cheng D, Neumann A, Yuan SH, Liao WJ, Qian A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O2Environmental Science & Technology 2020, 54, 7, 4091-4101. doi: 10.1021/acs.est.9b07012  
  5. Wang J, Tsai, M-C, Lu Z, Li Y, Huang G, Wang H, Liu H, Liao X, Hwang B-J, Neumann A, Yang X. pH-dependent structure-activity relationship of Polyaniline-intercalated FeOCl for heterogeneous Fenton reactions. ACS Omega 2019, 4, 26, 21945-21953. doi:10.1021/acsomega.9b03008  
  6. Entwistle J, Latta DE, Scherer MM, Neumann A. Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates. Environmental Science & Technology 2019, 53, 24, 14308-14318. doi: 10.1021/acs.est.9b04665  
  7. Notini L, Latta DE, Neumann A, Pearce, CI, Sassi M, N’Diaye AT, Rosso KM, Scherer MM. A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry 2019, 3, 2717–2725. doi:10.1021/acsearthspacechem.9b00224
  8. Culpepper JD, Scherer MM, Robinson TC, Neumann A, Cwiertny D, Latta DE. Reduction of PCE and TCE by Magnetite Revisited. Environmental Science: Processes and Impact 2018, 20, 1340-1349. doi:10.1039/C8EM00286J 
  9. Notini L, Latta DE, Neumann A, Pearce CI, Sassi M, N’Diaye AT, Rosso KM, Scherer MM. The Role of Defects in Fe(II)-Goethite Electron Transfer. Environmental Science & Technology 2018, 52(5), 2751–2759. doi:10.1021/acs.est.7b05772 
  10. Huhmann BL, Neumann A, Boyanov MI, Kemner KM, Scherer MM. As(V) in Magnetite: Incorporation and Redistribution. Environmental Science: Processes and Impact 2017, 19, 1208-1219. doi:10.1039/C7EM00237H toc-art-final-proof
  11. Qafoku O, Pearce C, Neumann A, Kovarik L, Zhu M, Ilton E, Bowden M, Resch C, Arey B, Arenholz E, Felmy A, Rosso K. Tc(VII) and Cr(VI) Interaction with a Naturally Reduced Ferruginous Smectite from the Hanford Redox Transition Zone Environmental Science & Technology 2017, 51 (16), 9042–9052. doi:10.1021/acs.est.7b02191
  12. Latta DE, Neumann A, Premaratne WAPJ, Scherer MM. Fe(II)-Fe(III) electron transfer in a clay mineral with low Fe content. ACS Earth and Space Chemistry 2017, 1 (4), 197–208. doi:10.1021/acsearthspacechem.7b00013
  13. Neumann A, Wu L, Li W, Beard BL, Johnson CM, Rosso KM, Frierdich AJ, Scherer MM. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Environmental Science & Technology 2015, 49(5), 2786–2795. doi:10.1021/es504984q
  14. Handler RM, Frierdich AJ, Johnson CM, Rosso KM, Beard BL, Wang C, Latta DE, Neumann A, Pasakarnis T, Premaratne WAPJ, Scherer MM. Fe(II)-Catalyzed Recrystallization of Goethite Revisited. Environmental Science & Technology 2014, 48(19), 11302–1131. doi:10.1021/es503084u
  15. Neumann A, Kaegi R, Voegelin A, Hussam A, Munir AKM, Hug SJ. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environmental Science & Technology 2013, 47(9), 4544-4554. doi:10.1021/es305176x
  16. Alexandrov V, Neumann A, Scherer MM, Rosso KM. Electron Exchange and Conduction in Nontronite from First-Principles. Journal of Physical Chemistry C 2013, 117(5), 2032-2040. doi:10.1021/jp3110776
  17. Neumann A, Olson TL, Scherer MM. Spectroscopic Evidence for Fe(II)–Fe(III) Electron Transfer at Clay Mineral Edge and Basal Sites. Environmental Science & Technology 2013, 37(13), 6969-6977. doi:10.1021/es304744v
  18. Neumann A, Petit S, Hofstetter TB. Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta 2011, 75(9), 2336-2355. doi:10.1016/j.gca.2011.02.009
  19. Neumann A, Hofstetter TB, Skarpeli-Liati M, Schwarzenbach RP. Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology 2009, 43(11), 4082-4089. doi:10.1021/es9001967
  20. Neumann A, Hofstetter TB, Lüssi M, Cirpka OA, Petit S, Schwarzenbach RP. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environmental Science & Technology 2008, 42(22), 8381-8387. doi:10.1021/es801840x
  21. Hofstetter TB, Neumann A, Arnold WA, Hartenbach AE, Bolotin J, Cramer CJ, Schwarzenbach RP. Substituent effects on nitrogen isotope fractionation during abiotic reduction of nitroaromatic compounds. Environmental Science & Technology 2008, 42(6), 1997-2003. doi:10.1021/es702471k 
  22. Hofstetter TB, Neumann A, Schwarzenbach RP. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology 2006, 40(1), 235-242. doi:10.1021/es0515147

Book Chapters

  1. Neumann A, Sander M, Hofstetter TB. Redox Properties of Structural Fe in Smectite Clay Minerals. In: Tratnyek, PG; Grundl, TJ; Haderlein, SB, ed. Aquatic Redox Chemistry. Washington DC: American Chemical Society, 2011, pp.361-379. doi:10.1021/bk-2011-1071.ch017